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A study of non-commensurate fractional linear system is done in a parallel way to the commensurate
case. A partial fraction decomposition is accomplished using a recursive procedure. Each partial fraction
is inverted in two different ways. The decomposition integer/fractional is done also. Some examples are
presented.
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Introduction

The last 30 years of Fractional Calculus [5,14,15] brought a
remarkable progress and became popular in many scientific and
technical areas [4,6–9,16] due to its ability to better describe many
natural phenomena. The fact that fractional models represent sys-
tems which require lower number of parameter than those of inte-
ger order is a point in favor of fractional systems (see [2]). This is
due to their capacity of supplying us with more reliable time and
frequency representations.
We cannot say that there many works on non-commensurate
systems. The first meaningful study was presented in [13], based
on a manipulation of the transfer function and the use of the prop-
erties of Laplace transform. Another one described in [12] was
based on a series expansion of the transfer function. Much of the
research in fractional systems is developed for commensurate
orders in a way that is a direct generalization of traditional formal-
ism. However, most of the methods used to solve commensurate
fractional linear systems cannot be easily extended to non-
commensurate case. In such situation, we find the partial fraction
decomposition very useful in inverting Laplace and Z transforms
currently used in the study of linear systems, when performing
the computation of the impulse response from the transfer func-
tion (TF). The implementation of such inversion using the decom-
position of the TF in partial fractions, not only simplifies the
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procedure, but gives more insight into the characteristics of the
system, namely, stability and existing vibration modes. The proce-
dures in [1,12,13] are not suitable to display such characteristics,
mainly to perform the modal decomposition.

In this paper, we look for obtaining for non-commensurate
order systems such kind of decomposition, provided we know
the pseudo-pole/zero factorization. We start from the simplest
case where we have only two orders and two pseudo-poles and
decompose it into a sum of two fractions. From it, we turn to the
case of three pseudo-poles. Finally, we deduce the general case
and show how add pseudo-zeros. For each term we obtain the
inverse LT by using the operational method presented in [1].

The paper is organized as follows. Firstly, we present our results
related to simple fraction decomposition with non-commensurate
order. Then, we resolve several examples of lineal fractional sys-
tems with non-commensurate order. We continue with the
decomposition of transfer function in two parts, a part of integer
order and the other one of fractional order. Finally, the conclusions
are presented.

Partial fraction decomposition

Non-commensurate transfer function

Consider a linear system with TF given by

HðsÞ ¼ ðsb1 � f1Þðsb2 � f2Þ � � � ðsbm � fmÞ
ðsa1 � c1Þðsa2 � c2Þ � � � ðsan � cnÞ

; ð1Þ

where the ci; i ¼ 1;2; . . . ;n; fj; j ¼ 1; . . . ;m, are non-null pseudo-
poles and pseudo-zeroes that are, not necessarily different, complex
numbers. The derivative orders, bm;an are real numbers in the inter-
val ð0;1Þ, and for stability reasons,

P
mbm 6

P
nan.

In applications, we have a problem not easily solvable: the
obtention of the factorization. To understand the difficulties we
consider the relation between the factorization and the pseudo-
polynomial. Consider a pseudo-polynomials with format

PnðsÞ ¼ ðsa1 � c1Þðsa2 � c2Þ � � � ðsan � cnÞ; ð2Þ
where the ci’s are different complex numbers. Let
a ¼ ða1;a2; . . . ;anÞ 2 Rþn. If we define

k ¼
Xn
k¼1

ak;

kj1 ¼
Xn
k¼1
k–j1

ak; j1 2 ½1;n�;

kj1 ;j2 ¼
Xn
k¼1

k–j1 ;j2

ak; j1 – j2; j1; j2 2 ½1;n�;

..

. ¼ ..
.

kj1 ;j2 ;...;jn�1
¼ ajn ;

kj1 ;j2 ;...;jn ¼ 0;

then (2) can be written as

PnðsÞ ¼ sk �
Xn
j1¼0

cj1 s
kj1 þ

Xn

j1 ;j2¼0

j1–j2

cj2cj1 s
kj1 ;j2

�
Xn

j1 ;j2 ;j3¼0

j1–j2–j3

cj3cj2cj1s
kj1 ;j2 ;j3 þ � � � þ ð�1Þnþ1cjn � � � cj2cj1 ; ð3Þ

which shows that there are many non-factorizable pseudo-
polynomials. For example, sa þ asb þ b, with non-commensurate
orders does not have a factorization as referred. Relation (3) can
serve as guide for obtaining the factorization of polynomials with
a few factors.

Two pseudo-poles case

The simple fraction decomposition is a widely used tool in sev-
eral areas of science. In the case of one variable, a well known sim-
ple result is that

1
ðz� aÞðz� bÞ ¼

1
�bþa

ðz� aÞ �
1

�bþa

ðz� bÞ ; a – b: ð4Þ

Our goal is the decomposition of a fraction of the type:

1
ðsa1 � c1Þðsa2 � c2Þ

;

but it is a simple task to show that it is not possible to obtain a
result equal to (4). However, we can obtain a similar decomposition
using a trick: if we define in (4) the parameters z ¼ 1; a ¼ sa1

c1
and

b ¼ sa2
c2
, with c1; c2 be different non-zero complex numbers, then

we obtain the result stated in next Theorem.

Theorem 1. Let c1; c2 be different non-null complex numbers and
a1;a2 be positive real numbers. Then

1
ðsa1 � c1Þðsa2 � c2Þ

¼ c1
ðsa1 � c1Þðc1sa2 � c2sa1 Þ
� c2
ðsa2 � c2Þðc1sa2 � c2sa1 Þ

:

Remark 1. If c1 ¼ c2 ¼ 0, the theorem does not apply, because we
have no pseudo-pole, but only a branchcut point. For c1 – 0 and
c2 ¼ 0, we observe that 1

ðsa1�c1Þsa2 ¼ s�a2
ðsa1�c1Þ. Therefore, we invert

1
ðsa1�c1Þ and afterwards perform the anti-derivation corresponding

to s�a2 .
Remark 2. It is important to note that the term ðc1sa2 � c2sa1 Þ has
no zeroes in the first Riemann sheet, in the non-commensurate
case we are dealing. Therefore, each term in the right hand side
in (1) only has a pseudo-pole. If the orders commensurate,
we can continue the decomposition as we do in the classic
procedure.
General decomposition

In the next theorem, we tackle the case with three simple
pseudo-poles.

Theorem 2. Let c1; c2; c3 be different non-null complex numbers,
and a1;a2;a2 be positive real numbers. Then

1
ðsa1�c1Þðsa2�c2Þðsa3�c3Þ ¼

c21
ðc2sa1�c1sa2 Þðc3sa1�c1sa3 Þðsa1�c1Þ

þ c22
ðc1sa2�c2sa1 Þðc3sa2�c2sa3 Þðsa2�c2Þ

þ c23
ðc2sa3�c3sa2 Þðc1sa3�c3sa1 Þðsa3�c3Þ :
Proof. From Theorem 1, we obtain that

1
ðsa1�c1Þðsa2�c2Þðsa3�c3Þ ¼ � c1

ðsa1�c1Þðsa3�c3Þðc2sa1�c1sa2 Þ

� c2
ðsa2�c2Þðsa3�c3Þðc1sa2�c2sa1 Þ :

Applying again the Theorem 1, it follows that
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1
ðsa1�c1Þðsa2�c2Þðsa3�c3Þ ¼

c21
ðc2sa1�c1sa2 Þðc3sa1�c1sa3 Þðsa1�c1Þ

þ c22
ðc1sa2�c2sa1 Þðc3sa2�c2sa3 Þðsa2�c2Þ

þ c1c3
ðc2sa1�c1sa2 Þðc1sa3�c3sa1 Þðsa3�c3Þ

þ c2c3
ðc1sa2�c2sa1 Þðc2sa3�c3sa2 Þðsa3�c3Þ :

Finally, simplifying we get the result. h

From Theorems 1 and 2, we deduce the general result.

Theorem 3. Let c1; c2; . . . ; cn be different non-null complex num-
bers and a1;a2; . . . ;an positive real numbers. Then

1
ðsa1 � c1Þðsa2 � c2Þ � � � ðsan � cnÞ

¼ ð�1Þnþ1
Xn
i¼1

cn�1
i

ðsai � ciÞ
Y

n
j¼1

j–i

ðcjsai � cisaj Þ
:

For the case when we have multiple pseudo-poles we only need
to apply several times the Theorems. To illustrate the procedure,
we present the next example.
Example 1. Suppose that we want to apply the simple fraction
decomposition to transfer function

HðsÞ ¼ 1

ðsa1 � c1Þðsa2 � c2Þ2
:

By the Theorem 1, we have that

1
ðsa1 � c1Þðsa2 � c2Þ

¼ � c1
ðsa1 � c1Þðc2sa1 � c1sa2 Þ

� c2
ðsa2 � c2Þðc1sa2 � c2sa1 Þ

:

Then

1
ðsa1�c1Þðsa2�c2Þ2

¼ 1
ðsa2�c2Þ � c1

ðsa1�c1Þðc2sa1�c1sa2 Þ �
c2

ðsa2�c2Þðc1sa2�c2sa1 Þ

� �

¼ � c1
ðsa1�c1Þðsa2�c2Þðc2sa1�c1sa2 Þ �

c2
ðsa2�c2Þ2ðc1sa2�c2sa1 Þ

:

Again by applying Theorem 1, we get that

1
ðsa1�c1Þðsa2�c2Þ2

¼ c21
ðsa1�c1Þðc2sa1�c1sa2 Þ2

þ c1c2
ðsa2�c2Þðc1sa2�c2sa1 Þðc2sa1�c1sa2 Þ

� c2
ðsa2�c2Þ2ðc2sa2�c2sa1 Þ

:

Remark 3. There is an eventually simpler approach to this exam-
ple that consists in taking the decomposition of Theorem 1 and
compute the order 1 derivative relatively to c2 in both sides of
the relation.
Simple pseudo-poles/zeroes cases

Now, we add pseudo-zeros to transfer function (1). We suppose
that the number of pseudo-poles is bigger than the number of
pseudo-zeroes. We procedure as in Theorem 1, but we add a
pseudo-zero h1 of order a3. A simple computation yields

sa3�h1
ðsa1�c1Þðsa2�c2Þ ¼ � c1s

a3

ðc2sa1�c1sa2 Þðsa1�c1Þ �
c2s

a3

ðc1sa2�c2sa1 Þðsa2�c2Þ

� h1s
a1

ðc1sa2�c2sa1 Þðsa1�c1Þ �
h1s

a2

ðc2sa1�c1sa2 Þðsa2�c2Þ :
ð5Þ

For the case of three pseudo-poles and one pseudo-zero we obtain
that
sa4�h1
ðsa1�c1Þðsa2�c2Þðsa3�c3Þ ¼

c21s
a4

ðc2sa1�c1sa2 Þðc3sa1�c1sa3 Þðsa1�c1Þ

þ c22s
a4

ðc1sa2�c2sa1 Þðc3sa2�c2sa3 Þðsa2�c2Þ

þ c23s
a4

ðc2sa3�c3sa2 Þðc1sa3�c3sa1 Þðsa3�c3Þ

� c1h1s
a1

ðc2sa1�c1sa2 Þðc3sa1�c1sa3 Þðsa1�c1Þ

� c2h1s
a2

ðc1sa2�c2sa1 Þðc3sa2�c2sa3 Þðsa2�c2Þ

� c3h1s
a3

ðc2sa3�c3sa2 Þðc1sa3�c3sa1 Þðsa3�c3Þ :

Now, we can deduce the next Theorem.

Theorem 4. Let c1; c2; . . . ; cn; h1, be different non-null complex
numbers and a1;a2; . . . ;an;anþ1, be real numbers. Then

sanþ1�h1
ðsa1�c1Þðsa2�c2Þ���ðsan�cnÞ ¼ ð�1Þnþ1

Xn
i¼1

cn�1
i

sanþ1

ðsai�ciÞ
Y

n
j¼1

j–i

ðcjsai�cis
aj Þ

�
Xn

i¼1

cn�2
i

h1s
ai

ðsai�ciÞ
Y

n
j¼1

j–i

ðcj sai�cis
aj Þ
:

For adding another pseudo-zero h2, with order anþ2, we apply
the previous Theorem and get

ðsanþ1�h1Þðsanþ2�h2Þ
ðsa1�c1Þðsa2�c2Þ���ðsan�cnÞ ¼ ð�1Þnþ1

Xn
i¼1

cn�1
i

sanþ1þanþ2

ðsai�ciÞ
Y

n
j¼1

j–i

ðcjsai�cis
aj Þ

�
Xn
i¼1

cn�2
i

h1s
aiþanþ2

ðsai�ciÞ
Y

n
j¼1

j–i

ðcjsai�ci s
aj Þ

�ð�1Þnþ1
Xn
i¼1

h2cn�1
i

sanþ1

ðsai�ciÞ
Y

n
j¼1

j–i

ðcjsai�ci s
aj Þ

þ
Xn
i¼1

cn�2
i

h1h2s
ai

ðsai�ciÞ
Y

n
j¼1

j–i

ðcjsai�ci s
aj Þ
:

ð6Þ

The same procedure can be applied to case of more pseudo-zeros. In
the next section we present some examples of our decomposition
with zeros.

Commensurate case

In this subsection, we present some particular cases with which
we verify some known results.

� Consider a1 ¼ a2 in Theorem 1. Then
1
ðsa1�c1Þðsa2�c2Þ ¼ � c1=ðc2�c1Þ

ðsa1�c1Þsa1 �
c2=ðc1�c2Þ
ðsa1�c2Þsa1 :

The previous relation can be rewritten as

1
ðsa1�c1Þðsa2�c2Þ ¼

�c1
c2�c1

1
c1

ðsa1�c1Þ �
1
c1
sa1

� �
� c2

c1�c2

1
c2

ðsa1�c2Þ �
1
c2
sa1

� �

¼ �
1

c2�c1
ðsa1�c1Þ �

1
c1�c2

ðsa1�c2Þ

� Now, let 0 < a1 < 1; 0 < a2 < 1, and set a1 ¼ ma; a2 ¼ na;
0 < a < 1, where m;n 2 N. We want to see if c1sa2 � c2sa1 has
zeroes. Let s ¼ qeih. We can show easily that with
qðm�nÞa ¼ c2
c1

����
����;



14 M.D. Ortigueira, G. Bengochea / Journal of Advanced Research 25 (2020) 11–17
and

h ¼ argðc2Þ � argðc1Þ
ðm� nÞa ;

we have a zero, if jhj < p. For example, with c2 and c1 real num-
bers with the same sign, there is a zero and consequently the
term c1sa2 � c2sa1 will contribute with another pseudo-pole to
(1), but having different signs there will be no pseudo-pole.

� Consider a1 ¼ a2 ¼ a3 in Theorem 2. Then
1
ðsa1�c1Þðsa2�c2Þðsa3�c3Þ ¼

c21
ðc3�c1Þðc2�c1Þ

1
s2a1 ðsa1�c1Þ

� �

þ c22
ðc1�c2Þðc3�c2Þ

1
s2a1 ðsa1�c2Þ

� �

þ c23
ðc1�c3Þðc2�c3Þ

1
s2a1 ðsa1�c3Þ

� �
:

The previous relation can be rewritten as

1
ðsa1�c1Þðsa2�c2Þðsa3�c3Þ ¼

1
ðc3�c1Þðc2�c1Þ

1
sa1�c1 �

1
sa1 � c1

s2a1

� �

þ 1
ðc1�c2Þðc3�c2Þ

1
sa1�c2 �

1
sa1 � c2

s2a1

� �

þ 1
ðc1�c3Þðc2�c3Þ

1
sa1�c3 �

1
sa1 � c3

s2a1

� �
:

Simplifying

1
ðsa1�c1Þðsa1�c2Þðsa1�c3Þ ¼

1
ðc3�c1Þðc2�c1Þ

1
sa1�c1

� �

þ 1
ðc1�c2Þðc3�c2Þ

1
sa1�c2

� �

þ 1
ðc1�c3Þðc2�c3Þ

1
sa1�c3

� �
:

� Consider a2 ¼ 2a1 in Theorem 1. Then
1
ðsa1�c1Þðsa2�c2Þ ¼

1
ðsa1�c1Þðsa1�

ffiffiffiffi
c2

p Þðsa1þ ffiffiffiffi
c2

p Þ :

Using the case when a1 ¼ a2 ¼ a3, we get that

1
ðsa1�c1Þðs2a1�c2Þ

¼ 1
ð�c2

1
þc2Þ

1
sa1�c1

� �

þ 1
�2

ffiffiffiffic2p ðc1�
ffiffiffiffic2p Þ

1
sa1� ffiffiffiffic2p

� �

þ 1
2
ffiffiffiffic2p ðc1þ

ffiffiffiffic2p Þ
1

sa1þ ffiffiffiffic2p
� �

:

Computing the impulse response of some fractional linear systems

In this section, in order to illustrate how to use our decomposi-
tion, we solve several fractional linear systems using the simple
fraction decomposition introduced in the previous section. We
show how compute the inverse Laplace transform of our basic ele-
ments. To do it, we use the results presented in Appendix A to
invert each term of (1) to obtain

L�1 � c1
sa1�c1ð Þ c2s

a1�c1sa2ð Þ
� 	

¼
X1
k¼0

X1
l¼0

c2l�k
1 ck�l

2
tð2l�kþ1Þa1þðk�lþ1Þa2�1

C ð2l�kþ1Þa1þðk�lþ1Þa2ð Þ eðtÞ;

where eðtÞ is the Heaviside unit step function.

Example 2. Consider the system associated to transfer function

HðsÞ ¼ sa3

ðsa1 � 1Þðsa2 � 2Þ : ð7Þ

Suppose that the input xðtÞ ¼ dðtÞ. From Theorem 3 we have that

HðsÞ ¼ � sa3

ðsa1 � 1Þð2sa1 � sa2 Þ �
2sa3

ðsa2 � 2Þðsa2 � 2sa1 Þ :
Using the method presented in Appendix A, the solution associated
to basic element

H1ðsÞ ¼ � sa3

ðsa1 � 1Þð2sa1 � sa2 Þ ¼
sa3

sa1 ðsa1 � 1Þðsa2�a1 � 2Þ ;

is given by

y1ðtÞ ¼
X1
k¼0

X1
l¼0

2k�l tð2l�kþ1Þa1þðk�lþ1Þa2�a3�1

C ð2l� kþ 1Þa1 þ ðk� lþ 1Þa2 � a3ð Þ eðtÞ;

and for

H2ðsÞ ¼ � 2sa3

ðsa2 � 2Þðsa2 � 2sa1 Þ ¼
sa3

sa2 ðsa2 � 2Þ sa1�a2 � 1
2


 � ;
is

y2ðtÞ ¼
X1
k¼0

X1
l¼0

22l�k tð2l�kþ1Þa2þðk�lþ1Þa1�a3�1

C ð2l� kþ 1Þa2 þ ðk� lþ 1Þa1 � a3ð Þ eðtÞ:

It follows that

L�1 � sa3

ðsa1 � 1Þð2sa1 � sa2 Þ
� 	

¼ y1ðtÞ;

and

L�1 � 2sa3

ðsa2 � 2Þðsa2 � 2sa1 Þ
� 	

¼ y2ðtÞ:

Therefore the solution yðtÞ of system (7) is

yðtÞ ¼ y1ðtÞ þ y2ðtÞ: ð8Þ
Now, if we have that xðtÞ ¼ eðtÞ in (7), then we only need calculate
the integral (omitting the sum of constant) to (8). Therefore the
solution of (7) with xðtÞ ¼ eðtÞ is given by

yðtÞ ¼
X1
k¼0

X1
l¼0

2k�l tð2l�kþ1Þa1þðk�lþ1Þa2�a3
C ð2l�kþ1Þa1þðk�lþ1Þa2�a3þ1ð Þ eðtÞ

þ
X1
k¼0

X1
l¼0

22l�k tð2l�kþ1Þa2þðk�lþ1Þa1�a3
C ð2l�kþ1Þa2þðk�lþ1Þa1�a3þ1ð Þ eðtÞ:
Example 3. Consider the system associated to transfer function

HðsÞ ¼ 1
ðsa1 � c1Þðsa2 � c2Þ

: ð9Þ

Suppose that the input xðtÞ ¼ dðtÞ. From Theorem 3 we have that

HðsÞ ¼ � c1
ðsa1 � c1Þðc2sa1 � c1sa2 Þ

� c2
ðsa2 � c2Þðc1sa2 � c2sa1 Þ

:

Using the method presented in Appendix A, the solution associated
to basic element

H1ðsÞ ¼ � c1
ðsa1 � c1Þðc2sa1 � c1sa2 Þ

¼ 1

sa1 ðsa1 � c1Þ sa2�a1 � c2
c1

� � ;

is given by

y1ðtÞ ¼
X1
k¼0

X1
l¼0

c2l�k
1 ck�l

2
tð2l�kþ1Þa1þðk�lþ1Þa2�1

C ð2l� kþ 1Þa1 þ ðk� lþ 1Þa2ð Þ eðtÞ;

and for

H2ðsÞ ¼ � c2
ðsa2 � c2Þðc1sa2 � c2sa1 Þ

¼ 1

sa2 ðsa2 � c2Þ sa1�a2 � c1
c2

� � ;

is

y2ðtÞ ¼
X1
k¼0

X1
l¼0

c2l�k
2 ck�l

1
tð2l�kþ1Þa2þðk�lþ1Þa1�1

C ð2l� kþ 1Þa2 þ ðk� lþ 1Þa1ð Þ eðtÞ:
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It follows that

L�1 � c1
ðsa1 � c1Þðc2sa1 � c1sa2 Þ

� 	
¼ y1ðtÞ;

and

L�1 � c2
ðsa2 � c2Þðc1sa2 � c2sa1 Þ

� 	
¼ y2ðtÞ:

Therefore the solution yðtÞ of system (9) is

yðtÞ ¼ y1ðtÞ þ y2ðtÞ:
Example 4. Consider the transfer function

HðsÞ ¼ sa3 � 2
ðsa1 � iÞðsa2 þ iÞ ; ð10Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
. We want the impulse response for the particular

case in which a1 ¼ a2. Applying (5) to transfer function (10), we
get that

sa3�2
ðsa1�iÞðsa2þiÞ ¼ isa3

ðisa1þisa2 Þðsa1�iÞ þ isa3
ðisa2þisa1 Þðsa2þiÞ

� 2sa1
ðisa2þisa1 Þðsa1�iÞ þ 2sa2

ðisa1þisa2 Þðsa2þiÞ

¼ isa3�2sa1
ðisa1þisa2 Þðsa1�iÞ þ isa3þ2sa2

ðisa2þisa1 Þðsa2þiÞ :

Because a1 ¼ a2, then

sa3�2
ðsa1�iÞðsa1þiÞ ¼ � i

ðsa1þiÞ þ i
ðsa1�iÞ þ 1=2sa3

sa1 ðsa1þiÞ þ 1=2sa3
sa1 ðsa1�iÞ :

Following the methodology used in the previous examples, we
obtain that the solution yðtÞ of system (10) is given by

yðtÞ ¼ 2
X1
k¼1

ð�1Þk t2ka1�1

Cðð2ka1Þ eðtÞ þ
X1
k¼1

ð�1Þkþ1 t2ka1�a3�1

Cð2ka1�a3Þ eðtÞ;

which is a real solution.
Fig. 1. Integration path.
Integer/fractional inversion of each partial fraction

The solution supplied by the approach presented above does
not show the underlying structure of a TF. This limitation is
revealed when we try to compute its inversion by using the Brom-
wich integral for inverting the LT. We start by fixing a branch cut
line on the left complex half-plane, since the TF must be analytic
on the right half plane. Let us choose the left half real axis for
the cut and assume that each term of the TF is continuous from
above on the branch cut line. As seen, it verifies
lims!1 HðsÞ ¼ 0; j argðsÞj < p. We will assume that
lims!0 sHðsÞ ¼ 0 so that there is a finite initial value [3,11].

Consider (6) where we illustrate a general decomposition of a
TF with two pseudo-zeroes. As seen the decomposition involves
terms having the form:

FðsÞ ¼ sb

ðsai � ciÞ
Y
j¼1

j–i

nðcjsai � cisaj Þ
; ð11Þ

where b is such that lims!1 FðsÞ ¼ 0; j argðsÞj < p, and
lims!0 sFðsÞ ¼ 0.

Remark 4.

� We remember that a given pseudo-pole p, corresponding to an
order a, is a pole, if when s ¼ jsjeih and p ¼ jpjei/, we have

jsj ¼ jpj1=a and h ¼ /=a. However, we have �p < h 6 p and,
therefore, we only obtain a pole if �ap < / 6 ap.
� The term GðsÞ ¼ Qn
j¼1

j–i

ðcjsai � cisaj Þ in (11) is analytic in the first

Riemann surface and has no zeroes (of course in the
analyticity region that excludes the origin that is the branch
cut point).

In these conditions we can use the integration path C in Fig. 1,
[3,10], and we apply the residue theorem. Let u 2 Rþ and
consider FðeipuÞ and Fðe�ipuÞ, the values of FðsÞ immediately
above and below the branch cut line. Proceeding as in [3] we
obtain

f ðtÞ ¼ Aiec
1=ai
i

teðtÞ þ 1
2pi

Z 1

0
Fðe�ipuÞ � FðeipuÞ� 


e�utdu � eðtÞ; ð12Þ

where the constant Ai is the residue of (11) at c1=aii :

Ai ¼ c
b
ai
i

aic1=ai�1
i

Yn
j¼1

j–i

ðcjci � c
aj
ai
þ1

i Þ
:

Computing the LT of both sides in (12) we obtain

FðsÞ ¼ FiðsÞ þ Ff ðsÞ;
where the integer order part is

FiðsÞ ¼ Ai

s� c1=aii

; ReðsÞ > maxðReðc1=aii ÞÞ;

and the fractional part is

Ff ðsÞ ¼ 1
2pi

Z 1

0
Fðe�ipuÞ � FðeipuÞ� 
 1

sþ u
du; ð13Þ

valid for ReðsÞ > 0.
The above steps led us to realize that:

� For ai ¼ 1, we have no fractional component.
� For ai < 1, we may have two components depending on the
location of ci in the complex plane
– If j argðciÞj > pai, then we do not have the integer order com-

ponent; it is a purely fractional system.
– If j argðciÞj 6 pai, then it is mixed character system in the

sense that we have both components.



Fig. 3. Integer part argðc1Þ ¼ 0:71 p
2.
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– When j argðciÞj ¼ p
2 ai, the integer order component is sinu-

soidal; however, the fractional component exists also.
� The stability condition comes only from the integer order com-
ponent. In fact, and as it is straightforward to verify, the integer
order component is stable if p

2 ai < j argðciÞj < pai, and unstable
if j argðciÞj < p

2 ai. The case j argðciÞj ¼ p
2 ai corresponds to a criti-

cally stable system.
� Concerning to the fractional part we can verify that
Fðe�ipuÞ � FðeipuÞ, is a bounded function. Therefore, the integral
in (13) is also bounded and decreases to zero as t goes to infi-
nite, but slowly.

Applying the above considerations to the general system (1) we
are led to conclude that we can decompose it in two parcells with
integer and fractional behaviors, namely:

� Integer term: it has an impulse responses corresponding to lin-
ear combinations of exponentials that, in the stable case, go to
zero very fast.

� Fractional term: they are long memory systems that exist
always even there are no poles as when arguments of the
pseudo-polynomial roots have absolute values greater than
pa, where a is the corresponding derivative order smaller
then 1.
Fig. 4. Fractional part argðc1Þ ¼ 0:69 p
2.
Example 5. Consider the basic element

FðsÞ ¼ s0:2

ðs1=
ffiffi
2

p
� c1Þðð�2þ iÞs1=

ffiffi
2

p
þ c1s0:51Þ

:

The Figs. 2–5 illustrate the behaviour of the integer and fractional
solutions for poles in both sides of the stability threshold:
argðc1Þ ¼ 0:71 p

2 and argðc1Þ ¼ 0:69 p
2, with jc1j ¼ 1.

As expected, the fractional part does not change its behaviour:
it is always stable. This is in agreement with the results in [11].
The instability and oscillation comes from the integer part.

Theorem 5. The result stated in (13) can be generalized for any TF as

in (1). Let Cp ¼ cj : �paj < argðcjÞ 6 paj; j ¼ 1;2; � � �
n o

, be the set

of the poles of the TF (of course, subset of the pseudo-poles). Then

hðtÞ ¼
X
ci2Cp

Aiec
1=ai
i

teðtÞ þ 1
2pi

Z 1

0
Hðe�ipuÞ � HðeipuÞ� 


e�utdu � eðtÞ:
Fig. 2. Integer part argðc1Þ ¼ 0:69 p
2. Fig. 5. Fractional part argðc1Þ ¼ 0:71 p

2.



Fig. 6. Fractional parts of the impulse responses of systems HðsÞ ¼ sa3
ðsa1 �1Þðsa2 �2Þ.
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The proof is not very difficult to obtain from the above results (see
[3]).

In Fig. 6 we depict the fractional parts of the response of the sys-
tem in Example 2 and another one resulting from it with the sub-
stitutions þ1 for �1 and þ2 for �2. As seen, the behaviour is
similar, at least for large values of t.
Conclusions

In this paper a study of non-commensurate fractional linear
systems was done proposing a methodology similar to the one fol-
lowed in the commensurate case. For it a partial fraction decompo-
sition was obtained using a recursive procedure. Each partial
fraction was inverted in two different ways: a Mittag–Leffler like
procedure and a integer/fractional decomposition. Some examples
were presented to illustrate the proposed approach.
Declaration of Competing Interest

The authors have declared no conflict of interest.
Compliance with Ethics Requirements

This article does not contain any studies with human or animal
subjects.

Acknowledgments

This work was funded by Portuguese National Funds through
the FCT – Foundation for Science and Technology under the project
UIDB/00066/2020. The second author was supported by Autono-
mous University of Mexico City (UACM) under the project PI-
CCyT-2019-15.

References

[1] Bengochea G, Ortigueira M, Verde-Star L. Operational calculus for the solution
of fractional differential equations with noncommensurate orders. Math
Methods Appl Sci 2019.

[2] Hcheichi K, Bouani F. Comparison between commensurate and non-
commensurate fractional systems. Int J Adv Comput Sci Appl (IJACSA)
2018;9(11).

[3] Henrici P. Applied and computational complex analysis, vol. 2. Wiley-
Interscience; 1991.

[4] Herrmann R. Fractional calculus: an introduction for
physicists. Singapore: World Scientific Publishing; 2011.

[5] Kilbas A, Srivastava H, Trujillo J. Theory and applications of fractional
differential equations, vol. 204. Amsterdam: North-Holland Mathematics
Studies, Elsevier; 2006.

[6] Machado J. And I say to myself: what a fractional world!. Fract Calculus Appl
Anal 2011;14(4):635–54.

[7] Machado J, Kiryakova V. The chronicles of fractional calculus. Fract Calculus
Appl Anal 2017;20(2):307–36.

[8] Magin R. Fractional calculus in bioengineering. Redding: Begell House Inc.;
2006.

[9] Magin R, Ortigueira M, Podlubny I, Trujillo J. On the fractional signals and
systems. Signal Process 2011;91(3):350–71.

[10] Ortigueira M. Fractional calculus for scientists and engineers. Springer; 2011.
[11] Ortigueira M, Machado T, Rivero M, Trujillo J. Integer/fractional decomposition

of the impulse response of fractional linear systems. Signal Process
2015;114:85–8.

[12] Ortigueira M, Trujillo J, Martynyuk V, Coito F. A generalized power series and
its application in the inversion of transfer functions. Signal Process
2015;107:238–45.

[13] Podlubny I. Fractional differential equations: an introduction to fractional
derivatives, fractional differential equations, to methods of their solution and
some of their applications. Academic press; 1999.

[14] Ross B. Fractional calculus. Math Magaz 1977;50(3):115–22.
[15] Samko S, Kilbas A, Marichev O. Fractional integrals and derivatives: theory and

applications. Amsterdam: Gordon and Breach Science Publishers; 1993.
[16] Tarasov V. Fractional dynamics: applications of fractional calculus to dynamics

of particles, fields and media. Nonlinear physical science. Beijing,
Heidelberg: Springer; 2010.

http://refhub.elsevier.com/S2090-1232(20)30015-1/h0005
http://refhub.elsevier.com/S2090-1232(20)30015-1/h0005
http://refhub.elsevier.com/S2090-1232(20)30015-1/h0005
http://refhub.elsevier.com/S2090-1232(20)30015-1/h0010
http://refhub.elsevier.com/S2090-1232(20)30015-1/h0010
http://refhub.elsevier.com/S2090-1232(20)30015-1/h0010
http://refhub.elsevier.com/S2090-1232(20)30015-1/h0015
http://refhub.elsevier.com/S2090-1232(20)30015-1/h0015
http://refhub.elsevier.com/S2090-1232(20)30015-1/h0020
http://refhub.elsevier.com/S2090-1232(20)30015-1/h0020
http://refhub.elsevier.com/S2090-1232(20)30015-1/h0025
http://refhub.elsevier.com/S2090-1232(20)30015-1/h0025
http://refhub.elsevier.com/S2090-1232(20)30015-1/h0025
http://refhub.elsevier.com/S2090-1232(20)30015-1/h0030
http://refhub.elsevier.com/S2090-1232(20)30015-1/h0030
http://refhub.elsevier.com/S2090-1232(20)30015-1/h0035
http://refhub.elsevier.com/S2090-1232(20)30015-1/h0035
http://refhub.elsevier.com/S2090-1232(20)30015-1/h0040
http://refhub.elsevier.com/S2090-1232(20)30015-1/h0040
http://refhub.elsevier.com/S2090-1232(20)30015-1/h0045
http://refhub.elsevier.com/S2090-1232(20)30015-1/h0045
http://refhub.elsevier.com/S2090-1232(20)30015-1/h0050
http://refhub.elsevier.com/S2090-1232(20)30015-1/h0055
http://refhub.elsevier.com/S2090-1232(20)30015-1/h0055
http://refhub.elsevier.com/S2090-1232(20)30015-1/h0055
http://refhub.elsevier.com/S2090-1232(20)30015-1/h0060
http://refhub.elsevier.com/S2090-1232(20)30015-1/h0060
http://refhub.elsevier.com/S2090-1232(20)30015-1/h0060
http://refhub.elsevier.com/S2090-1232(20)30015-1/h0065
http://refhub.elsevier.com/S2090-1232(20)30015-1/h0065
http://refhub.elsevier.com/S2090-1232(20)30015-1/h0065
http://refhub.elsevier.com/S2090-1232(20)30015-1/h0070
http://refhub.elsevier.com/S2090-1232(20)30015-1/h0075
http://refhub.elsevier.com/S2090-1232(20)30015-1/h0075
http://refhub.elsevier.com/S2090-1232(20)30015-1/h0080
http://refhub.elsevier.com/S2090-1232(20)30015-1/h0080
http://refhub.elsevier.com/S2090-1232(20)30015-1/h0080

	Non-commensurate fractional linear systems: New results
	Introduction
	Partial fraction decomposition
	Non-commensurate transfer function
	Two pseudo-poles case
	General decomposition
	Simple pseudo-poles/zeroes cases
	Commensurate case
	Computing the impulse response of some fractional linear systems

	Integer/fractional inversion of each partial fraction
	Conclusions
	Declaration of Competing Interest
	Compliance with Ethics Requirements
	Acknowledgments
	References


