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Abstract

Microbial biomass is increasingly used to predict respiration in soil organic carbon (SOC)

models. Its increased use combined with the difficulty of accurately measuring this variable

points a need to directly assess the importance of microbial biomass abundance for carbon

(C) cycling. To test the hypothesis that the initial microbial biomass abundance (i.e. biomass

abundance on new plant litter) is a strong driver of plant litter C cycling, we manipulated bio-

mass abundance by 10 and 100-fold dilution and composition using 12 source communities

on sterile pine litter and measured respiration in microcosms for 30 days. In the first two

days of microbial growth on fresh litter, a 100-fold difference in initial biomass abundance

caused an average difference in respiration of nearly 300%, but the effect rapidly declined to

less than 30% in 10 days and to 14% in 30 days. Parallel simulations with a soil carbon

model, SOMIC 1.0, also predicted a 14% difference over 30 days, consistent with the ex-

perimental results. Model simulations predicted convergence of cumulative CO2 to within

10% in three months and within 4% in three years. Rapid microbial growth, evidenced by

appearance of visible microbial mats on the litter during the first week of incubation, likely

attenuates the effects of large initial differences in biomass abundance. In contrast, the per-

sistence of source community as an explanatory factor in driving differences in respiration

across microcosms supports the importance of microbial composition in C cycling. Overall,

the results suggest that the initial abundance of microbial biomass on litter is a weak driver

of C flux from litter decomposition over long timescales (months to years) when litter com-

munities have equal nutrient availability. By extension, slight variation in the timing of micro-

bial dispersal to fresh litter is likely to be a minor factor in long-term C flux.

Importance

Microbial biomass is one of the most common microbial parameters used in land carbon (C)

cycle models, however, it is notoriously difficult to measure accurately. To understand the

consequences of mismeasurement, as well as the broader importance of microbial biomass

abundance as a direct driver of ecological phenomena, greater quantitative understanding

of the role of microbial biomass abundance in environmental processes is needed. Using
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microcosms, we manipulated the initial biomass of numerous microbial communities across

a 100-fold range and measured effects on CO2 production during plant litter decomposition.

We found that the effects of initial biomass abundance on CO2 production was largely atten-

uated within a week, while the effects of community type remained significant over the

course of the experiment. Overall, our results suggest that initial microbial biomass abun-

dance in litter decomposition within an ecosystem is a weak driver of long-term C cycling

dynamics.

Introduction

Microbial decomposition of plant litter is a key process in terrestrial carbon (C) cycling [1].

Although the dynamics of plant litter decomposition have been studied for decades [2], accu-

rate prediction of ecosystem CO2 fluxes remains a challenge because the controls on decompo-

sition and their response to climate change are not fully understood [3]. Whereas early SOC

models focused mostly on abiotic controls (e.g. substrate, moisture, and temperature) [4], an

emerging body of research suggests that microbial factors play a key role in regulating decom-

position [5–7].

General microbial abundance in soil is a common microbial property incorporated in SOC

models as a factor affecting the rate of decomposition of various organic carbon pools [8, 9]. In

models, biomass abundance is typically not measured but, rather, computed as a state variable

whose dynamic size is determined by an interaction between the model’s structure and param-

eters, and environmental conditions such as climate, soil physical and chemical properties,

and organic matter additions [3, 8]. Microbial biomass is estimated in this fashion in part

because of the cost and logistical barriers to measuring microbial biomass in soils globally.

Field studies that have measured soil microbial biomass abundance show that it changes over

space and time [10], and in response to changing climate [11–13] or disturbance [14]. Mea-

surements of microbial biomass in soils across the globe range from fractions of a gram to 250

grams of biomass C per m2 [15]. Biomass abundance is thought to be largely controlled by

organic substrate and moisture availability [11, 16, 17].

Although microbial biomass is an established factor in SOC models, its relative importance

as a driver of variation in soil C cycling is an ongoing question, especially within a single eco-

system. Some studies suggest microbial biomass abundance drives a large portion of variation

in soil respiration [18, 19] and exerts a major influence over other ecosystem components by

controlling energy and nutrient flow [20, 21]. In contrast, other studies posit only a small role

of microbial biomass abundance in driving respiration, or propose complex relationships

between biomass and abiotic factors [22, 23]. The importance of microbial biomass is generally

inferred from correlative data [18, 19, 22, 23] where the contribution of co-varying abiotic soil

characteristics and other biotic factors (e.g., microbial composition) is difficult to disentangle.

Moreover, quantifying the impact of microbial biomass is difficult because biomass abundance

is notoriously difficult to measure accurately [21, 24–26], measurements can vary 10-fold if

community composition differs, and biomass is highly dynamic in some contexts. In dynamic

contexts, the distinction between intial and equilibrium biomass abundance creates additional

complexity. Initial abundance reflects the microbial state at the beginning of a dynamic pro-

cess or at any time point where substantial changes in abundance are expected to follow, such

as the addition of a new labile substrate. Equilibrium microbial biomass reflects the biomass

level achieved after colonization of fresh substrate has occurred and the system has reached
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what could be viewed as a carrying capacity or a steady state of biomass level. Uncertainties

about the relative importance of initial biomass abundance emphasize the need for functional

studies that attempt to manipulate microbial biomass independent of other abiotic and biotic

variables and measure functional consequences.

We used microcosm experiments and modeling to assess the role of initial microbial bio-

mass abundance on CO2 dynamics during the early phase of plant litter decomposition. The

early phase of litter decomposition is highly dynamic with rapid waves of microbial succession

[27–29]. We examined this phase using pine litter decomposition in microcosms over a 30-day

period. Although controlled microcosm studies lack the full realism of field studies, micro-

cosms are ideal systems to explore general phenomena that are difficult to disentangle in more

complex systems [6].

For the microcosm study, we extracted microbial communities from 12 geographically dis-

parate soils and created 3 dilutions (10−1, 10−2, 10−3) of each source community to obtain

known relative differences in the initial quantity of biomass. Selecting a range of community

types provides a more robust test of the dependence of litter decomposition dynamics on the

initial abundance of microbial biomass. The 100-fold range of initial biomass abundance for

each source community is similar to the range of variation estimated among global soils [15].

We then inoculated sterile pine litter in replicate microcosms with the three dilutions of each

microbial community and tracked CO2 flux over 30 days. Since biomass dilution can poten-

tially also alter community diversity and composition, as well as successional dynamics, we

conducted a second experiment to assess variation in microbial community composition

among dilutions. We hypothesized that initial differences in microbial biomass abundance

would cause substantial variation in respiration over a 30-day decomposition process, with

higher biomass leading to significantly higher respiration.

Materials and methods

Experiment 1

Biomass manipulation from 12 source communities. Microbial inocula for litter were

obtained from 12 surface soils (i.e., 12 source communities) by suspending each soil in buffer

(S1 Table). Surface soils were collected during a larger sample collection across the southwest

U.S. Samples were collected on public roadways at least 15 meters from the raod. The field

sampling did not involve endangered or protected species. Soil geochemistry was not charac-

terized, since soils were used to extract microbial communities to inoculate environmentally

similar microcosms, while minimizing changes in geochemistry in the microcosms due to soil

characteristics. We selected the 12 soils to represent a range of community types that can col-

lectively provide a more robust test of the dependence of litter decomposition dynamics on the

initial abundance of microbial biomass. To quantify the effect of initial biomass differences on

CO2 production, we made 3 serial dilutions (10−1, 10−2, and 10−3) of each soil to provide

known differences in the initial abundance of microbial biomass for each soil. The dilutions

were created by suspending one gram of soil in 9 ml of phosphate-buffered saline (PBS)

amended with NH4NO3 at 1 mg/ml, creating a 10-fold dilution. The 10-fold dilution was cen-

trifuged for 1 minutes at max speed (16,500x g) and supernatant was decanted. The pellet was

then resuspended in the same volume of NH4NO3 amended PBS buffer. These additional cen-

trifugation and resuspension steps were performed in an effort to remove the bulk of soil

chemistry effects. We then performed serial dilutions in PBS with NH4NO3 (1 mg/mL final

concentration) to obtain 100- and 1000-fold dilutions of each source community.

Initial biomass estimation among 12 source communities. Our dilution approach

allowed us to accurately determine relative variation in biomass within a source community.

Effects of initial microbial biomass on decomposition
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To estimate biomass variation among source communities at the beginning of the experiment,

we used both DNA quantification and bacterial and fungal plate counts. DNA extractions

were performed with a PowerSoil 96-well plate DNA extraction kit (Mobio, San Diego, CA,

USA). The standard protocol was used with two exceptions: 1) 0.3 grams of material was used

per extraction, and 2) bead beating was conducted using a Spex Certiprep 2000 Geno-Grinder

for three minutes at 1900 strokes/minute. DNA samples were quantified with an Invitrogen

Quant-iTTM ds DNA Assay Kit on a BioTek Synergy HI Hybrid Reader. DNA quantities were

used as a proxy for total microbial biomass.

Fungal and bacterial abundance was estimated from initial soil samples using plate counts.

Serial dilutions of each soil were prepared in PBS, and 100-μl aliquots of appropriate dilutions

were spread on 1/10 Trypticase Soy Agar (TSA) plates for bacterial counts or 1/10 TSA plates

with chloramphenicol (100 ug/L) and gentamicin (50 ug/L) for fungal counts. Colonies were

counted after incubating plates at 25˚C for 7 days.

Microcosm construction and CO2 sampling. A total of 72 microcosms were constructed

using 125 mL serum bottles containing c.a. 5 g of sand and 0.1 g of homogenized sterilized

(autoclaved 1hr, twice) pine litter (Pinus ponderosa) finely ground with a Wiley mill (Thomas

Scientific, Swedesboro NJ, USA. The serum bottles with pine litter were then autoclaved once

for 1hr, to sterilize the microcosms. Microcosms were inoculated with 1.3 mL of microbial

inoculum, with two replicate microcosms for each of the 36 inocula (12 source communities x

3 dilutions). Serum bottles were sealed with crimp caps and incubated in the dark at 25˚C.

After inoculation, CO2 production in each microcosm was measured at 2, 5, 9, 16, 23, and

30 days by gas chromatography using an 490 Micro GC (Agilent Technologies, Santa Clara,

CA, USA. Immediately after CO2 measurements, the air in each microcosm was evacuated

with a vacuum pump and replaced with ambient sterile-filtered air.

Experiment 2

Microcosm construction and CO2 sampling. While, the intent of the overall study was to

measure the effects of initial biomass abundance on respiration, we set up an additional experi-

ment to address concerns about the potential impacts of dilutions on microbial composition.

The microcosm set-up and sampling protocols were identical to Experiment 1, except that a

two-week pre-incubation phase was included [30] to reduce potential effects arising from pre-

existing differences in the physiological state of microbial communities from the two soils (S010

and S018) tested in this experiment. Microbial inocula were added to microcosms that initially

contained only 0.02 grams of litter and 5 g of sand. After 14 days incubation at 25˚C, an addi-

tional 0.1 grams of sterilized litter was added. During the priming phase CO2 was measured on

days 3, 7, and 14. After the 44-day (total) incubation, microcosms were destructively sampled to

assess community composition. Microcosm samples were stored at -70˚C prior to DNA extrac-

tion (performed as in Experiment 1).

Bacterial and fungal community taxonomic profiling. Taxonomic profiling was per-

formed by sequencing bacterial 16S rRNA and fungal 28S rRNA genes. The V3-V4 region of

bacterial (and archaeal) 16S rRNA genes was amplified using primers 515f-R806 [31] and the

D2 hypervariable region of fungal 28S rRNA gene was amplified using primers LR22R [32]

and LR3 [33]. PCR amplifications for bacteria and fungi were performed using the same two-

step approach [34]. In the first PCR, sample barcoding was performed with forward and

reverse primers each containing a 6-bp barcode. Barcodes (6-mers) were designed in 2014

with standard rules: homopolymer length limited to 3nt, less than 4bp complementation

between any pair of barcodes and no substantial complementation between the barcodes and

the Illumina adaptors. 22 cycles with an annealing temperature of 60˚C were performed [35].

Effects of initial microbial biomass on decomposition
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The second PCR added Illumina adaptors over 10 cycles with an annealing temperature of

65˚C. Amplicon clean-up was performed with a Mobio UltraClean PCR clean-up kit, follow-

ing manufacturer’s instructions with the following modifications: binding buffer amount was

reduced from 5X to 3X sample volume, and final elutions were performed with 50 μl Elution

Buffer. Following clean-up, samples were quantified using the same procedure as described in

Experiment 1 and pooled at a concentration of 10 ng per sample. A final clean-up step was per-

formed on pooled samples using the Mobio UltraClean PCR clean-up kit. Samples were

sequenced on an Illumina MiSeq platform with PE250 chemistry at Los Alamos National Lab-

oratory. Unprocessed sequences are available through NCBI’s Sequence Read Archive

PRJNA601499.

Following sequencing, bacterial and fungal sequences were merged with PEAR v 9.6 [36],

quality filtered to remove sequences with 1% or more low-quality (q20) bases, and demulti-

plexed using QIIME [37] allowing no mismatches to the barcode or primer sequence. Further

processing was performed using UPARSE [38]. First, sequences with an error rate greater than

0.5 were removed, remaining sequences were dereplicated, singletons were excluded from

clustering, Operational taxonomic unit (OTU) clustering was performed at 97%, and putative

chimeras were identified de novo using UCHIME. Bacterial and fungal OTUs were classified

using the Ribosomal Database Project (RDP) classifier. OTUs with less than 80% confidence

in taxonomic assignment at the bacterial Phylum level or less than 100% confidence at the fun-

gal Domain level were removed from the dataset. The excluded OTUs accounted for 0.3% of

the bacterial data and 1.6% of the fungal data. Following quality control, the number of bacte-

rial sequences ranged from 11,512 to 49470 per sample, representing a total of 922 OTUs. The

fungal sequences ranged from 13,493 to 73,568 per sample, representing a total of 227 OTUs.

Bacterial and fungal surveys were rarefied to 11,512 and 13,493 for comparisons of community

diversity and composition.

Statistical analyses

Pearson’s correlations were used to assess correspondence between initial biomass estimates

(DNA quantification (qPCR), fungal plate counts, bacterial plate counts) and respiration. To

quantify the effects of initial biomass on cumulative respiration, we calculated the difference in

cumulative CO2 produced in the highest compared to lowest dilution for each source commu-

nity at each timepoint and then calculated the average across the 12 source communities. To

test for differences across the treatments and estimate the variance explained by each treatment

in driving variation in univariate metrics (i.e. CO2 production, richness, Shannon diversity)

we used a nested ANOVA design with inoculum type as the main fixed factor and initial bio-

mass as a nested factor within inoculum. Post hoc Tukey HSD tests were conducted to assess

significant differences in richness and Shannon diversity across sample groups. The effects of

initial biomass (10−1, 10−2, 10−3 dilutions) and microbial community composition (i.e., the

source community) on CO2 production were assessed during each measurement period (day

0–2, day 2–5, day 5–9, day 9–16, day 16–23, day 23–30). The ANOVA and post hoc Tukey

analyses were conducted in the R software environment (v3.5.1) [39].To examine the effect of

initial biomass on the temporal pattern of respiration, the average “daily” CO2 (i.e., the CO2

measured at a given timepoint, not the cumulative CO2 from the beginning of the decomposi-

tion process) was calculated across the 12 source communities for each level of initial biomass.

To assess the contribution of treatments in driving variation in bacterial and fungal com-

munity composition, we performed a permutational multivariate analysis of variance (PER-

MANOVA)[40]. As with the univariate version, this multivariate model included source

community type as the main fixed factor and initial biomass as a nested factor within

Effects of initial microbial biomass on decomposition
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community type. We estimated the percent of variation that could be attributed to each signifi-

cant term for both the PERMANOVA (as described in [41]) and ANOVA analyses [42] as a

percent of the Mean Square. To quantify the relative variability in microbial composition

within each dilution (i.e. 10−1, 10−2, and 10−3), we measured the average distance to the cen-

troid within each group using a test for homogeneity of dispersion [40].

SOC modeling

A microbial SOC model, SOMIC 1.0 [43], was used to predict respiration rates and microbial

biomass as a function of time in treatments with varying initial microbial biomass. Because the

litter was placed on the soil surface in the incubation experiment, the SOMIC model was run

for a single soil layer comprising an organic horizon with 0% clay content. The Pinus ponder-
osa litter was partitioned into fast and slow turnover pools (referred to as SPM and IPM,

respectively, in the SOMic model) using the metabolic to structural material ratio calculated

according to the DAYCent equation in which the metabolic fraction is calculated as 0.85–

0.013 L/N, where L/N is the lignin to nitrogen ratio [44]. We assumed a value of L/N of 45.7

[45]. Microbial biomass in the 1x dilution treatment was assumed to be 2.3% of the carbon

present in the plant litter, based on the mean value for continuous monocultures in Anderson

(1989) [46]. The litter was assumed to have 48.94% carbon content, based on the average value

for pine needles in the Phyllis 2 database [47]. A constant moisture content of 50% was

assumed in the litter during the incubation simulation.

Results

Experiment 1: Effect of initial biomass and microbial composition on CO2

flux during litter decomposition

Source soil DNA concentrations varied 50-fold, ranging from 0.5 to 25.9 ng/μL (average =

11.07±2.7 ng/μL; Fig 1A). Bacterial and fungal counts also varied widely among the source

soils (S1 Fig). Among the source communities cumulative CO2 production ranged from

187.1± 8.5 mg/g litter to 260.5±7.6 mg/g litter (Fig 1B). Cumulative respiration was not signifi-

cantly correlated with any measurement of initial biomass (DNA concentration, R2 = -0.13,

P = 0.68; fungal plate counts, R2 = -0.05, P = 0.87; bacterial plate counts, R2 = 0.04, P = 0.91).

The 100-fold difference in initial biomass (10−1 versus 10−3 dilutions), created an average dif-

ference in CO2 of 289 ± 66% at day 2. The difference in cumulative CO2 declined to 25 ± 21%

by day 9. Over the cumulative 30 day period, the large initial variation in biomass led to an

average drop in total CO2 of only 14.1 ± 2.1%, ranging from 1.7 and 25.5% (Fig 1C, S2 Fig).

During the first two days of decomposition, respiration was strongly driven by the initial

biomass abundance and by initial community composition (nested ANOVA; initial biomass

[source community]: F24,36 = 13.7, P<0.001; source community: F11,36 = 30.3, P<0.001). In

that time interval, the two treatment factors explained 92% of estimated variation in CO2 pro-

duction, with the initial biomass explaining 52% and the source community explaining 40%

(Fig 2). The effect of initial biomass attenuated rapidly; by day 16 (measurement interval: days

9–16), initial biomass was not a significant driver of differences in CO2 production across

microcosms. This trend persisted in the final two weeks, where source community remained

the only significant factor (nested ANOVA; initial biomass[source community]: F24,36 = 0.5,

P = 0.96; source community: F11,36 = 6.4, P<0.001), accounting for ~50% of variation in CO2

production (Fig 2).

Average daily respiration increased rapidly immediately following inoculation of pine litter,

peaked, and then decreased over time (Fig 3). For communities with the highest initial biomass

Effects of initial microbial biomass on decomposition
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Fig 1. Variation in biomass and respiration among source communities. The source communities were extracted from 12 different soils.

a) Biomass approximation from DNA concentration (ng/uL) from undiluted soil extractions. ND indicates no data. b) Cumulative

respiration (mg CO2/gram litter) after 30 days for each community type across all biomass dilutions. For each boxplot, the line in the

box shows the median cumulative CO2, with the endpoints showing the 25% and 75% quartile range. The whiskers show the 0% and 100%

quartile range. Separate points outside of whiskers show outliers within a dilution. c) Relative cumulative respiration (by day 30) for each

source community normalized by the cumulative CO2 from the least diluted version (10−1 dilution) of each source community.

https://doi.org/10.1371/journal.pone.0224641.g001
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level, the average daily respiration peaked by day 5, whereas respiration from communities

with the lowest initial biomass level peaked by day 9 (Fig 3B).

SOC modeling. The SOMIC model predicted a 14.4% lower cumulative respiration after

30 days for communities that began with a 100-fold lower abundance of microbial biomass

(Fig 4A). This is consistent with the experimentally observed 14.1 ± 2.1% lower cumulative

CO2 for the 10−3 treatment relative to 10−1. Extending the time scale, model simulations pre-

dicted convergence of cumulative CO2 to within 10% at three months and 3% at three years.

Modeled respiration rates peaked after 4.2 days and 9.5 days for communities with initial bio-

mass levels of 1 and 1/100, respectively (Fig 4B). The model showed that microbial biomass in

the two treatments gradually converged to a similar value over time. In the community with

high initial biomass, microbial biomass increased as decomposition began, reaching a maxi-

mum after twelve days, whereas in the community with 1/100 initial biomass, microbial bio-

mass continued to increase until near the end of the 30 days (Fig 4C). At 30 days the predicted

microbial biomass in the two communities differed by 21%.

Experiment 2: Dilution of initial biomass impacts microbial community

diversity and composition

Although the second experiment included a two-week acclimation period to minimize effects

from potential pre-existing differences in the physiological state of the soil communities, this

did not alter respiration dynamics (S3 Fig). As expected, microbial community richness, diver-

sity, and composition differed between by the two source communities (S2 Table). For both

source communities, changes in relative initial biomass led to significantly different bacterial

richness (nested ANOVA; F4,12 = 6.8, p = 0.004) and fungal richness (nested ANOVA; F4,12 =

Fig 2. Percentage of variation in respired CO2 explained by initial biomass abundance (dilution level) and initial community composition (source

community) for each time interval.

https://doi.org/10.1371/journal.pone.0224641.g002
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Fig 3. Effect of initial biomass abundance on respiration. a) Cumulative respiration across dilutions over time. b)

“Daily” respiration, the respired CO2 (mg/g litter) measured at a given timepoint, over time. Each point is the average

respired CO2 (mg/g litter) among 12 communities (2 replicates each) that were inoculated on litter at the indicated

initial relative abundance level (1, 1/10, or 1/100). Error bars are 1 standard deviation (n = 12 per dilution).

https://doi.org/10.1371/journal.pone.0224641.g003
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7.7, p = 0.002) in the microcosms at day 30. The richness pattern showed a consistent decline

in bacterial, but not fungal taxa by dilution (Fig 5A and 5B). For each source community,

decreased initial biomass led to decreased bacterial diversity measured at the end of the 30-day

litter incubation (nested ANOVA; F4,12 = 50, p<0.001) (Fig 5C), but did not alter fungal diver-

sity (nested ANOVA; F4,12 = 0.7, p = 0.63) (Fig 5D). Furthermore, initial biomass significantly

altered bacterial composition (nested PERMANOVA; F2,14 = 6.3, p = 0.001) (Fig 5E, S4A Fig),

but not fungal community composition (nested PERMANOVA; F2,14 = 1.7, p = 0.07) (Fig 5F,

S4B Fig). Variation in bacterial composition among samples was driven primarily by the source

community type (PERMANOVA; estimated variation 51%), whereas the initial biomass (dilution

treatment) had a smaller effect (PERMANOVA; estimated variation, 35%). Lastly, significantly

greater variability in bacterial community composition occurred among replicates with the lowest

Fig 4. SOMIC 1.0 modeling of the effects of 100-fold differences in initial biomass abundance on a) Cumulative

respired CO2 over 30 days b) “Daily” respired CO2 c) Temporal changes in microbial biomass.

https://doi.org/10.1371/journal.pone.0224641.g004
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initial biomass compared to replicates with the highest initial biomass for both source communi-

ties, S018 and S010 (PERMDISP; p = 0.04 and p = 0.03, respectively) (Fig 5E, S4A Fig).

Discussion

Within a single ecosystem, plant litter decomposition measured as cumulative CO2 production

or as litter mass loss can vary up to 2-fold (100%) after incubation periods ranging from 44 to

365 days [48, 49]. Identifying the drivers of such variation is important because it can improve

modeling and management of soil carbon. Our combined use of experimentation and model-

ing to assess the importance of initial biomass abundance on pine litter provides quantitative

information that has been absent in published literature. We found that 100-fold differences in

the initial abundance of microbial biomass does create large variation in respiration (up to

767% in our study), but only over a short time period (several days). Over long timescales

(weeks to years), the initial abundance of microbial biomass on litter is a weak driver of varia-

tion in cumulative respiration (Figs 2 and 4), as microbial biomass rapidly increases to the car-

rying capacity of the environment (Fig 4).

Attenuation of initial microbial biomass effects on litter decomposition was rapid in our

microcosm study under constant conditions. In our study, the effect of initial biomass differ-

ences on cumulative respiration declined from an average 266% difference at day 2 to only

14% difference by day 30. Parallel modeling predicted similar results with only a 14% differ-

ence at day 30, declining to less than 4% over 3 years under constant environmental condi-

tions. In addition, peak respiration rates occurred over a similar time frame in our experiment

and model, indicating model dynamics operate at similar rates to the measured values in the

microcosm experiments (Figs 3 and 4). The SOMIC model provided further insights including

temporal dynamics of biomass and respiration over a much longer time scale. Our results sup-

port a previous soil microcosm experiment that used different methods to alter initial micro-

bial biomass, but found soil organic matter, not initial microbial biomass, was the main driver

of respiration differences over a 42-day incubation period [50]. Additionally, another experi-

ment focused on later stages of decomposition, soil organic carbon (SOC) mineralization,

found that mineralization proceeded at the same rate in soils where microbial biomass was

decreased by greater than 90% using fumigation [51]. In nature, the rate of attenuation will

likely depend on numerous factors including the magnitude and rate of microbial dispersal,

litter colonization rates, microbial community composition (i.e., some types of communities

may attenuate initial biomass effects faster than others), substrate conditions, and environ-

mental conditions [52, 53]. A key question in nature is the magnitude of initial biomass differ-

ences expected within a single ecosystem. Whereas the 100-fold range tested in our study is

relevant at the global scale [15], at a local scale the initial abundance of biomass on fresh litter

may vary over a much smaller range (e.g., 2-fold; [52]).

Our use of microcosms enabled a test that cannot be performed effectively with natural lit-

ter in a field study—manipulating biomass abundance in a similar environment with 12 dis-

tinct communities and precise measurement of cumulative respiration. However, the

microcosm approach involves tradeoffs. In this study the use of constant temperature and

moisture likely accelerated decomposition, compared to fluctuating conditions in nature [54].

Nonetheless, results from a recent field study suggest that even in fluctuating environmental

conditions initial biomass plays a minor role in driving decomposition dynamics [55]. In this

field study a microbial community from desert plant litter with low initial inoculum biomass

over 18-months carried out decomposition at a similar rate a microbial community from a

grassland ecosystem with high initial inoculum biomass when inoculated onto the same plant

litter substrate in microbial cages in the field [55]. Other tradeoffs expanded on below may be
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worth considering although we do not expect them to alter the general conclusions about ini-

tial biomass abundance effects. For example, our use of pre-sterilized litter enabled manipula-

tion of biomass abundance but eliminated the phyllosphere microflora, which contribute to

decomposer communities in nature along with soil and rainwater microflora [24, 52]. We sus-

pended source soil microbial communities into liquid and inoculated them onto plant litter in

a single dispersal event analogous to heavy rain event that suspends soil microflora and depos-

its them on litter by splash or by surface flooding. The source communities were from surface

soils that are a source of litter-colonizing organisms in dryland ecosystems in the western US.

These ecosystems have sparse plant cover, where dispersal of microbes from exposed surface

soil by rain and wind is a likely mechanism of plant litter colonization. Our microcosm litter

communities had higher diversity (a few 100 taxa) than communities used in prior microcosm

studies (10’s of taxa) that yielded important insights into microbial processes, particularly

decomposition [6, 56–58], but lower diversity compared to some previously studied natural

plant litter systems (100’s of taxa) [24, 59]. Despite these tradeoffs, the experimental results

were consistent with results from a soil carbon model (SOMIC) that has been validated with

natural field soils [43] and with findings from a field study where differences in initial biomass

from source microbial inoculum had little impact on decomposition over a 1.5 year period

[55]. This suggests the microcosm approach was suitable to test a fundamental biological pro-

cess—the capacity for rapid microbial growth to attenuate the consequences of initially large

differences in microbial biomass.

Relative effects of biomass versus community composition on respiration

Separating the effects of microbial biomass and microbial composition is a challenge. Microbial

biomass measurements are often influenced by microbial composition. Techniques used to

measure microbial biomass abundance include phospholipid fatty acids (PFLAs) [60], substrate

induced respiration (SIR) with selective inhibition of bacteria or fungi [61], DNA-based

approaches such as qPCR [62, 63], growth-based measurements [64], and particle counts by

flow cytometry [65, 66]. These techniques are affected by species’ characteristics [24, 67]. For

example, qPCR measurements of bacterial biomass can vary more than an order of magnitude

owing to species-specific differences in the copy number of the qPCR gene targets, and a similar

range of error has been demonstrated with other common measurement techniques [24].

Because of the measurement limitations, differences in decomposition dynamics cannot be

attributed to biomass abundance (either initial or equilibrium abundance) unless microbial

composition has been largely ruled out. For example, Bradford et al. (2017) estimated microbial

biomass by SIR over a 24-hour incubation and concluded that microbial biomass variation

accounted for the 2 to 5-fold variation in decomposition rates (% mass loss) of a homogenous

plant litter substrate within 30 m transect field sites after a year-long incubation [48]. Our

results show that up to 100-fold variation in microbial abundance at the time of sampling

would be required to produce the observed SIR results in Bradford et al. [48]. We postulate that

100-fold variation in microbial biomass abundance is unlikely on litter at the same site after a

year in the field and that variation in microbial community composition is likely a more impor-

tant driver of decomposition rate. The scale of composition-dependent error in biomass mea-

surements underscores the need to account for community composition in process dynamics.

To tease apart the effect of biomass abundance versus community composition on respira-

tion dynamics, an ideal experiment would manipulate biomass and composition indepen-

dently to control both factors. However, this can only be achieved with defined communities,

which severely limits exploration of natural variation in soil microbial community composi-

tion. In our study, we attempted to manipulate the two factors biomass abundance via
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dilutions and composition via use of of inoculum communities from 12 source. While our

approach could not entirely disentangle biomass abundance and composition (see next sec-

tion), the approach did enable estimation of the relative impact of each factor in a novel way.

During the first two days of the experiment, 52% of the variation in respiration across micro-

cosms was explained by the initial microbial biomass abundance, 40% was attributed to micro-

bial composition, and only 8% was unexplained. By contrast, in the final few weeks of the

experiment where microbial biomass had likely converged, composition still explained ~50%

of the variation in respiration, while the remaining ~50% of variation was unexplained. The

persistence of microbial composition as an explanatory factor supports its importance in driv-

ing respiration dynamics [5–7]. The increase in unexplained variation in respiration over time

is likely due to stochastic phenomena that amplify community compositional differences caus-

ing divergence in function, in this case CO2 flux, among replicates [68].

Dilution impacts microbial community assembly

In our study, microbial community composition changed across dilutions, albeit to a smaller

degree than composition varied among inocula (Fig 5E & 5F). Previous studies have tested the

effects of dilutions on microbial communities and have found that dilutions can alter both

diversity and function [69–72]. While we observed that increasing dilution of the initial

community biomass resulted in reduced bacterial richness and diversity in the evolved decom-

poser communities (Fig 5), it is unlikely these small changes in composition significantly

impacted respiration, as the dilution treatment had no significant impact on respiration rates

in the final two weeks of the experiment when compositional divergence was likely greatest.

Most dilution studies attempting to manipulate microbial richness use much higher dilutions,

generally 10−6 to 10−9 [71]. In our study, the lowest initial biomass, 10−3 dilution, had signifi-

cantly greater variability in bacterial community composition compared to the 10−1 dilution in

both microbial communities where composition was measured (Fig 5). This was consistent

with observations from previous microbial dilution studies that also show greater variability in

composition from higher dilutions [71]. The result may arise either from stochastic founder

effects fostered by the low initial biomass [71, 73] or by a greater opportunity for divergence

through outgrowth, as the low biomass communities can undergo several more doublings

before encountering substrate limitation.

Conclusions

Our experimental and model simulation results suggest that initial microbial biomass abun-

dance on litter is a weak driver of variation in respiration at the long time scales over which

decomposition occurs. Community composition is likely a stronger long-term driver. Our

findings emphasize the need to discover the microbial traits encapsulated in community com-

position that drive important variation in C cycling within and among ecosystems.
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