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Abstract

Background: Computational prediction of Transcription Factor Binding Sites (TFBS) from sequence data alone is difficult and
error-prone. Machine learning techniques utilizing additional environmental information about a predicted binding site (such
as distances from the site to particular chromatin features) to determine its occupancy/functionality class show promise as
methods to achieve more accurate prediction of true TFBS in silico. We evaluate the Bayesian Network (BN) and Support Vector
Machine (SVM) machine learning techniques on four distinct TFBS data sets and analyze their performance. We describe the
features that are most useful for classification and contrast and compare these feature sets between the factors.

Results: Our results demonstrate good performance of classifiers both on TFBS for transcription factors used for initial training and
for TFBS for other factors in cross-classification experiments. We find that distances to chromatin modifications (specifically, histone
modification islands) as well as distances between such modifications to be effective predictors of TFBS occupancy, though the
impact of individual predictors is largely TF specific. In our experiments, Bayesian network classifiers outperform SVM classifiers.

Conclusions: Our results demonstrate good performance of machine learning techniques on the problem of occupancy
classification, and demonstrate that effective classification can be achieved using distances to chromatin features. We
additionally demonstrate that cross-classification of TFBS is possible, suggesting the possibility of constructing a
generalizable occupancy classifier capable of handling TFBS for many different transcription factors.
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Introduction

Computational discovery of Transcription Factor Binding Sites

(TFBS) is a difficult problem. Both methods utilizing Position-

Weight Matrices (PWMs, [1], [2]) and methods using ab initio

prediction (e.g. MEME [3]), Weeder [4]) show high error rates in

prediction of binding sites ([5], [6]). However, methods of

identifying TFBS which utilize additional genomic information

beyond the DNA sequence have been developed in recent years.

Examples of these methods include PhyME [7], which utilizes

phylogenetic information as part of an ab initio motif discovery

process, and the approach of Chen et al. [8], which uses a

Bayesian Network (BN) [9,10] as a classifier and a number of

chromatin features as predictors to classify the expected physical

occupancy of PWM-predicted TFBS. The latter paper typifies

what we term an ‘‘occupancy classification’’ approach to the

problem of identifying high-occupancy or ‘‘true’’ TFBS, in which

machine learning techniques integrate information from multiple

data sources to predict the occupancy and putative functionality of

a given predicted binding site. Techniques that have incorporated

additional genomic landscape information have shown improve-

ment in performance over purely sequence-based techniques;

however, an evaluation of the applicability of such techniques

using multiple machine learning methods and multiple transcrip-

tion factors has been lacking. In this paper, we present a novel

classification approach utilizing the occupancy classification

paradigm and a variety of potential predicting features including

histone modifications and DNA hypomethylation. We then

analyze its performance using multiple machine learning methods

as classifiers and multiple publicly available chromatin immuno-

precipitation (ChIP)-based transcription factor (TF) binding data

sets as training and test data set.

Methods

We identified regions of the human genome on chromosomes

1–22 found to bind a TF according to chromatin immunopre-

ciptation for the factors c-Myc [11], TCF4/TCF7L2 [12],
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STAT1 [13], GABP and SRF [14]. These regions were mapped

to the UCSC Genome Database hg18 build of the human

genome ([15], [16]), using a custom MySQL database (MySQL

AB). We chose these TFs because each had high-quality whole-

genome datasets available and all are thought to function

primarily as transcriptional activators, either individually ([17],

[18], [19]), or in the beta-catenin/TCF4 complex in the case of

TCF4 [20]. In addition, at least three of these factors have known

effects in transcriptional pathways important to human health

and disease; mutation of c-Myc and/or TCF4 in the Wnt

pathway has a driving role in carcinogenesis in many colon

cancers [21], while STAT1 is involved in JAK-STAT signalling

and interferon response [18]. SRF was held out for later analysis

as a blinded TF. TRANSFAC [22] PWMs for the factors were

used to predict TFBS in the genome, using the TFBS Perl

package [23] and a 95% similarity threshold; the scope of the

analysis was limited to regions within +/23 kb of an annotated

transcription start site (TSS) for the 4 TFs in the analysis.

Predicted TFBS within 1 kb of the center of an empirically

identified TF binding region (defined as a chromoprecipitation/

CHiP-seq ‘‘hit’’ as reported by the authors of the respective study)

were considered to be ‘‘high-occupancy’’ TF binding sites, while

any other predicted site was considered low-occupancy. For each

TF, we constructed ten sample data sets via random selection,

each with 200 high-occupancy and an approximately equal

number of low-occupancy sites per sample; there was some

variation in the number of low-occupancy sites due to

randomization. Individual predicted binding sites may appear

in multiple sample data sets, but are only represented once in a

given sample data set. We then trained two types of classifiers:

Bayesian Networks (BN) [9,10] and Support Vector Machines

(SVM) [24]. Bayesian Networks utilize a joint probability

distribution of associations of predictor variables with outcomes,

utilizing Bayes’s rule to calculate the most likely state of the

outcome variable given the states of the predictors and thereby

perform classification, while Support Vector Machines use a

separating hyperplane to separate classes in a feature space. This

hyperplane is constructed as a combination of training data

points about the hyperplane; these are the ‘‘support vectors’’ (see

Figures 1a and 1b). In general, Bayesian networks require

‘‘binned’’ data that has been discretized into individual classes

(e.g. near/far rather than a continuous distance measure), while

SVMs can handle data that is either binned or continuous. We

trained these classifiers in the Weka machine learning environ-

ment [25] and utilzing the LibSVM SVM library [26], to

discriminate between the sites using a variety of features. The

features used were distances to nearest histone modification

islands ([27], [28]), nearest hypomethylation island as identified

in leukocytes [29], and nearest CpG islands and nearest TSS as

identified in the UCSC Genome Browser (hereafter referred to as

TFBS-feature distances). We additionally incorporated distances

between these nearest chromatin features to the nearest

chromatin feature of a given type (hereafter referred to as

feature-feature distances); e.g. the distance between a nearest

H3K4 trimethylation feature to a TFBS and the nearest CpG

island to that H3K4 feature (see Figure 2). Feature-feature

distances were capped at a maximum of 10 kb (e.g., a closest

distance larger than 10 kb was treated as 10 kb) between features

to speed construction of the data sets. The specific classification

algorithms used were:

N A BN using the K2 network-building algorithm [29], MDL-

based discretization for binning [30], and the CFS-subset

algorithm [31] for attribute selection.

N A linear-kernel SVM using default parameters

N A linear-kernel SVM with attributes preprocessed into bins

using the same MDL-based discretization technique as in the

BN classifiers.

We evaluated the classifiers’ ability to discriminate high and low

occupancy sites using 10-fold cross-validation of each sample and

the area under the curve (AUC) metric; AUC is calculated as the

area under a plot of true positive rates and false positive rates for

the classifier, with an AUC of 1 indicating perfect classification

performance and and area of .5 indicating equivalence to

randomly assigning classes to test examples (i.e., no effective

classification ability). We compared the algorithm and feature sets

used for the best-performing classifier for each TF. For each TF,

we also constructed classifiers on a per chromosome basis as

described above, extracting training data from the other

chromosomes. We also evaluated the performance of each best

classifier on the other TFs in the study, using each sample as a

training set and classifying each other sample from the other three

TFs. Additionally, we evaluated the difference in performance

between the classifiers when the feature-feature distances were

excluded from the feature set, using cross-validation and the AUC

as described previously. Finally, we performed an analysis of the

agreement between TFs on relevant features based on number of

times of a feature’s inclusion in the cross-validation classifier using

Cohen’s kappa measure [32] as implemented in the e1071

package for R 2.7 [33], and performed a cross-classification of the

held-out SRF data set with each TF to further examine cross-

classification performance.

Results

For the four TFs we analyzed (c-Myc, TCF4, STAT1, and

GABP) and features we utilized (distances to histone modifications,

DNA hypomethylation, CpG islands and TSS) we found that the

Bayesian Network (BN)-based classifiers consistently outperformed

Support Vector Machine (SVM)-based classifiers for all TFs, and

achieved average AUC scores ranging from .71 (TCF4) to .94

(GABP). Area Under the Curve (AUC) scores achieved in per-

chromosome classification were comparable to those achieved in

cross-validation. The resultant classifiers have naı̈ve Bayesian

network structures. Both TFBS-feature and feature-feature

distances are predictive, but the feature-feature distances appeared

to be the dominant predictors for all TFs. No features of either

type appear to be universally predictive across all TFs.

Classification of other TFs by a classifier trained on a different

TF was universally inferior to performance of a classifier trained

on the TF of interest, excepting the case of SRF. All TFs were

capable of accurate cross-classification of the held-out SRF data

set.

Comparison of Algorithms
In all cases, the BN classifier outperformed either of the SVM-

based classifiers (see Table 1). This result indicates that binning/

discretization of data types does not appear to grant the BN

method any advantages relative to the BN; however, the

performance advantage of the BN may be a result of a high

difficulty of assigning an error-minimizing hyperplane for an

SVM, due to overlaps in the feature space between classes. The

effect of binning may have been to exacerbate this issue, leading to

the lower performance of the SVM classifiers using discretization.

The network structures of the BN classifiers were equivalent to

naı̈ve Bayesian networks after discretization and attribute

selection, with no edges between the predictors despite the use

Occupancy Classifiers of TF Binding Sites
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of the K2 algorithm. We attempted to use the Tree-Augmented

Naı̈ve Bayes algorithm [34] to induce additional edges between

the predictor nodes in the networks, but this resulted in a

marginally worse classification performance. Similarly, use of

more sophisticated polynomial and radial basis function kernels for

the SVM-based classifiers did not improve performance over the

linear kernel. This seems to indicate that interaction effects

between the predictors do not seem to have predictive value as

such for occupancy, at least at the scale of our experiments.

Typical size of the networks was on the order of 50 predictors.

Contribution of Feature-Feature Distances to
Classification

A surprising result of the classification experiments was the

dominance of feature-feature distances over TFBS-feature dis-

tances in the best-performing classifiers. We therefore decided to

rerun classification as above using TFBS-feature distances only.

For this and all subsequent analyses, we chose to only construct

BN classifiers as they had outperformed SVMs previously. In all

cases, average AUC of classification improved with the inclusion of

feature-feature distances relative to TFBS-feature distances only

(see Table 2). As with overall classification performance, it is

difficult to determine how much of the variance in improvement is

attributable to biological differences in the TFs versus technical

differences in the generation of the data sets. In general, however,

the gain in performance tends to drop for ChIP-Seq data vs. data

generated from other techniques. From a biological standpoint,

the gain in performance could be interpreted from the point of

view of the ‘‘histone code’’ hypothesis [35], indicating that the

Figure 1. Examples of Classifiers Used in These Experiments.
Figure 1a: Simple Example of Bayesian Network. Simple Bayesian
Network for predicting rain (outcome variable, red) based on
temperature and cloud cover (predictor variables, blue). The structure
of the network indicates that the probabilities of the predictor variables
are independently used to predict the outcome (‘‘Naı̈ve’’ Bayesian).
Probabilities for each outcome given the state of the predictor are
given in each predictor node, while the joint probability for each
combination is given in the outcome box. The probability of a given
outcome can then be calculated based on the joint probabilities given
the state of the predictor variables and the prior probabilities of the
outcomes. For example, assume cloudy skies and a hot temperature,
and that the prior probabilities of rain/not rain are each .5, In this case,
the prior probabilities cancel out and the conditional probability
(P(rain)|Hot&Cloudy) equals (.15/(.15+.3)) = .33, and P(not rain|Hot&-
Cloudy) equals (.3/(.15+.3)) = .67. A Bayesian network classifier would
therefore predict no rain. Figure 1b: Simple Example of Support
Vector Machine. Simple Support Vector Machine for predicting rain
given temperature and cloud cover, as in Figure 1a. Temperature is
represented on the vertical axis, while cloud cover has been
dichotomized (21 = clear, 1 = cloudy). Clear instances are represented
diamonds, while cloudy instances are represented by squares. The
separating hyperplane is the dotted line, calculated as a combination of
a subset of the training data points (support vectors). An instance to be
classified that maps to the space above the hyperplane would be
predicted to have no rain (e.g. high temperature, not cloudy), while
those mapping below the hyperplane would be predicted to be rainy
(e.g. low temperature, cloudy). In this ideal case, the hyperplane cleanly
separates the classes; however, in a case where this would not be
possible (e.g., a hot, clear, rainy day in the training data), the classifier
attempts to construct a hyperplane that minimizes the error rate of the
classifier.
doi:10.1371/journal.pone.0026160.g001

Figure 2. Illustration of TFBS-feature and feature-feature
distances. Distances from a predicted TFBS site to the nearest
example of a particular histone modification or hypomethylation region
are TFBS-feature distances, while the distance from the hypomethyla-
tion region or histone modification to the nearest feature of another
type are feature-feature distances. Note that these need not be the
features used to calculate the feature-feature distance, though this is
the case in the figure for clarity.
doi:10.1371/journal.pone.0026160.g002

Table 1. Average AUC score for each classifier and TF (10
data sets, 10-fold cross-validation).

TF BN SVM SVM (Discretized)

c-Myc 0.74 0.71 0.69

TCF4 0.71 0.67 0.66

STAT1 0.83 0.78 0.75

GABP 0.94 0.91 0.9

Table 1 compares the average AUC score of 100 total cross-validation runs from
each of the three classification schemes used in these experiments.
doi:10.1371/journal.pone.0026160.t001
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arrangement of chromatin features relative to one another

influences the occupancy of that potential TFBS.

Individual Chromosome Classification
We additionally constructed BN classifiers using feature-feature

distances for each individual chromosome and TF, generating

training data from the other chromosomes. Performance was quite

comparable on average to the performance achieved in the

randomly sampled data sets (Table 3). However, c-Myc and TCF4

showed considerable variance in performance between chromo-

somes relative to STAT1 and especially GABP, which were more

consistent per chromosome (See Table S1).

Common Predictors Across TFs
To identify whether or not common predictors were shared

across the TFs, we performed a frequency count of all predictors

which appeared in at least one classifier instance for all four TFs,

over all cross-validations.; see Table 4 for top ten such predictors.

The degree of concordance between the TFs once again appears

to have a relationship with the method of generation of the data

sets, with GABP and STAT1 showing relatively higher concor-

dance with one another, using Cohen’s kappa calculated over all

attributes (average kappa = .47). c-Myc and TCF4 had less

concordance with each other or with STAT1 or GABP (highest

average kappa between any other combination of TFs was

STAT1-TCF4, with kappa = .43, see Table 5 . Additionally, while

the other 3 TFs have at least one predictor that is selected in 80+
classifiers, TCF4’s most commonly selected feature (distance to

TSS) is selected only in 60 classifiers, and was only rarely selected

by the other TFs (and, hence, does not appear in the overall

ranking presented in Table 4). No specific predictor appears to be

universally applicable to all of the TFs in this study. It is notable

that 9 of the top 10 most commonly selected predictors involve

distances to H3K4me3 modification islands (in particular, the top

3 feature pairs H3K4me2-H3K4me3, H3K27me1-H3K27me3,

and TSS-H3K4me3, as well as H4K20me1-H3K4me3), as

presence of H3K4me3 (as well as H3K4me2, H3K27me1 and

H4K20me1) histone modification islands have been shown to be

correlated with higher gene expression levels [36], which is

biologically consistent with the generally accepted functions of the

TFs in this study. While individual per-predictor probabilities

varied depending on training set and subsequent binning, in

general assigned probabilities behaved in a way consistent with

biological evidence (e.g., closer distances with respect to the

H3K4me histone mark usually assigned higher probabilities for

high-occupancy to the TFBS site in question). Average class-

conditional probabilities for high-occupancy sites in both the cross-

classification and per-chromosome classification for the smallest

distance bin in the top 10 most frequently occurring predictors are

summarized in Tables S2a (cross-classification, two-bin cases only)

and S2b (per chromosome, all cases).

Cross-Classification Performance
We additionally explored the classification performance

achieved using one TF’s classifier on the data for the other three

TFs. Cross-classification performance may both be an indicator of

the suitability of one TF for predicting occupancy of another

(perhaps for exploratory modelling purposes), as well as a general

indicator of the commonality of features influencing occupancy of

a TFBS. For this experiment, each sample from the previous

experiments was used to train a BN classifier using the entire

sample as training data. This classifier was then tested using each

sample from each other TF, resulting in 100 AUC values for each

TF-TF pair (Table 6). Both TFBS-feature and feature-feature

distances were included. In general, the classification performance

achieved appears to correspond well with that achieved in the

cross-validation experiments. Both STAT1 and GABP achieve

cross-classification performance on one another comparable to

that achieved in cross-validation; this result is sensible in light of

Table 2. Comparison of average AUC between BN classifiers
trained on all available features vs. only TFBS-feature
distances.

Factor All TFBS-Feature Only

c-Myc 0.74 0.72

TCF4 0.71 0.69

STAT1 0.83 0.82

GABP 0.94 0.92

Table 2 indicates the average AUC across 100 cross-validation classifiers
constructed using all available predictors vs. the same classifiers when feature-
feature data was excluded.
doi:10.1371/journal.pone.0026160.t002

Table 3. Average AUC for per chromosome classification
experiments.

TF Avg. AUC

c-Myc 0.75

GABP 0.94

STAT1 0.83

TCF4 0.83

Table 3 lists the average AUC for per chromosome classifiers, where training
data was isolated from all autosomes (save one) and used to train a classifier to
classify occupancy of TFBS on the held out chromosome. This is therefore the
average across 22 such experiments for each TF.
doi:10.1371/journal.pone.0026160.t003

Table 4. Top 10 most frequently occurring predictors in the
occupancy classifiers (per-TF and cumulative, sorted by
cumulative frequency).

Predictor GABP c-Myc STAT1 TCF4 Total

H3K4me2-H3K4me3 80 8 83 57 228

H3K27me1-H3K4me3 84 11 87 43 225

TSS-H3K4me3 85 47 50 22 204

H3K79me1-H3K4me3 69 26 79 25 199

H3K79me2-H3K4me3 97 12 55 34 198

H4R3me2-H3K4me3 61 40 74 23 198

H3K79me2-TSS 81 44 51 20 196

H4K20me1-H3K4me3 68 10 82 30 190

H3K79me3-H3K4me3 30 36 72 49 187

H3K9me1-H3K4me3 78 10 77 13 178

Table 4 indicates the number of times a particular predictor variable occurs in
each of the 100 Bayesian network classifiers constructed during cross-
validation. The table is ordered according to the cumulative occurrence of the
predictor variable in all classifiers across the four TFs.
doi:10.1371/journal.pone.0026160.t004
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the number of predictors that the two TFs were found to have in

common during the predictor frequency analysis.

Cross-classification of SRF
SRF represents a unique data set relative to the other TFs in

that its dataset appears to contain multiple strong motifs that differ

from the ‘‘canonical’’ SRF binding sequence; the TRANSFAC

SRF PWM accounts for only about 33% of the sites reported by

Valouev et al. [14] After restricting to the 3 kb window about the

TSS, only 46 high-occupancy and 421 low-occupancy sites were

identified. Because of this low sample size, we chose to exclude

SRF from the general analyses described above. However, the

data set does represent a tractable ‘‘use case’’ scenario for

occupancy classification; we hence decided to investigate the cross-

classification performance of the classifiers trained on the TFs

previously analyzed on the SRF dataset. SRF appears to be highly

amenable to cross-classification (Table 7). While the SRF dataset is

quite small, these results both indicate that occupancy classifica-

tion can operate well on datasets with smaller sample size and an

imbalance of high and low-occupancy TFBS sites and that the

method used to generate a binding data set likely plays an

important role in the accuracy of the evaluation of our classifiers,

as the SRF data set is a ChIP-Seq data set and classification

performance is comparable to that achieved on other ChIP-seq

based data sets.

Discussion

While we were able to achieve good performance with

occupancy classification overall, considerable variation in perfor-

mance and in predictors was observed between the TFs. Biological

differences are likely at play to some extent; for example, GABP is

thought to bind at the majority of human bidirectional promoters

[37], and this may imply a stronger or more specific dependence

on chromatin environment cues relative to the other factors.

Conversely, c-Myc has been shown to have considerable binding

activity outside of the window of analysis used in these experiments

[38], and this result in conjunction with our classification results

may suggest that c-Myc TFBS occupancy in general may not be as

sensitive to the chromatin environment local to the 59 region of

genes. However, GABP and c-Myc also represent temporal and

technical extremes, with c-Myc data generated in 2004 via paired-

end ditag techniques vs. GABP data generated in 2008 via ChIP-

seq; this illustrates the difficulty of separating technical from

biological variation in performance in these results. We suspect

that differences between the techniques used to generate the

binding data we utilized (particularly with regard to site coverage)

explain many of the discrepancies in performance between TFs,

and that our performance on e.g. c-Myc would be probably be

improved, possibly to a level comparable to that achieved on

STAT1 or GABP classification, given a more complete training

set. Another difficulty arises from potential differences in the

chromatin environment in the cell lines from which binding data

was generated versus the cell lines from which histone modifica-

tion and hypomethylation data was generated; ideally, all of the

data for a given TF and predictors would be derived from the

same cell lines. However, such data is not to our knowledge

publicly available, and in its absence determining the exact

contribution of potential cell line factors to the difference in

classification performance for each TF is not possible. There is

evidence that variation in histone modification proximal to core

promoters or a TSS is less pronounced across cell types [14],

however, and this suggests that cell line variations may be less

likely to have a severe detrimental effect on our classification

performance.

In comparison with other work in the field, the analysis

presented addresses several unanswered questions about occupan-

cy classification, notably the question of whether or not accurate

cross-classification of one TF by another is possible. The most

directly comparable work is that of Chen et al. [8], who

constructed a c-Myc classifier using a Bayesian network and

distances to various DNA and chromatin features as well as

sequence conservation. Chen et al. do attempt to address the issue

of cross-classification by cross-classifying CREB binding sites using

their c-Myc classifier, but do not address the issue of algorithm

comparison in any capacity. The analysis presented in this work

addresses more TFs then Chen et al. as well as comparing two

distinct algorithms for classification. Our work also addresses the

issue of cross-classification of TFs in considerably greater depth.

Two additional novel features separate this analysis from that of

Table 5. Pairwise Agreement on Inclusion of Features into
Classifiers (Average Kappa, 553 features, n = 100 per feature).

TF 1 TF2 Kappa

GABP STAT1 0.47

STAT1 TCF4 0.43

GABP TCF4 0.41

STAT1 c-Myc 0.39

c-Myc TCF4 0.36

GABP c-Myc 0.34

Table 5 indicates the Cohen’s kappa score for agreement on the number of
times a given predictor was included in the 100 cross-vaidation Bayesian
networks between two TFs.
doi:10.1371/journal.pone.0026160.t005

Table 6. Average AUC in cross-classification experiments.

Training/Test TF c-Myc TCF4 STAT1 GABP

c-Myc x 0.64 0.79 0.86

TCF4 0.65 x 0.78 0.91

STAT1 0.69 0.69 x 0.92

GABP 0.67 0.69 0.83 x

Table 6 indicates the average AUC score across ten classifiers where training
data from one TF (rows) was used to train a classifier that classified TFBS for
another TF (columns).
doi:10.1371/journal.pone.0026160.t006

Table 7. Average AUC for SRF cross-classification
experiments.

Classifier AUC

SRF (cross-val) 0.88

GABP 0.88

c-Myc 0.86

STAT1 0.89

TCF4 0.86

Table 7 indicates the average AUC score across 10 classifiers where the
indicated TF was used to train a classifier that was tested on SRF TFBS.
doi:10.1371/journal.pone.0026160.t007
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Chen et al.; the construction of our data sets from raw binding

data and the use of feature-feature distances in the classifiers. Chen

et al. use as a training data set binding data that quantitatively

identifies the level of binding at several c-Myc binding sites. In

contrast, this analysis uses only binding data that is not identified

beyond presence/absence, and yet achieves reasonable perfor-

mance, demonstrating that quantitative binding information is not

a prerequisite for training accurate occupancy classifiers. Also, the

use of feature-feature distances is to our knowledge unique for

purposes of identifying high occupancy TFBS, and is not present

in Chen et al.

A more recent work is that of Won, Ren, and Wang [39], which

uses a Hidden Markov Model-based approach to accurately

identify binding sites for 13 distinct TFs in mouse. Our methods

and analyses do share important common features, notably the

reliance on histone modifications as primary inputs to the

classifier, indicating independently (and in agreement with

previous evidence such as Chen et al.) that histone modifications

are important predictors for occupancy classification in general.

The approach of Won, Ren, and Wang (called ‘‘Chromia’’) has

clear distinctions from the analysis presented here and is able to

address enhancer regions that our method does not currently

attempt to address. We do note though their model loses some

performance in enhancers as compared to promoters. However,

there are important issues that our methods and analysis address

that theirs does not, providing a clear utility to our approach.

Won, Ren and Wang do not address the use of feature-feature

distances in any fashion, which our approach does examine. The

method presented in this work is agnostic to the motif or method

used to identify potential TFBS, whereas the identification of

TFBS by a TF-specific motif is intimately tied into the model used

by Chromia. Won, Ren and Wang do not address the issue of

cross-classification in their paper, and indeed Chromia may not be

able to perform cross-classification accurately or at all given the

necessity of a TF-specific motif in its model. This considerably

reduces the method’s potential for use in situations where training

data may be sparse or unavailable. The separation of TFBS

identification from occupancy classification, in addition to

enabling us to perform accurate cross-classification, may provide

our methods the ability to generalize onto any given TFBS

discovery algorithm. We speculate this may be useful in

generalizing occupancy classification for situations in which

training data for a TF is not available or inadequate or to

tailoring occupancy classification to specific needs (e.g., use of ab

initio prediction types in lieu of PWM prediction if PWMs are

unavailable for a factor of interest).

We believe we have demonstrated the viability of occupancy

classification as a method of accurately locating likely high-

occupancy TFBS for multiple TFs, and these results suggest a

multitude of future research directions for refining and expanding

upon occupancy classification methods. An analysis of the impact

of using occupancy classification as a supplement to or in lieu of

biological data in a real-world analysis of a biological problem is

still wanting, but we have begun to design such an analysis based

on utilizing protein-protein interaction (PPI) network construction

and the occupancy classification methodology that we have

described here. Additionally, given the results of both the cross-

validation and cross-classification experiments, it seems possible

that a combination of occupancy classifiers trained on data from

several TFs (possibly through a voting or stacking [40] mechanism)

may be able to perform accurate occupancy classification for a

variety of different TFs, potentially without requiring explicit

training on biological examples for a novel TF. Whether such a

classifier is possible and to what degree it would be similar to the

classifiers built for this paper are open questions; as an example, it

is conceivable that separate generalizable classifiers for repressive

transcription factors may be required as opposed to the activating

factors used in our experiments, or that performance might be

enhanced by using TFs closely related to a novel factor of interest.

Another open question available for further study is the

construction of an accurate classifier for TFBS located in alternate

genomic contexts such as the 39 regions of genes. However, this

work provides key initial steps in that direction.
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