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Abstract: In this paper we propose a novel transform domain steganography technique—hiding a
message in components of linear combination of high order eigenfaces vectors. By high order we
mean eigenvectors responsible for dimensions with low amount of overall image variance, which
are usually related to high-frequency parameters of image (details). The study found that when the
method was trained on large enough data sets, image quality was nearly unaffected by modification
of some linear combination coefficients used as PCA-based features. The proposed method is only
limited to facial images, but in the era of overwhelming influence of social media, hundreds of
thousands of selfies uploaded every day to social networks do not arouse any suspicion as a potential
steganography communication channel. From our best knowledge there is no description of any
popular steganography method that utilizes eigenfaces image domain. Due to this fact we have
performed extensive evaluation of our method using at least 200,000 facial images for training and
robustness evaluation of proposed approach. The obtained results are very promising. What is
more, our numerical comparison with other state-of-the-art algorithms proved that eigenfaces-based
steganography is among most robust methods against compression attack. The proposed research
can be reproduced because we use publicly accessible data set and our implementation can be
downloaded.

Keywords: steganography; eigenfaces; linear combination; principal components analysis; Log-
Euclidean Distance

1. Introduction

Steganography is a technique of hidden communication. The fact of passing messages
between sender and recipient is kept secret by embedding messages in inconspicuous
containers. These may be either common files, for example images and videos, or unex-
pected media, like geospatial data [1], network packets [2] and others [3]. In the digital
era nearly any type of file may carry additional hidden data, but images are among most
popular because the human visual system is unable to perceive subtle changes introduced
by embedding process. There are many possible approaches to image-based steganography
and we will discuss selected methods in the following subsection.

1.1. State-of-the-Art in Steganography

In spatial domain, the most known steganography technique is least significant bit
(LSB) in which some bits of pixels are replaced with bits of a message. It may utilize
various numbers of bits and mapping strategies, for example in [4,5] four least significant
bits are substituted. Algorithm described in [6] uses plane bit substitution method in
which message bits are embedded into the pixel value(s) of an image. A steganography
transformation machine is proposed for solving binary operation for manipulation of the
original image with help of LSB operator based matching. Ref. [7] uses five pixels pair
differencing technique that is a combination of LSB and pixel value differencing (PVD)
steganography. In [8] LSB message encoding is preceded by CRC-32 checksum, then the
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codeword is compressed by gzip just before encrypting it by AES, and is finally added to
encrypted header information for further processing. During embedding the encrypted
data, the Fisher–Yates Shuffle algorithm is used for selecting the next pixel location.

Least significant bit replacement is among the most used spatial domain techniques
whereas discrete cosines transform (DCT) [9] and discrete wavelet transform (DWT) [10]
based methods are major choices in the frequency domain. Additionally, many steganogra-
phy techniques are based on singular value decomposition (SVD) for embedding secret
message. These techniques conceal data in either right singular vectors, left singular vec-
tors, singular values or combinations of all approaches in spatial domain or transform
domain with satisfactory performance to various attacks [11–14]. Paper [15] describes
image and [16] video steganography for face recognition for trusted and secured authenti-
cation by applying principal component analysis (PCA), namely the eigenfaces method. In
those approaches signcryption is included for additional security measures.

An opposite approach for image steganography is presented in paper [17] where
authors presented new generating technique which does not require any additional image
to cover secret text. Instead, the image is created from scratch, on the basis of the text that
we want to send securely.

The other steganographic techniques are based on the key generating process. In
paper [18] authors used a new method of data hiding using Catalan numbers and Dyck
words. The hidden message is generated with the data carrier and an adequate complex
stego key. An important characteristic of the proposed method is that the data carrier
retains its original shape, without supplements or modifications. Paper [19] presents an
effective method of encryption and decryption of images in multi-party communications.
Encryption is based on weighted Moore–Penrose inverse over the constant matrix.

There are many documents describing state-of-the-art steganography methods. A com-
prehensive discussion about combining individual’s biometric characteristics with steganog-
raphy may be found in paper [20]. The more general surveys are presented in [21–24].

1.2. Motivation of This Paper

In this paper we propose a novel transform domain technique in which the message
is hidden in components of linear combination of high order eigenfaces vectors. By high
order we mean eigenvectors responsible for dimensions with low amount of overall image
variance, which are usually related to high-frequency parameters of image (details). They
seem to have marginal influence on image quality, especially if the eigenfaces method is
trained on large enough data sets.

The choice of facial images as medium is based on overwhelming influence of social
media in which hundreds of thousands of photos are uploaded every day. The high
percentage of them are selfies which do not arouse any suspicion as potential steganography
communication channel.

The main difference between proposed algorithm and already existing solutions is
that our method utilized a certain fragments of the image, namely faces that are present in
pictures. Due to this fact after hiding a secret, the rest of the image beside faces remains
unmodified. Thanks to this there are no global histogram shifts in the image, which is a
main indicator of potential image modification. What is more, we wanted our method to
be highly robust to various common image transformations. We wanted obtain a bit-level
accuracy of encoded data rather than pixel-level accuracy like in [14], so our priority was
robustness rather than carrier capacity. Therefore proposed method can be easily used
not only to watermarking but also to communication through the channel that does not
preserve integrity of the message, for example when the image is uploaded on social media,
its quality may be altered.

For our best knowledge there is no description of any popular steganography method
that utilizes eigenfaces image domain. Due to this fact we have performed extensive
evaluation of our method using at least 200,000 facial images for training and robustness
evaluation of the proposed approach. The proposed research can be reproduced because



Entropy 2021, 23, 273 3 of 24

we use publicly accessible data set and our implementation can be download from GitHub
repository (https://github.com/browarsoftware/EigenfacesSteganography, accessed on
30 January 2021).

The paper is composed of five sections. In the Section 2 we have presented proposition
of our steganography method, the dataset we have used for tests and evaluation metrics.
We have performed extensive validation of proposed method which results are presented
in Section 3. In the Sections 4 and 5 and we have discussed obtained results presenting
advantages and disadvantages of eigenfaces-based steganography and potential solutions
that can be used to overcome its drawbacks.

2. Materials and Methods

In this section we propose our novel method, present the data set we used for training
and validation and explain robustness tests we have done.

2.1. Eigenfaces and Eigenfaces-Based Steganography

An eigenface is a k-dimensional vector of real values that represents features of pre-
aligned facial image. Eigenfaces are based on principal component analysis (PCA). Let us
suppose that we have a set of l images [I1, I2, . . . , Il ] with uniform dimensionality m× n.
Each face image being initially a two-dimensional matrix is “flattened” by placing its
columns one below another, thereby becoming a single column vector. Then we use
PCA to perform variance analysis and to recalculate current coordinates of those vectors
into PCA coordinates systems where axes are ordered from those that represent highest
variance to those that represent lowest variance. Let us assume that we have matrix D with
dimensionality (n ·m)× l in which each column is a flattened image:

D[n·m,l] = [I1, I2, . . . , Il ] (1)

Next we calculate a column vector M (so called mean face) in which each row is a mean
value of a corresponding row in matrix D

M =


∑l

i=0
Ii,1
l

∑l
i=0

Ii,2
l

...

∑l
i=0

Ii,n·m
l

 (2)

where Ii,j is the j-th pixel of i-th image. This mean face is then subtracted from each column
of matrix D to calculate new matrix called D′:

D′[n·m,l] = [I1 −M, I2 −M, . . . , Il −M] (3)

Then a covariance matrix is created:

C[l,l] =
1
l
· D′T[n·m,l] · D

′
[n·m,l] (4)

Because C is symmetric and positively defined, all eigenvalues have real positive values.
Eigenfaces E are calculated as:

E[n·m,l] = D′[n·m,l] · EC[l,l] (5)

where EC are eigenvectors of C ordered from the highest to the lowest eigenvalue.
In order to generate eigenfaces-based features ei of face image Ii one has to perform

following operation:
ei = ET

[n·m,l] · (Ii −M) (6)

https://github.com/browarsoftware/EigenfacesSteganography
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The inverse procedure that recalculates image vector coordinates to original coordinate
system is:

I′i = (E[n·m,l] · ei) + M (7)

We can use k first eigenvectors where k < l. In this case (Ii ≈ I′i and I′i keeps at least
percentage of variance equals to scaled cumulative sum of eigenvalues cooresponding to
k first eigenvectors. In other words when k < l, vector I′i represents “compressed” facial
image Ii in respect to overall variance. ei features are coefficients of linear combination of
E. Coefficients with lower indices corresponds to dimensions with higher variance.

Eigenface-based feature calculation is performed after designation of E[n·m,l] in (5).
We have to subtract mean vector M from the face image Ii in the same manner, as it was
performed in (3). Image Ii may be replaced by any face image, also not included in D,
however it has to have the same resolution as images in D, namely m× n. When Ii is not
from data set D, then we can safely assume that Ii ≈ I′i .

The idea of eigenface-based steganography is to replace range of coefficients e[j,j+o]
with a binary encoded message s with the length o. j is an offset from the beginning of
the eigenface-based features vector. The message is stored by changing original values
of linear combination to binary values: {−1

div , 1
div} where −1

div represents 0, 1
div represents 1

and div is a scaling parameter. Transformation of original binary message s into values of
message s′, which is directly inserted into eigenfaces coefficients, goes as follows:

s′i =
(2 · si − 1)

div
(8)

where si is i-th binary coefficient of vector s that contains a message to hide. The inverse
procedure is:

si = round
(

s′i · div + 1
2

)
(9)

where round denotes rounding to the closest integer.
The offset value j and the maximum value of secret length o need to be determined. It

is a subject of discussion in following sections. The message hiding algorithm is presented
in Algorithm 1. Message recovering algorithm is presented in Algorithm 2.

Algorithm 1: Message encoding algorithm.
Data: J—image containing a face,
s—message to hide with length o bits,
j—offset from which the coefficients will be replaced by message,
div—divider parameter.
Result: Image J′ with hidden data.
1. Extract face image from J (Figure 1A);
2. Perform aligning of extracted face and store it in matrix Ii;
3. Generate ei from Ii using (6) (Figure 1B,D);
4. Starting from index j replace original o values in ei by s′i, which are scaled
coefficients that represents binary message data (8) (Figure 1E,F);

5. By application of (7) generate I′i using modified ei (Figure 1G);
6. Insert I′i into J replacing original face, J′ image is created (Figure 1H);

Figure 1 presents the procedure of encoding a secret. All numerical values presented
in this figure will be justified in the Section 3. Person in image has been anonymized. The
number above eigenface is its index. Eigenfaces are ordered by decreasing eigenvalues that
corresponds to them. As can be seen several first eigenfaces represents global properties of
image (i.e., lighting), next eigenfaces are responsible for high-frequency details.
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Algorithm 2: Message decoding algorithm.
Data: J—image containing a face,
j—offset from which the coefficients have been replaced by message,
div—divider parameter
Result: s—decoded message with length o bits.
1. Extract face image from J;
2. Perform aligning of extracted face and store it in matrix Ii;
3. Generate ei from Ii using (6);
4. Starting from index j extract o values from ei which are rescaled message’s
values (s′i), then restore the binary message si by rescaling with div parameter (9);

Figure 1. This figure presents an outline of eigenface-based steganography secret encoding frame-
work. (A.) a face image is extracted from an image; (B.) a mean face is subtracted from face image.
(C.) presents selected eigenfaces visualized as 2D images. (D.) By applying Equation (6) we can
generate eigenfaces-based features of a face, which is a linear combination of coefficients. Values in
sum (D.) are actual coefficients of the face in turquoise frame. High-order coefficients (E.) of that
linear combination have fractional influence on reconstructed image visual quality and can be used
to hide the secret. Hiding can be done simply be replacing those coefficients by rescaled secret with
Equation (8). (F.) is a linear combination coefficient with high-order coefficients replaced by a secret.
That linear combination is used to reconstruct face image using Equation (7), which is represented as
the face inside green frame. The last two steps is: (G.) adding mean face to face with hidden data
and: (H.) inserting face image to original hosting media.

The procedure of decoding a secret, which is presented in Figure 2, is very similar to
process of encoding.
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Figure 2. This figure presents an outline of eigenfaces-based steganography secret decoding frame-
work. The person in the image has been anonymized. (A.) a face image is extracted from an image
with embedded secret; (B.) a mean face is subtracted from face image. (C.) presents selected eigen-
faces visualized as 2D images. The number above eigenface is its index (those are same eigenfaces
as in Figure 1). (D.) By applying Equation (6) we can generate eigenface-based features of a face,
which is a linear combination of coefficients (D.) Values in sum (D.) are actual coefficients of the
face in orange frame. High-order coefficients (E.) of that linear combination are secret data scaled by
Equation (8). In order to recover original data we have to apply Equation (9) to those coefficients.

2.2. The Data Set

In order to successfully generate eigenfaces with a strong descriptive power and
to validate our approach, we needed a sufficiently large collection of faces. Among the
largest publicly available open faces repositories we have chosen Large-scale CelebFaces
Attributes (CelebA) Dataset [25] which may be downloaded from Internet (http://mmlab.
ie.cuhk.edu.hk/projects/CelebA.html, accessed on 1 January 2021). It consisted of 202,598
images of celebrities, actors, sportspersons etc. In this research we have used aligned
and cropped version of those images. Each of aligned and cropped photos has the same
resolution and the face is centered so that eyes of each person are located nearly in the same
position. There is no information how the alignment has been done; however it can be very
closely reproduced with Histogram of Oriented Gradients (HOG) method [26]. The face
position estimator can be created using Python dlib’s library implementation of the work of
Kazemi et al. [27] with face landmark data set (https://github.com/davisking/dlib-models,
accessed on 1 January 2021.) trained on [28]. In order to reduce the complexity of further
computations, we have limited the size of images to resolution 70× 109, cropping all
regions of image beside very face. For the same reason we have also converted images
from RGB to grayscale. We have to remember, however, that proposed steganography
approach may also be applied to RGB data, because eigenfaces are calculated in the same
way on multiple colour channels as on single channel. Nonetheless, this discussion is out
of scope of this paper.

2.3. Comparison of Covariance Matrices

The very heart of eigenfaces approach is preparation of a representative data set that is
used to calculate linear transform from original coordinates to space (obtained by principal
component analysis). Theoretically the more face samples we take (provided that the
data set covers representative sample of images for future encoding), the better variance

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://github.com/davisking/dlib-models
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analysis we get. However, given that we operate on personal computers with limited
RAM, we have to keep in mind that solving eigenvalue problem is complex and time
demanding task, especially for relatively large matrices (i.e., 104 × 104 or larger). Due to
this we wanted to estimate the size of training set above which the covariance matrix will
not change much. In order to do so, we compared the geodesic distance between covariance
matrix generated from whole training data set C2

ref and covariance matrices generated from
subsets of validation data set of different sizes [C2

k1
, . . . , C2

kp
] where [k1, . . . , kp] are subsets

of validation data set.
In order to calculate covariance matrix C2 we used formula:

C2
[n·m,n·m] =

1
l
· D′[n·m,l] · D

′T
[n·m,l] (10)

where C2 has the same dimension [n ·m, n ·m] no matter how many images l were used in
calculation.

Due to the fact that covariance matrices are symmetric positive definite, we can
measure distance between them using the Log-Euclidean Distance (LED) [29]. Let as
assume that A and B are symmetric positive definite. The geodesic distance between A
and B can be expressed in the domain of matrix logarithms [30] as:

LED(A, B) = ‖log(A)− log(B)‖F (11)

In the above equation ‖‖F is a Frobenius norm which is calculated for n by m matrix A
as [31]:

‖A‖F =

√√√√ n

∑
i=1

m

∑
j=1

∣∣aij
∣∣2 (12)

Let us assume that C and D are square matrices. A matrix C is a logarithm of D when:

eC = D (13)

Where matrix exponential is defined as:

eA =
∞

∑
i=0

Ai

i!
(14)

Any non-singular matrix has infinitely many logarithms. As the covariance matrix does not
have negative eigenvalues, we can use method described in [32] to calculate the logarithm.

Another approach for calculating influence of correlation matrix size on quality of
reconstruction from limited number of PCA coefficients is based on two measures: averaged
mean square error (MSE) (15) between actual (Ac) and reconstructed (Re) image and
averaged Pearson correlation coefficient (CC) (16) between actual and PCA compressed
image. Mean square error between actual and reconstructed image is defined as:

MSE(Ac, Re) =
1
n

n

∑
i=1

(Aci − Rei)
2 (15)

The Pearson correlation coefficient (CC) between actual Ac and reconstructed Re image is
defined as:

CC(Ac, Re) =
Cov(Ac, Re)

σAcσRe
(16)

where Cov(Ac, Re) is covariance coefficient between Ac and Re and σAc, σRe are standard
deviations of Ac and Re.
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To better visualize relationship of LED and size of covariance matrix, we can also use
relative values of LED coefficient:

Relative LEDi =
LEDi − LEDi−1

LEDi
(17)

Relative MSE and Relative CC may be calculated similarly as in (17).
LED geodesic distances were compared with averaged mean square error (MSE) and

averaged Pearson correlation coefficient (CC) between actual and reconstructed images
from validation data set generated by PCA. The goal of this test was to check if the geodesic
distance corresponds to averaged MSE and CC of PCA-compressed data.

2.4. Robustness Tests

We tested the robustness of proposed steganography method to common transforma-
tions. Each test has been applied to the image that contained hidden data.

• Rotation of image about its centre element using third-order spline interpolation.
• Salt and pepper—replacing given number of randomly chosen pixels with either 0

(black) or 255 (white) value.
• JPEG compression with various quality settings [33].
• Linear scaling with bicubic pixels interpolation.
• Image cropping—for obvious reasons the eigenfaces method is very sensitive to image

cropping, however it seems to be resistant to mixing encoded signal with an original
image. We can do it with following steps. At first we create a matrix Cir, which
elements cirij are defined using following formulas:

cirij =

(
2 · i
n
− 1
)2

+

(
2 · j
m
− 1
)2

; i ∈ 0, . . . , n; j ∈ 0, . . . , m (18)

Cir = 1− 1
2

cir1,1 . . . cir1,m
...

. . .
...

cirn,1 . . . cirn,m

 (19)

We can use that matrix to mix the original image I with image with encoded data E by
linearly scaling the amount of E using threshold parameter t:

Cirt =

{
ai,j when ai,j < 1− t
1 when ai,j ≥ 1− t

(20)

Mix = Cirt · E + (1− Cirt) · I (21)

Figure 3 presents how changes the shape of circular elements when the value of
threshold t increases.

Figure 3. This figure presents grayscale-coded shapes of circular elements defined in
Equations (17)–(19) depending of value of threshold t.

Messages retrieved from disturbed images were compared with the original message
using following similarity coefficients or measures:

• Binary coefficient (BC) that equals 0 when both messages are identical and 1 otherwise.
• Levenshtein distance (LD) [34] which is a measure of the similarity between two

strings. The distance is the number of deletions, insertions, or substitutions required to
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transform one into another. The greater the Levenshtein distance, the more divergent
those strings are [35].

• Sørensen–Dice coefficient [36]:

DSC(v1, v2) =
2 · (1− |v1 ∩ v2|)
|v1|+ |v2|

(22)

where v1, v2 are binary vectors and |v| is cardinal of binary vector v.

We have also used two following metrics to compare results obtained by our solution
to state-of-the-art method: Pearson correlation (CC) and peak-signal-to-noise-ratio (PSNR).
CC is used to evaluate the similarity between the original secret and the secret message
and PSNR in dB is used to evaluate the similarity of the original image and the stegoimage.

PSNR = 10 · log10
l2
max

MSE
(23)

where l2
max is the maximum value of vector pixels over the original image (in our case 255)

and the MSE is represents the mean square error between the stegoimage and the original
image.

2.5. Hiding Data in Larger Images

When the facial image is a part of larger photo (which is true in most cases), it should
first be extracted, then encoded and decoded using eigenfaces and finally inserted back into
the photo. As the modified face is not identical to the original, it may be possible to spot
visual artifacts in a rectangular region containing a face. In order to blur the manipulation,
we can use the clipping procedure described in Equations (18)–(21). Then, step 5 of the
message encoding algorithm (Algorithm 1) is extended in following manner:

5. By application of (7) generate I′i using (8), apply (18)–(21) to blur borders of inserted data.

The algorithm has one additional parameter t (threshold from (20)). The message decoding
algorithm (Algorithm 2) remains unchanged.

3. Results

The proposed solution was implemented in Python 3.8 (however it seemed there
were no obstacles to run it on lower version of this language). Among the most important
packages we used was OpenCV-python 4.1.2.30 for general purpose image processing. For
algorithms training and evaluation we used a PC computer equipped with Intel i7-9700F
3.00 GHz CP, 64 GB RAM, NVIDIA GeForce RTX 2060 GPU with Windows 10 OS, and the
second PC with similar hardware architecture, however with 128 GB RAM with Linux OS.

We used data set described in Section 2.2 to evaluate this research. The faces data set
was divided into halves. The first half (101,299 faces) was used as the training data set; the
second half (101,300 faces) was a validation/test data set.

At first we estimated how many images we should use to create eigenfaces. In order
to do so, we compared covariance matrices using methodology described in Section 2.3. To
create C2

ref (9) matrix, we used the whole validation dataset. In order to create C2
ka

matrices,
we used training dataset that was divided into subsets. Subset with index a contained
#ka = 2025 · a faces (2025 is about 2% of training dataset), where a ∈ [1, 2, . . . , p].

C2
ref and C2

ka
were compared using Log-Euclidean Distance (10). It was possible because

both matrices had identical dimensions. Then, for each C2
ka

, every image Ib in training
data set was encoded and then decoded using eigenfaces that explained at least 0.999 of
variance; as a result an image I′b was created. MSE (15) and CC (16) were calculated for
Ib and corresponding I′b (they were calculated for images from the test data set because
C2

ka
were generated from validation data set). Averaged values of MSE and CC showed

how well eigenfaces of various Cka described the data set. We also made calculations of
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relative values of LED and MSE according to Equation (16). CC coefficient had a high
value from the beginning and did not change much and due to this we skipped calculation
of relative CC. When we used 30,375 images to create correlation matrix for PCA, both
relative LED and relative MSE dropped below 0.03. Basing on this fact, we decided that
it might be a sufficient size of the training data set to evaluate our methodology. What is
more, calculation of eigen decomposition for 3× 104 matrix could be done in a reasonable
time and further increase of data set did not change much in LED and averaged MSE. We
have marked our choice of dataset size in Table 1 with two horizontal lines.

Table 1. This table presents values of Log-Euclidean Distance (LED), mean square error (MSE) and
Pearson correlation (CC) coefficients calculated from the test data set. In order to calculate MSE and
CC for each C2

ka
each image Ib in training data set is encoded and then decoded using eigenfaces that

explain at least 0.999 of variance.

Number of Faces LED Relative LED MSE Relative MSE CC

2025 3452.182 – 39.092 – 0.993
4050 2463.732 0.401 29.995 0.233 0.995
6075 1337.645 0.842 24.564 0.181 0.996
8100 213.584 5.263 21.008 0.145 0.997

10,125 162.328 0.316 18.481 0.12 0.997
12,150 138.089 0.176 16.66 0.099 0.998
14,175 122.348 0.129 15.288 0.082 0.998
16,200 111.543 0.097 14.242 0.068 0.998
18,225 103.786 0.075 13.402 0.059 0.998
20,250 97.548 0.064 12.67 0.055 0.998
22,275 92.35 0.056 12.072 0.047 0.998
24,300 88.045 0.049 11.572 0.041 0.999
26,325 84.498 0.042 11.156 0.036 0.999
28,350 81.39 0.038 10.794 0.032 0.999
30,375 78.841 0.032 10.468 0.03 0.999
32,400 76.543 0.03 10.194 0.026 0.999
34,425 74.497 0.027 9.933 0.026 0.999
36,450 72.656 0.025 9.711 0.022 0.999
38,475 71.063 0.022 9.511 0.021 0.999
40,500 69.575 0.021 9.315 0.021 0.999
42,525 68.187 0.02 9.153 0.017 0.999
44,550 67.004 0.018 8.979 0.019 0.999
46,575 65.919 0.016 8.825 0.017 0.999
48,600 64.958 0.015 8.681 0.016 0.999
50,625 63.967 0.015 8.561 0.014 0.999

Results from Table 1 (beside CC, which did not change much during the experiment)
are visualized in Figure 4.

There was a limited amount of data to be hidden within eigenfaces, which were
constrained the most by the face image resolution that was used to produce matrix D (1)
and then E[n·m,l] (5). The second constraint was distribution of variance among eigenfaces,
the influence of which on the capacity of the medium is discussed later on.

Typically steganography algorithms are evaluated on set of benchmark images like
Lena, Pepper, Airplane etc. In our case however eigenfaces-based steganography operates
only on face data. Because of it we need different validation dataset. Evaluation of robust-
ness of proposed steganography algorithm was performed with methodology described in
Section 2.4. We used training data set containing 30,375 faces and validation data set with
101,300 faces. Scaling parameter div in binary data encoding was arbitrary set to 20.
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Figure 4. This plot visualizes data from Table 1. Red line indicates our choice of number of faces in
training data set that was later used to generate eigenfaces in second part of the experiment. It was
justified in Section 3.

After applying PCA, we have calculated the number of dimensions that describe
variance in test data set (consisting of 30,375 faces). 0.75 of variance was explained by
15 dimensions, 0.9 variance by 90 dimensions, 0.95 variance by 254 dimensions, 0.99
variance by 1499 dimensions and finally 0.999 variance by 4473 dimensions. Larger number
of dimensions used for image encoding may introduce some high-frequency noises caused
by not statistically significant data fluctuations in training data set. We can encode data
in any eigenfaces coefficients between first and 4473rd value; however changes in linear
combination of coefficients that are more important for variance explanation will be clearly
visible in the encoded image. Because of that we decided to modify data between 1499
and 4473 coefficients. In this configuration potential maximal capacity of the image is
(4473− 1499)/8 ≈ 371 Bytes. In further tests we have considered following lengths of
messages: 18 bytes (∼5% of capacity), 37 bytes (∼10% of capacity), 87 bytes (∼23% of
capacity), 174 (∼47% of capacity) and 370 (∼100% of capacity). We have chosen those
values for convenience of calculations; also distribution of lengths allows to nicely plot the
dependencies of proposed steganography method performance as a function of robustness
tests parameters. Using five possible values of messages length unevenly distributed in data
set allows visualizing general characteristics of proposed method. Of course it is possible
to evaluate method using more sample points, however it would not introduce much new
information. Additionally, evaluation of such large validation data set (approximately
100,000 images) lasted 24 to even 36+ h for each robustness test on hardware that we
have used.

In robustness tests, besides various parameters described in Section 2.4, we used
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five mentioned lengths of encoded messages (18, 37, 87, 174 and 370). Obtained results
are presented in Tables 2–6 and Figures 5–9 using averaged values of Binary coefficient
(BC), Levenshtein distance (LD) and Sørensen–Dice coefficient (DSC) on all images from
validation data set.

Next we have tested performance of algorithms described in Sections 2.1 and 2.5
using various lengths of encoded messages and t parameter. We have calculated following
statistics between original image and image with hidden data: averaged MSE, averaged
maximal difference of pixels and averaged Pearson correlation coefficient of pixels. Results
are presented in Table 7 and Figure 10. Figure 11 visualizes example differences between
original image and image with hidden data. In some tables we have skipped certain
zero-filled ranges in order to make results shorter and more comprehensible for reader.
The larger ranges of values are presented in figures.

Table 2. This table presents evaluation results of robustness test of clipping (18)–(21). Values in DSC,
BC and LD are averaged on whole validation data set. We have used various values of threshold
parameter t and various lengths of hidden data.

Parameter Length DSC BC LD

0.5 18 0.001 0.079 0.167
0.6 18 0 0.012 0.022
0.7 18 0 0.001 0.001
0.8 18 0 0 0
0.9 18 0 0 0
1 18 0 0 0

0.5 37 0.003 0.295 0.896
0.6 37 0.001 0.066 0.167
0.7 37 0 0.01 0.021
0.8 37 0 0.001 0.001
0.9 37 0 0 0
1 37 0 0 0

0.5 87 0.011 0.937 7.056
0.6 87 0.004 0.616 2.622
0.7 87 0.001 0.25 0.636
0.8 87 0 0.023 0.047
0.9 87 0 0 0.001
1 87 0 0 0

0.5 174 0.02 1 23.459
0.6 174 0.008 0.985 9.991
0.7 174 0.003 0.785 3.764
0.8 174 0 0.204 0.555
0.9 174 0 0.01 0.018
1 174 0 0 0

0.5 370 0.041 1 95.991
0.6 370 0.023 1 59.254
0.7 370 0.013 1 35.393
0.8 370 0.006 0.975 15.468
0.9 370 0.001 0.424 1.834
1 370 0 0.017 0.018
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Table 3. This table presents evaluation results of robustness test of salt and pepper. Values in DSC,
BC and LD are averaged on whole validation data set. We have used various values of noise level
and various lengths of encoded data.

Parameter Length DSC BC LD

1 18 0.002 0.171 0.012
2 18 0.014 0.736 0.101
3 18 0.032 0.935 0.218
4 18 0.054 0.986 0.346
1 37 0.002 0.243 0.013
2 37 0.015 0.835 0.107
3 37 0.033 0.969 0.228
4 37 0.056 0.994 0.357
1 87 0.002 0.413 0.016
2 87 0.017 0.941 0.124
3 87 0.037 0.993 0.252
4 87 0.062 0.998 0.383
1 174 0.003 0.621 0.024
2 174 0.022 0.983 0.158
3 174 0.046 0.999 0.3
4 174 0.073 1 0.435
1 370 0.009 0.891 0.065
2 370 0.043 1 0.278
3 370 0.075 1 0.44
4 370 0.107 1 0.571

Table 4. This table presents evaluation results of robustness test of rotation. Values in Sørensen–
Dice coefficient (DSC), binary coefficient (BC) and Levenshtein distance (LD) are averaged on
whole validation data set. We have used various values of rotation angle and various lengths of
encoded data.

Parameter Length DSC BC LD

−1.25 18 0.182 1 0.775
−1 18 0.104 0.999 0.542
−0.75 18 0.036 0.859 0.23
−0.5 18 0.004 0.263 0.032
−0.25 18 0 0.003 0

0 18 0 0 0
0.25 18 0 0.003 0
0.5 18 0.004 0.248 0.031

0.75 18 0.035 0.819 0.218
1 18 0.1 0.992 0.521

1.25 18 0.178 1 0.761
−1.25 37 0.194 1 0.801
−1 37 0.11 1 0.572
−0.75 37 0.038 0.939 0.239
−0.5 37 0.004 0.315 0.029
−0.25 37 0 0.004 0

0 37 0 0 0
0.25 37 0 0.003 0
0.5 37 0.004 0.303 0.028

0.75 37 0.036 0.917 0.228
1 37 0.108 1 0.55

1.25 37 0.191 1 0.779
−1.25 87 0.231 1 0.864
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Table 4. Cont.

Parameter Length DSC BC LD

−1 87 0.137 1 0.672
−0.75 87 0.048 1 0.306
−0.5 87 0.004 0.497 0.027
−0.25 87 0 0.003 0

0 87 0 0 0
0.25 87 0 0.003 0
0.5 87 0.004 0.531 0.027

0.75 87 0.048 1 0.299
1 87 0.143 1 0.679

1.25 87 0.24 1 0.87
−1.25 174 0.266 1 0.909
−1 174 0.169 1 0.764
−0.75 174 0.067 1 0.419
−0.5 174 0.006 0.999 0.046
−0.25 174 0 0.003 0

0 174 0 0 0
0.25 174 0 0.002 0
0.5 174 0.005 0.983 0.037

0.75 174 0.066 1 0.415
1 174 0.174 1 0.777

1.25 174 0.273 1 0.916
−1.25 370 0.341 1 0.955
−1 370 0.243 1 0.881
−0.75 370 0.121 1 0.632
−0.5 370 0.017 1 0.121
−0.25 370 0 0.001 0

0 370 0 0 0
0.25 370 0 0.001 0
0.5 370 0.015 1 0.118

0.75 370 0.122 1 0.643
1 370 0.252 1 0.892

1.25 370 0.346 1 0.961
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Figure 5. Cont.
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Figure 5. This figure presents visualization of data from Table 2 (clipping).
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Figure 6. This figure presents visualization of data from Table 3 (salt and pepper).
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Figure 7. This figure presents visualization of data from Table 4 (rotation).

Table 5. This table presents evaluation results of robustness test of JPEG compression. Values in DSC,
BC and LD are averaged on whole validation data set. We have used various values of JPEG quality
parameter and various lengths of encoded data.

Parameter Length DSC BC LD

95 18 0 1 0
92 18 0 1 0
89 18 0 0.999 0
86 18 0 0.973 0.002
83 18 0.002 0.828 0.012
95 37 0 1 0
92 37 0 1 0
89 37 0 0.997 0
86 37 0 0.921 0.002
83 37 0.002 0.616 0.016
95 87 0 1 0
92 87 0 1 0
89 87 0 0.959 0.001
86 87 0.001 0.642 0.007
83 87 0.004 0.22 0.032
95 174 0 1 0
92 174 0 0.985 0
89 174 0.001 0.572 0.005
86 174 0.004 0.11 0.031
83 174 0.012 0.013 0.09
95 370 0 0.996 0
92 370 0.001 0.439 0.006
89 370 0.007 0.02 0.055
86 370 0.023 0 0.161
83 370 0.045 0 0.29
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Table 6. This table presents evaluation results of robustness test of scaling. Values in DSC, BC and
LD are averaged on whole validation data set. We have used various scaling factors and various
lengths of encoded data.

Parameter Length DSC BC LD

0.8 18 0.01 0.597 0.069
0.85 18 0.005 0.73 0.038
0.95 18 0.001 0.946 0.005

1 18 0 1 0
1.05 18 0 0.996 0
1.15 18 0 0.999 0
1.2 18 0 1 0
0.8 37 0.008 0.533 0.058

0.85 37 0.004 0.676 0.032
0.95 37 0 0.941 0.003

1 37 0 1 0
1.05 37 0 0.996 0
1.15 37 0 0.999 0
1.2 37 0 0.999 0
0.8 87 0.01 0.246 0.069

0.85 87 0.005 0.395 0.038
0.95 87 0 0.907 0.003

1 87 0 1 0
1.05 87 0 0.994 0
1.15 87 0 0.999 0
1.2 87 0 1 0
0.8 174 0.017 0 0.121

0.85 174 0.007 0.006 0.056
0.95 174 0 0.812 0.003

1 174 0 1 0
1.05 174 0 0.992 0
1.15 174 0 0.999 0
1.2 174 0 1 0
0.8 370 0.05 0 0.324

0.85 370 0.024 0 0.174
0.95 370 0.003 0 0.027

1 370 0 1 0
1.05 370 0 0.985 0
1.15 370 0 1 0
1.2 370 0 1 0
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Table 7. This table presents evaluation of performance of algorithms described in Sections 2.1 and 2.5
using various length of encoded messages and values of parameter t. We have calculated following
statistics between original image and image with hidden data: averaged MSE, averaged maximal
difference of pixels and averaged Pearson correlation coefficient of pixels.

Parameter Length MSE MAX CC

0.6 18 373.435 36.186 0.994
0.7 18 389.078 36.502 0.995
0.8 18 397.774 36.686 0.996
0.9 18 402.559 36.807 0.997
0.6 37 391.539 38.525 0.993
0.7 37 408.595 38.829 0.994
0.8 37 418.297 39.064 0.995
0.9 37 423.637 39.178 0.995
0.6 87 464.677 44.739 0.989
0.7 87 488.082 45.112 0.99
0.8 87 502.184 45.462 0.991
0.9 87 510.295 45.649 0.992
0.6 174 644.5 55.986 0.981
0.7 174 684.52 56.48 0.982
0.8 174 710.131 56.76 0.984
0.9 174 725.691 57.077 0.985
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Figure 8. This figure presents visualization of data from Table 5 (JPEG compression).
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Figure 9. This figure presents visualization of data from Table 6 (scaling).
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Figure 10. This figure presents visualization of data from Table 7 (prototype evaluation).

Figure 11. This figure shows an exemplary original image and images with hidden data of various
lengths (first row) and differences between original image and images with hidden data of various
lengths (bottom row). The threshold parameter for mixing (19) was set to t = 0.6.

The proposed method has been compared with following contemporary algorithms [11–14]
in terms of CC and PSNR—see Table 8. We have evaluated robustness of the proposed
steganography method (PM) against compression attack, which seems to be most common
scenario in case of publishing stego images in social media.

Table 8. This table presents comparison of Pearson correlation and peak-signal-to-noise-ratio (PSNR)
for proposed and state-of-the-art methods. The number beside the proposed method (PM) is the
length of the secret.

Quality of Compression [11] [12] [13] [14] PM18 PM37 PM87 PM174

Pearson correlation (CC)

50 49.73 32.86 75.26 76.12 72.85 72.27 68.20 61.63
60 50.58 33.34 85.76 85.88 81.98 80.92 76.98 70.33
70 51.14 35.91 97.29 97.24 91.96 91.04 87.40 80.90
80 53.68 43.21 99.80 99.92 99.09 98.75 97.34 93.98
90 54.51 64.20 99.95 99.92 1.00 1.00 99.99 99.89

Peak-signal-to-noise-ratio (PSNR)

50 31.96 34.05 32.02 32.02 31.50 31.44 31.38 31.35
60 32.21 34.53 31.80 31.80 32.23 32.16 32.10 32.07
70 32.54 35.14 31.48 31.46 33.23 33.15 33.10 33.05
80 32.95 35.98 31.65 31.65 35.04 34.98 34.95 34.90
90 33.58 37.70 32.66 32.67 39.05 39.01 38.95 38.94
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4. Discussion

For the reasons described in Section 3, we have selected training data set containing
30,375 faces to generate eigenfaces. This value might have been different if the calculation
had been done on images with different resolution or on different data set, however
the reasoning remains unchanged. In order to make eigenfaces descriptive enough for
particular resolution, we need to take data set for which Relative LED (or/and Relative
MSE) is below certain threshold. In our case 0.03 seems to be adequate value—as can be
seen in Figure 2, it introduces plateau on the Relative MSE and Relative LED plots. Taking
more faces to generate covariance matrix would not change much in obtained results. The
rest of calculations and discussion is conducted on eigenfaces generated from selected
data set.

The proposed steganography method exhibits differing resistance to robustness tests.
Although it it quite vulnerable to salt and paper disturbance (see Table 3), it seems to
deal very nice with changes applied to whole image domain. Both clipping and JPEG
compression do not damage the message if the whole possible capacity is not exhausted.
The study found that when message length is set to 87 bytes, we can safely use a quality
coefficient equal to 89, which only affects 0.041 (4.1%) of messages (see Table 5).

When image quality equals to 92 or more, no changes are observed for all validation
data set (containing more than 100 000 of various faces images!). Result for BC measure
corresponds to DSC and LD coefficients. The longer the message becomes, the more errors
are introduced by compression. This situation is very similar if we take into account
clipping (see Table 2). When the message length is set to 37 bytes and t = 0.6, the BC equals
0.066 which means that over 93% of messages have been successfully recovered. When t
increases to 0.9, the successful recovery rate rises to 100%. However the larger t we take,
the more visible is a rectangular region in which message is hidden. Due to this fact, when
the message lenght is set to 37 (10% of image capacity), we suggest using t in range of
[0.6, 0.7] in order to increase difficulty of message detection. More details will be provided
together with performance tests.

The limitation of the proposed method is basically the same as in the original eigen-
faces approach [37]. The descriptive power of the method is determined by the variance
of images in dataset D that was used to generate eigenfaces. There might be a face with a
certain facial features which are not represented in D and reconstructed face I′i might differ
from the original face Ii. Those differences will be visible as high frequency noises and
they might be easily spotted. The most straightforward solution to this issue is to use large
dataset D with diversified face features. From the same reason face of the person wearing
heavy, untypical makeup might be inappropriate carrier of hidden data. Additionally, it is
recommended that a person on the photo should face the camera, which is an additional
limitation.

Because rotation affects face aligning, eigenfaces are not robust to rotation (or robust-
ness is on very low level—see Table 4). However this weakness may be compensated by
face image aligning. The HOG-based face features detection, which is often used for this
task, is a robust and repeatable technique that performs translation, rotation and scaling of
original image. Due to this fact those three linear transformations, which might be used
to change images with encoded data, might be then compensated by face image aligning.
This, however, depends of face aligning procedure that we apply and it is not in the scope
of this paper.

Eigenfaces technique requires that a facial image need to have the same resolution as
faces in training dataset that was used to generate eigenfaces. We have to check if scaling
the image with hidden data and then returning to the old resolution affects the payload,
provided that we use bicubic pixels interpolation. Results in Table 6 show that our method
has limited robustness for downscaling and very good robustness for upscaling. For
upscaling by 5%, more than 98% messages were unaffected for all tested lengths; the more
we upscale the better results we get. This means that we can use eigenfaces generated from
images with lower resolution to hide data into facial images with higher resolution. A facial
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image has to be downscaled and then upscaled to old resolution. This is very important
information, because thanks to that our method can be used in a certain range of facial
images resolutions without necessity to generate eigenfaces to each possible resolution.
Of course if we upscale image too much, a person observing the face might spot artifacts
caused by interpolation.

The next experiment we have done was evaluation of the performance of the pro-
posed algorithm with various encoded message lengths and t parameter (cropping size)
values. Obtained results are presented in Table 7 and Figure 10. We have compared over
100,000 original images from the validation data set with images with encoded data using
MSE, maximal difference between corresponding pixels and CC averaged. Those results
confirmed observations we have made in robustness evaluation. Parameters in range
[0.6, 0.7] resulted in a relatively small value of distance between original image and one
with encoded data. As can be seen in second row of Figure 11, when message size is set to
37 (10% of source image capacity) and t = 0.6, the differences are virtually impossible to
notice. Those parameters are our recommendation for this particular image resolution we
have evaluated. After message encoding we need to check if it can be recovered (according
to Table 2 in 6.6% faces there might be a problem with it). To overcome this situation, we
have to increase t value or use another facial image. When message length is close to 50%
of image capacity, we can even visually spot that some changes has been applied to the
region of the face. We do not recommend exploiting full possible image capacity: it is better
to split message between several faces and then put it together again.

The peak signal-to-noise ratio (PSNR) is the most common metric used to evaluate
the stego image quality. The PSNR measures the similarity between two images (how two
images are close to each other—higher value means better results) [38]. As can be seen in
Table 8, our algorithm has obtain very similar results to best state-of-the-art approaches.
CC and PSNR are getting worse with decreasing quality of compression and increasing
of stego message length. In terms of CC our method has overperformed [11,12] and has
slightly worse results than [13,14]. In terms of PSNR our method has over performed
all but [12]. We can conclude that our method is among most robust algorithms against
compression attack.

5. Conclusions

Basing on the discussion presented in previous section we can conclude that proposed
steganography method for hiding data in face images is usable and may be an interest-
ing alternative to other state of the art approaches. The algorithm using parameters of
eigenvectors linear combination turned out to be resistant to JPEG compression, clipping
and scaling. These features are especially important for practical use, when facial image
is only a rectangular subset of larger photo. In such cases we first need to detect the face
and extract it from original image, which usually requires applying some transformations.
Of course we should use the same face extraction method to generate training data set
from which eigenfaces are computed. What is more, our numerical comparison with other
state-of-the-art algorithms proved that eigenface-based steganography is among most ro-
bust methods against compression attack. The future work for further advancements may
include improvements of robustness against downscaling attacks and taking advantage of
fact that some images might contains pictures of several faces. Additional data hidden in
several faces might be used as a check sum and data correction of the original secret.

Author Contributions: T.H. was responsible for conceptualization, proposed methodology, software,
implementation and writing the original draft; K.K. was responsible for software, data curation and
validation, M.R.O. was responsible for software, data curation and validation. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the Pedagogical University of Krakow.

Data Availability Statement: Not applicable.



Entropy 2021, 23, 273 23 of 24

Conflicts of Interest: The authors declare no conflicts of interest. The funder had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Kurtuldu, O.; Demirci, M. StegoGIS: A new steganography method using the geospatial domain. Turk. J. Electr. Eng. Comput. Sci.

2019, 27, 532–546. [CrossRef]
2. Jankowski, B.; Mazurczyk, W.; Szczypiorski, K. PadSteg: Introducing inter-protocol steganography. Telecommun. Syst. 2013,

52, 1101–1111. [CrossRef]
3. Koptyra, K.; Ogiela, M.R. Multiply information coding and hiding using fuzzy vault. Soft Comput. 2019, 23, 4357–4366. [CrossRef]
4. Zakaria, A.; Hussain, M.; Wahid, A.; Idris, M.; Abdullah, N.; Jung, K.H. High-Capacity Image Steganography with Minimum

Modified Bits Based on Data Mapping and LSB Substitution. Appl. Sci. 2018, 8, 2199. [CrossRef]
5. Mohamed, M.; Mohamed, L. High Capacity Image Steganography Technique based on LSB Substitution Method. Appl. Math. Inf.

Sci. 2016, 10, 259–266. [CrossRef]
6. Saghir, B.; Ahmed, E.; Zen Alabdeen Salh, G.; Mansour, A. A Spatial Domain Image Steganography Technique Based on

Pseudorandom Permutation Substitution Method using Tree and Linked List. Int. J. Eng. Trends Technol. 2015, 23, 209–217.
[CrossRef]

7. Gulve, A.; Joshi, M. A High Capacity Secured Image Steganography Method with Five Pixel Pair Differencing and LSB
Substitution. Int. J. Image, Graph. Signal Process. 2015, 7, 66–74. [CrossRef]

8. Kasapbaşı, M.C.; Elmasry, W. New LSB-based colour image steganography method to enhance the efficiency in payload capacity,
security and integrity check. Sādhanā 2018, 43. [CrossRef]
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