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Abstract

The rose-grass aphid (Methopolophium dirhodum Walk.) is a major pest of maize (Zea

mays L.), but little is known about the biochemical interactions between M. dirhodum and its

host plant. Thiol compounds and glutathione S-transferase (GST) play a crucial role in the

defense responses of maize to biotic stress factors, including aphids. The purpose of this

research was to evaluate the impact of M. dirhodum herbivory on the total thiol (TT), protein

bound thiol (PT), reduced glutathione (GSH) and oxidized glutathione (GSSG) contents as

well as the activity of GST in three varieties of Z. mays (Złota Karłowa, Ambrozja and Pło-

myk), that were classified as aphid-susceptible, aphid-relatively resistant and aphid-resis-

tant, respectively. The earliest and strongest aphid-triggered alterations in the levels of TT,

PT and GSH, and the greatest induction of GST activity, were recorded in the resistant Pło-

myk seedlings in relation to the relatively resistant Ambrozja and the susceptible Złota

Karłowa.

Introduction

Maize (Zea mays L.) is one of the most important crops worldwide and its economic impor-

tance is growing [1]. Maize is a substantial source of raw materials for the pulp and paper

industries as well as for the fermentation processes in biogas and bioethanol production [2–4].

Z.mays serves as a model organism in experimental biology, especially in studies related to

plant-insect interactions and resistance mechanisms [2–3]. Among numerous insects attacking

Z.mays, aphids are one of the major pests responsible for damage to maize [5–6]. Four species

of aphids infest maize plants in Poland: the rose-grass aphidMetopolophium dirhodum
(Walk.), the bird cherry-oat aphid Rhopalosiphum padi (L.), the corn leaf aphid Rhopalosi-
phummaidis (F.) and the grain aphid Sitobion avenae (F.) [6–9]. The injection of aphid saliva

can be very toxic, leading to chlorosis, deformation of organs, disturbance of water transport

and depletion of chlorophyll contents [10]. Aphids are also associated with the transmission of
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a wide spectrum of plant viruses, including barley yellow dwarf virus (BYDV), beet western

yellows virus (BWYV), maize dwarf mosaic virus (MDMV), soybean dwarf virus (SbDV) and

sugarcane mosaic virus (SCMV) [11–15].

Aphid feeding may trigger multiple signalling pathways in plants, which are mediated by

several molecules, including jasmonic acid, salicylic acid, ethylene, abscisic acid, gibberellic

acid, nitric oxide and reactive oxygen species (ROS) [16–19]. The rapid increase in ROS gener-

ation, called an oxidative burst, is one of the earliest plant responses to aphid infestation [20–

22]. Excess ROS is harmful to plants, as it can cause lipid peroxidation, protein oxidation,

damage to DNA and activation of programmed cell death (PCD) [23–24]. Whether ROS play

a damaging or signalling role depends on the ROS generation and elimination by the plant’s

defense system, composed of antioxidant enzymes, such as superoxide dismutase (SOD), cata-

lase (CAT), glutathione peroxidase (GPX) and ascorbate peroxidase (APX), and non-enzy-

matic antioxidants, such as ascorbic acid (ASA), tocopherols and glutathione (GSH) [23], [25].

Thiols and glutathione (GSH; γ-L-glutamyl-L-cysteinylglycine) are two of the crucial metabo-

lites that act as detoxicants and antioxidants [26–27]. Equilibrium between GSH and its oxi-

dised form (glutathione disulfide–GSSG) is a fundamental requirement for maintaining a

cellular redox state [28]. GSH plays an important role in many biological processes, including

cell growth, signal transduction, synthesis of proteins and nucleic acids as well as detoxification

of a wide spectrum of xenobiotics [23], [26], [29–31]. GSH is a disulfide reductant that protects

protein thiol groups, reacts directly with hydrogen peroxide (H2O2) and hydroxyl radical

(�OH), and acts as the substrate for glutathione-dependent enzymes, such as GPX, dehydroas-

corbic acid reductase (DHAR) and glutathione S-transferase (GST) [32–33]. Cytosolic GSTs

are a family of multifunctional enzymes that participate in conjugation and sequestration of

xenobiotics, transport of flavonoids, programmed cell death and signalling through flavonoids

[34]. Some isoforms of GST show dual activity and can also act as glutathione peroxidases

(GSTpx), removing organic hydroperoxides [35–36].

There are numerous studies concerning the role of thiol compounds and GST in plants

under various stresses (herbicides, salinity, heavy metals, fungal and viral infection, herbivores

[19], [27], [37–42]. In the last years, the impact of two cereal aphid species (R. padi L. and

S. avenae F.) on the expression patterns of genes related to GSH and GST in Z.mays seedlings

has been intensively studied [19], [27], [42]. However, there is a lack of published data con-

cerning the effect ofM. dirhodum infestation on glutathione metabolism in maize.M. dirho-
dum is a host-alternating aphid, whose primary hosts are roses (Rosa L.) and secondary hosts

are grass species, mainly cereals [43]. Studies conducted by Bereś [6] proved that the most

abundant aphid species occurring on maize in Poland are R. padi andM. dirhodum. Moreover,

Strażyński [9] noted thatM. dirhodum was the predominant species on maize cultivars in the

Wielkopolska region. Therefore, the aim of the present study was to determine the changes in

levels/activities of total thiols (TT), protein thiols (PT), GSH, GSSG and GST in seedlings of

three maize cultivars, differing in aphid resistance (Złota Karłowa, Ambrozja and Płomyk)

after aM. dirhodum infestation, in order to gain a better insight into the thiol metabolism in

the examined host plants.

Methods

Aphids

Experiments were conducted using wingless females (apterae) of the rose-grass aphidM. dir-
hodum. The aphids were reared on the seedlings of wheat (Triticum aestivum L.) cv. Tonacja

for a year in an environmental chamber (21˚C, L16:D8 photoperiod, 70% relative humidity).

Role of thiols and glutathione s-transferase in maize response to a rose-grass aphid
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Plants

The seeds of three Z.mays varieties (Ambrozja, Złota Karłowa and Płomyk) were acquired

from local commercial grain suppliers: Reheza (Moszna, Poland) and PNOS S.A. (Ożarów

Mazowiecki, Poland). Plants were cultivated in a climate chamber (21˚C, L16:D8 photoperiod,

70% relative humidity). The seedlings were grown in plastic pots (10 ×10 cm, one seedling per

pot) filled with medium nutrient fine structure compost with sand. According to Sytykiewicz

et al [10], the Złota Karłowa, Ambrozja and Płomyk maize varieties are classified as aphid-sus-

ceptible, aphid-relatively resistant and aphid resistant, respectively.

Infestation procedure

Leaves of 14-day-old maize seedlings were colonized with 30 or 60 adult wingless M. dirho-
dum females per plant. The control groups of seedlings were not infested with insects.

Maize plants infested with aphids and the non-infested (control) plants were isolated in

gauze-covered plastic cylinders. The quantified parameters (i.e. TT, PT, GSH, GSSG and

GST) in maize plants were estimated after 24, 48, 72 and 96 h of the continuous aphid

infestation.

Quantification of TT, non-protein thiols (NPT) and PT

TT and PT contents were determined according to Sedlak and Lindsay [44]. Fresh Z.mays
seedling leaves weighing 500 mg were homogenized in 10 ml of 0.2M Tris-HCl (pH 7.4) and

centrifuged at 10 000 x g for 20 min at 4˚C. Supernatant was used to assay TT and NPT. To

determine the TT, 0.5 ml of supernatant was mixed with 1.5 ml of 0.2mM Tris-HCl (pH 8.2),

0.1 ml of 0.01 M DTNB and 7.9 ml of absolute methanol. The yellow colour that developed

was measured after 15 min at 415 nm against a blank vial containing 0.5 ml distilled water

instead of supernatant. Total sulfhydryl groups were calculated based on an extinction coeffi-

cient of 13,600 and expressed as μmol per g fresh weight.

To determine of NPT content, 5 ml of supernatant was mixed with 4 ml of distilled water

and 1 ml of 50% TCA. After 15 min. the mixture was centrifuged at 10 000 x g for 15 min. In 2

ml of deproteinized supernatant, NPT concentration was measured in a manner similar to

that for TT [44].

PT were calculated by subtracting the NPT content from total thiol content.

GSH and GSSG assay

The contents of GSH and GSSG were determined as described by Griffith [45] based on the

oxidation of GSH by DTNB [5,5’-dithiobis-(2-nitrobenzoic acid)] to form GSSG and TTNB

(5-thio-2-nitrobenzen). GSSG was reduced to GSH by the glutathione reductase and NADPH.

Briefly, 500 mg of plant material was homogenized in 2.5 ml of 2.5% TCA and centrifuged at

10 000 x g for 15 min at 4˚C. A 0.3 ml of the supernatant was used to assay total glutathione

(GSH + GSSG). Another 0.3 ml was pretreated with 6 μl 2-vinylpyridine for 60 min at 20˚C to

mask GSH by derivatization. 0.1 ml of both types of samples were mixed with 0.7 ml of 0.3

mM NADPH, 0.1 ml of 6 mM DTNB and 0.1 ml of GR (50 units/ml). The absorbance at 412

nm was recorded after 5 min at room temperature. The total glutathione (GSH + GSSG) and

GSSG contents were calculated using a standard curve and was expressed as μmol per g fresh

weight. The GSH content was calculated from the difference between the total glutathione and

GSSG.
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GST assay

GST activity was measured using 1-chloro-2,4-dinitrobenzene (CDNB), as per Leszczyński

and Dixon [46]. 500 mg of plant material was homogenized in 5 ml of 0.2M Na-phosphate

buffer pH 7.8 and centrifuged it at 10 000 x g for 15 min at 4˚C; the obtained supernatant was

used to assay GST. The reaction mixture contained 1 ml of crude supernatant and 0.05 ml of

50 mM GSH. After incubation for 5 min at 25˚C, 0.025 ml of 40 mM CDNB was added into

the mixture and absorbance at 340 nm was recorded for 5 min. GST activity was expressed as

nmol CDNB conjugated/min/g fresh weight, using extinction coefficient of 9.6 mM-1 x cm-1

for S-(2,4-dinitrophenyl)glutathione.

Statistical analysis

All data are reported as means ± SD and n = 4, where each replication represents one indepen-

dent plant homogenate. Differences in the content of TT, PT, GSH, GSSG and activity of GST

between the aphid-infested seedlings of each variety and the relevant control plants were

assessed by an analysis of variance (ANOVA), followed by a post hoc Fisher’s LSD test. All

analyses were done with Statistica for Windows version 10.0 (Statsoft 2012).

Results

Effects of the rose-grass aphid infestation on the TT content in Z. mays
seedlings

The experiment revealed that the exposure of the seedlings of three maize cultivars (Ambrozja,

Złota Karłowa and Płomyk) toM. dirhodum caused significant fluctuations in TT content in

comparison to control non-infested plants (Table 1). Insect feeding for 24 h on Ambrozja

seedlings resulted in a clear increase in the level of TT, dependent on the number of aphids per

plant. Lower insect density (30 insects per seedling) caused larger changes in the level of TT in

the tested plants. Forty-eight hours after colonization, a lower abundance of aphids (30 per

plant) did not affect the TT content in Ambrozja cultivar leaves in relation to the uninfested

control, but a higher density of aphids (60 per plant) evoked depletion of the TT level. Over

the next two time periods (72 and 96 h) of the rose-grass aphid infestation, a gradual decrease

in the sulfhydryl compound content in Ambrozja cultivar leaves was noted. At 72 h post-infes-

tation, the extent of depletion was independent of the aphid density, but after 96 h of insect

feeding, a greater decrease in TT content was noted for plants stressed by a higher number of

aphids (60 per seeding).

In the case of the Złota Karłowa cultivar, the initial periods ofM. dirhodum colonization

(24 and 48 h) were associated with an increase in TT content in comparison to control maize

seedlings. At these time points, the intensity of changes was comparable and independent of

aphid density. Prolonged aphid feeding (72 h) evoked a further elevation of TT concentrations

only for the lower abundance of aphids (30 per plant). The maize seedlings infested with 60

aphids had a TT level comparable to control plants, but lower than during the initial period of

experiment (24 h). Continued aphid feeding on Złota Karłowa seedlings (96 h) at a lower den-

sity (30 per plant) resulted in an increase in TT content, whereas a higher abundance of aphids

(60 per plant) did not evoke any alterations compared to the non-infested control plants

(Table 1).

The initial feeding of aphids (24 h) on Płomyk cultivar seedlings did not alter TT content at

a lower density of insects, whereas plants infested by a higher number of females exhibited a

decreased TT level compared to the control, non-stressed maize seedlings. Over the next stud-

ied time points (48 and 72 h), we observed a decrease in TT concentration in infested plants,

Role of thiols and glutathione s-transferase in maize response to a rose-grass aphid
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with the level of depletion being independent of aphid density. After 96 h of infestation, the

lower abundance of aphids did not alter the TT content in maize plants, but a higher density of

aphids reduced TT concentration by about 50% relative to control seedlings (Table 1).

Among tested maize cultivars, Płomyk plants responded with the greatest TT content

depletion (53% decline at 96 h post infestation with 60 aphids) while the lowest reduction of

total -SH was noted for Złota Karłowa (only 7% relative to non-infested plants after 96 h with

60 aphids per plant) (Table 1).

Effects of the rose-grass aphid infestation on the PT content in Z. mays
seedlings

The conducted experiment showed that the PT content of Ambrozja cultivar tissues decreased

after colonization byM. dirhodum, with the exception of a lower density of aphids (30 per

plant) which caused an increase (24 h post-infestation) or did not alter PT content (48 h post-

infestation). PT levels were approximately equal after two periods of the colonization (48 and

72 h) for both studied densities of insects. Maximal depletion of PT was observed after 96 h of

M. dirhodum feeding. The depletion of protein sulfhydryls was dependent on the abundance

of aphids on the tested maize seedlings. Ambrozja plants infested with 60M. dirhodum females

were characterised by a lower level of PT than seedlings treated with 30 insects per plant

(Table 2).

Different results were obtained for Złota Karłowa, where the concentration of PT was

remained unaffected until 72 h of infestation when evaluated at a lower number of aphids. The

colonization of Złota Karłowa plants by a higher number of insects (60 per seedling) did not

evoke any alterations after 24 h, but significantly limited the PT level over the next studied

periods (48 and 72 h). After 96 h, the content of protein–SH groups was limited in the maize

Table 1. Changes in the total thiol content (μmol/g fresh weight) in maize seedlings after the rose-grass aphid infestation.

Cultivar Control (non-infested) Feeding time(h)

24 48 72 96

30 aphids 60 aphids 30 aphids 60 aphids 30 aphids 60 aphids 30 aphids 60 aphids

Ambrozja 8.13±0.68b 9.86±0.24a 7.20±0.18c 8.31±0.35b 6.52±0.28cd 7.06±0.22c 6.44±0.31cd 6.28±0.30d 4.62±0.19e

Złota Karłowa 6.45 ±1.36cd 7.12±0.46bc 7.43±0.33b 7.43±0.29b 6.95±0.40bc 8.20±0.22a 6.74±0.36c 7.26±0.40bc 6.03±0.33d

Płomyk 9.3±0.36a 9.40±0.40a 7.99±0.23bc 7.40±0.18d 7.69±0.31cd 8.28±0.34b 8.28±0.31b 9.20±0.23a 4.41±0.37e

Values are means ± standard deviation (SD) of four independent plant homogenates; different letters in rows denote significant differences according to Fisher’s LSD

test (p<0.001)

https://doi.org/10.1371/journal.pone.0221160.t001

Table 2. Changes in the protein thiol content(μmol/g fresh weight) in maize seedlings after the rose-grass aphid infestation.

Cultivar Control (non-infested) Feeding time (h)

24 48 72 96

30 aphids 60 aphids 30 aphids 60 aphids 30 aphids 60 aphids 30 aphids 60 aphids

Ambrozja 6.35±0.43b 7.37±0.41a 5.71±0.22c 6.20±0.26bc 4.70±0.32d 5.46±0.31c 4.51±0.24d 4.88±0.47d 2.60±0.26e

Złota Karłowa 5.95±0.33a 6.00±0.51a 5.79±0.27ab 5.98±0.51a 5.35±0.31bc 5.95±0.37a 5.06±0.36c 5.12±0.47c 4.1±0.35d

Płomyk 6.47±0.31ab 7.12±0.37a 5.24±0.32de 4.65±0.39e 5.05±0.54de 5.5±c0.30d 5.37±1.01cde 6.08±0.54bc 2.07±0.35f

Values are means ± standard deviation (SD) of four independent plant homogenates; different letters in rows denote significant differences according to Fisher’s LSD

test (p<0.001)

https://doi.org/10.1371/journal.pone.0221160.t002
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tissues for both studied densities ofM. dirhodum, although a stronger depletion was noted in

the seedlings treated with a higher number of aphids (Table 2).

Insect feeding on Płomyk seedlings resulted in a decline in PT content, with the exception

of two aphid treatments (30 aphids per plant at 24h and 96h) when there were no changes in

the concentration of PT in comparison to control plants. The level of protein sulfhydryls

depletion was comparable for two periods of infestation (24 h and 48 h), but the strongest

reduction in PT content was noted at 96 h post-infestation with a higher number of aphids

(Table 2).

The strongest decline in PT was observed in Płomyk seedlings (60 aphids per plant at 96 h)

and the lowest was noted in Złota Karłowa plants (10%-31% decline in relation to the control)

(Table 2).

Effects of the rose-grass aphid infestation on the GSH content in Z. mays
seedlings

The GSH content in Ambrozja plants decreased after colonization byM. dirhodum and the

intensity of alterations depended on the aphid density over the two initial periods of the exper-

iment (24 and 48 h) (Table 3). At these time points, Ambrozja plants colonized by 60 aphids

were characterized by a lower GSH content than seedlings stressed by 30 insects per plant. The

extent of GSH depletion in Ambrozja cultivar was independent of the duration of feeding.

A similar tendency was observed in Złota Karłowa plant tissues, but no dependence

between GSH depletion and aphid density was noted at all studied periods of experiments

(Table 3). Different results were obtained in the case of the Płomyk cultivar, where the GSH

level depleted nearly two-fold after 24 and 48h of infestation for both studied aphid densities

(30 and 60 per plant). Prolonged aphid feeding (72 and 96h)evoked an increase in the GSH

content in relation to earlier periods of infestation, but the GSH level in stressed Płomyk seed-

lings remained lower in comparison to non-infested control plants (Table 3).

Among the tested cultivars of maize, Płomyk seedlings were characterized by the highest

depletion in GSH content after 24 and 48 h post infestation, while Złota Karłowa plants exhib-

ited the largest GSH loss at the end of the experiment (96 h) (Table 3).

Effects of the rose-grass aphid infestation on the GSSG content and the

GSH/GSSG ratio in Z. mays seedlings

It has been revealed that the GSSG amount remained stable in seedlings of two studied culti-

vars (Ambrozja and Złota Karłowa) infested with 30 aphids for 24 and 48h. Prolonged feeding

(72–96 h) at lower aphids’ density was linked to increase in GSSG level in foliar tissues of

Ambrozja and Złota Karłowa cultivars. Furthermore, the lower abundance of aphids did not

Table 3. Changes in the reduced glutathione content (μmol/g fresh weight) in maize seedlings after the rose-grass aphid infestation.

Cultivar Control (non-infested) Feeding time (h)

24 48 72 96

30 aphids 60 aphids 30 aphids 60 aphids 30 aphids 60 aphids 30 aphids 60 aphids

Ambrozja 0.33±0.04a 0.24±0.04b 0.15±0.05c 0.22±0.04b 0.16±0.04c 0.22±0.03b 0.20±0.03bc 0.24±0.02b 0.20±0.02bc

Złota Karłowa 0.45±0.05a 0.36±0.04b 0.28±0.06bc 0.32±0.07b 0.27±0.05bc 0.35±0.05b 0.30±0.06bc 0.30±0.06bc 0.22±0.02c

Płomyk 0.25±0.03a 0.11±0.02c 0.07±0.02c 0.10±0.02c 0.10±0.02c 0.16±0.02b 0.15±0.03b 0.18±0.03b 0.17±0.03b

Values are means ± standard deviation (SD) of four independent plant homogenates; different letters in rows denote significant differences according to Fisher’s LSD

test (p<0.001)

https://doi.org/10.1371/journal.pone.0221160.t003
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evoke significant alternations in the GSSG content in Płomyk seedlings for up to 96 h. The col-

onization of Ambrozja and Złota Karłowa plants by a higher number of insects (60 per seed-

ling) resulted in the elevations in GSSG content at all studied periods of the infestation (24, 48,

72 and 96 h). The intensity of alterations in Ambrozja seedlings was independent on duration

of feeding, whereas Złota Karłowa plants stressed by 60 insects had the highest GSSG level at

96 h post-infestation. Different results were obtained for Płomyk, where initial periods of

aphid feeding (24 and 48 h) at higher density evoked significant increase in GSSG content, but

prolonged feeding (72 and 96h) did not affect any changes in infested plants in comparison

with the control. At 24 and 48 h post-infestation, the highest elevations in GSSG amount were

observed in Płomyk seedlings, whereas the prolongation of aphid feeding (96 h) evoked the

strongest increase in GSSG content in Złota Karłowa plants (Table 4).

The seedlings of three investigated maize cultivars (Ambrozja, Złota Karłowa and Płomyk)

infested withM. dirhodum characterized with significant depletion in the GSH/GSSG ratio in

relation to control plants. The higher decrements in the level of the studied parameter in the

seedlings colonized by 60 aphids were observed. Additionally, Płomyk cultivar had the greatest

depletion in the GSH/GSSG ratio at the initial periods of infestation (24 and 48 h), whereas the

long-term aphids’ feeding led to the largest decrement in the estimated parameter in Złota

Karłowa plants (Table 5).

Effects of the rose-grass aphid infestation on the GST activity in Z. mays
seedlings

The colonization of Ambrozja cultivar by a lower number of aphids (30 per plant) did not

influence GST activity over the two initial periods of the infestation (24 and 48 h). The next

studied periods (72 and 96 h) were associated with a strong increase in GST activity with the

level of induction being comparable at these time points. Infestation by a higher number of

Table 4. Changes in the oxidized glutathione content (μmol/g fresh weight) in maize seedlings after the rose-grass aphid infestation.

Cultivar Control (non-infested) Feeding time (h)

24 48 72 96

30 aphids 60 aphids 30 aphids 60 aphids 30 aphids 6 60 aphids 30 aphids 60 aphids

Ambrozja 0.10±0.01c 0.12±0.01bc 0.16±0.01a 0.12±0.0 bc 0.13±0.01ab 0.13±0.01b 0.14±0.02ab 0.12±0.01b 0.13±0.01ab

Złota Karłowa 0.15±0.01e 0.17±0.01e 0.20±0.01bc 0.16±0.01e 0.20±0.01cd 0.19±0.01d 0.21±0.02bc 0.22±0.01b 0.25±0.02a

Płomyk 0.04±0.01b 0.06±0.01ab 0.07±0.01a 0.06±0.01ab 0.07±0.02a 0.05±0.01ab 0.06±0.01ab 0.04±0.01b 0.05±0.01ab

Values are means ± standard deviation (SD) of four independent plant homogenates; different letters in rows denote significant differences according to Fisher’s LSD

test (p<0.001)

https://doi.org/10.1371/journal.pone.0221160.t004

Table 5. Changes in the GSH/GSSG ratio in maize seedlings after the rose-grass aphid infestation.

Cultivar Control (non-infested) Feeding time (h)

24 48 72 96

30 aphids 60 aphids 30 aphids 60 aphids 30 aphids 6 60 aphids 30 aphids 60 aphids

Ambrozja 3.36±0.42a 2.07±0.32b 0.98±0.27e 1.85±0.09bc 1.21±0.21de 1.76±0.08bc 1.54±0.41cd 1.98±0.16b 1.52±0.11cd

Złota Karłowa 2.97 ±0.28a 2.17±0.35b 1.36±0.30cd 1.99±0.51b 1.40±0.35cd 1.88±0.17bc 1.43±0.31c 1.39±0.33cd 0.89±0.09d

Płomyk 6.17±0.91a 2.02±0.38c 1.03±0.05d 1.62±0.11cd 1.58±0.40cd 3.72±0.95b 2.51±0.24c 4.61±0.67b 3.63±0.75b

Values are means ± standard deviation (SD) of four independent plant homogenates; different letters in rows denote significant differences according to Fisher’s LSD

test (p<0.001)

https://doi.org/10.1371/journal.pone.0221160.t005
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insects (60 per seedlings) resulted in the activation of GST at all studied periods of the experi-

ment (24, 48, 72 and 96 h) and the level of induction was independent of the time of aphid

feeding. No differences in the activity of GST were noted between the two studied densities of

aphids at all time points of the experiment (Table 6).

Infestation of Złota Karłowa plants with the two aphid densities (30 and 60 per plant) did

not alter GST activity after 24 and 48 h of aphid feeding. Changes in the GST activity level at

the next analysed period (72 h) was dependent of the aphid density; a lower number of aphids

did not affect enzyme activity in comparison to the non-infested control, but a higher abun-

dance of insects (60 per seedling) induced GST activity. After 96 h of infestation, GST activity

level was enhanced in Złota Karłowa plants colonized by both densities of aphids (30 and 60

per plant), but a stronger activation was noted for seedlings stressed by moreM. dirhodum
females. It was maximal induction of GST activity during infestation of Złota Karłowa seed-

lings by the rose-grass aphid (Table 6).

The exposure of Płomyk seedlings toM. dirhodum adults caused an increase in GST activity

and the level of induction was comparable after 24 h and 48 h of infestation with both studied

densities of aphids. Prolonged aphid feeding resulted in a progressive induction of GST activ-

ity, which was dependent on the density of aphids only 48 h post infestation. Similarly to the

other cultivars, the maximal enhancement in GST activity in Płomyk seedlings was observed

at the end of experiment (96 h post infestation) (Table 6).

The greatest increases in GST activity were noted in Płomyk seedlings, whereas the lowest

induction was recorded in Złota Karłowa plants, excluding the last period of experiment,

when infestation with 60 aphids caused the least increment in GST activity in Ambrozja seed-

lings (Table 6).

Discussion

Thiols function as antioxidants due to their reductive ability and capacity to react with ROS.

The redox state of thiols plays an important role in the determination of protein structure, reg-

ulation of enzyme activities, oxidative stress control and protection against xenobiotics [47–

48]. The biological significance of thiol compounds is related to the activity of the sulfhydryl

group involved in antioxidant and detoxification reactions [47]. In protein molecules, the

amino acids containing thiol groups and sulphur are the most susceptible sites for ROS action

[23], [49]. ROS can react with cysteine residues to form a sulfenic acid or thiyl radical that can

subsequently lead to the formation of several products, including disulfides [23]. The loss of

protein–SH groups leads to protein misfolding, catalytic inactivation and diminution of anti-

oxidant potential [49]. In plant cells is present a system controlling the dithiol-disulfide inter-

changes of target proteins which consists of thioredoxin (TRX), peroxiredoxin (PRX) and

NADPH-thioredoxin reductase (NTR) [50]. TRXs are oxidoreductases containing two

Table 6. Changes in the activity of glutathione transferase (nmol CDNB conjugated/min/g fresh weight) in maize seedlings after the rose-grass aphid infestation.

Cultivar Control (non-infested) Feeding time(h)

24 48 72 96

30 aphids 60 aphids 30 aphids 60 aphids 30 aphids 60 aphids 30 aphids 60 aphids

Ambrozja 15±1.83c 18±3.83bc 20±2.94ab 19±3.56abc 20±3.37ab 21±3.37ab 21±3.92ab 23±3.74a 21±3.27ab

Złota Karłowa 22±2.58d 24±3.65cd 25±3.83cd 24±3.16cd 27±4.08bcd 25±3.74bcd 30±4.55bc 26±3.74b 35±3.16a

Płomyk 16±1.29e 24±2.58d 24±3.16d 25±3.37cd 28±2.94bcd 29±2.94bc 33±2.94a 32±2.71ab 38±2.93a

Values are means ± standard deviation (SD) of four independent plant homogenates; different letters in rows denote significant differences according to Fisher’s LSD

test (p<0.001)

https://doi.org/10.1371/journal.pone.0221160.t006
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cysteines in the redox active site which catalyse the reduction of disulfide to dithiol in proteins

[50, 51]. This reaction led to the TRXs oxidation, thus TRXs are reduced back by NTR [52].

TRXs return PRXs to their reduced forms to maintain their ability to reduce of peroxides [50].

Exposure to a higher number ofM. dirhodum (60 per plant) caused a depletion of TT in tis-

sues of relatively resistant (Ambrozja) and resistant (Płomyk) cultivars of maize. In the case of

the susceptible variety (Złota Karłowa), we noted a decrease in the TT content only after 96 h

post infestation with higher number of aphids. The strongest depletion of TT was observed in

the tissues of the resistant cultivar Płomyk. Many reports have demonstrated changes in the

concentration of thiol compounds under abiotic stress factors, but little is known about the

role of thiols in host plant responses to biotic stressors of arthropod origin, including sucking-

piercing insects. Bhoomika et al. [53] observed no significant alternations in the TT content of

rice seedlings exposed to aluminum. Kaur et al. [54] revealed that earthworm supplementation

to cadmium-treated soils increased the level of TT in Brassica juncea L. plants. Nemat Alla and

Hassan [55] stated that isoproturon treatment led to large increases in the TT content of maize

plants, but that the thiols were induced only during the first few days and by low doses. Thus,

changes in the concentration of TT in plants seem to depend on the type of stress and the

intensity of oxidative stress. Some metals or herbicides may induce the synthesis of thiols,

whereas biotic stressors (e.g. aphids) can cause the depletion of sulfhydryl compounds.

The results of this study demonstrated that the earlier and more substantial reduction of PT

content afterM. dirhodum infestation occurred in seedlings of the resistant variety Płomyk.

However, the lower abundance of aphids (30 per plant) at 24 h of infestation did not affect the

content of protein-bound sulfhydryl content in Płomyk cultivar leaves. This is opposite to the

results obtained by Bhoomika et al. [53], where aluminum treatment caused a consistent

decline in PT in Al-sensitive rice cultivar, whereas the content of protein sulfhydryls in the

seedlings of Al-tolerant cultivar remained unchanged. The authors suggest that the induction

of ROS production and the oxidative stress induced by aluminum was greater in the Al-sensi-

tive cultivar seedlings than in those of the Al-tolerant cultivar. Aly and Mohamed [32] noted

that the level of protein-bound thiols in Z.mays significantly increased by increasing the cop-

per levels in the growth media. Similar results were obtained by Kaur et al. [54], where earth-

worm supplementation to cadmium-treated soils increased the content of protein sulfhydryls

in B. juncea L. plants. However, a depletion of protein bound–SH groups was seen in many

plants subjected to various types of abiotic stress. The significant reduction of PT (18.9%) was

noted in radish (Raphanus sativus L.) seedlings exposed to zinc stress [56]. Salt stress resulted

in a depletion of protein sulfhydryl groups in embryogenic suspension cultures of Dactylis glo-
merata L. [57]. Gietler et al. [58] revealed that dehydration resulted in a significant decrease in

the protein-bound thiol content in Triticum aestivum L. seedlings; the concentration of pro-

tein sulfhydryls was more severely reduced in the sensitive seedlings than in the tolerant ones.

GSH is a major non-enzymatic antioxidant, whose function is mediated by the cysteinyl

thiol group that, upon oxidation, forms GSSG [33]. In the current work the infestation of Z.

mays plants by a higher number of aphids (60 per plant) caused a decrease in GSH in all stud-

ied cultivars, but the resistant Płomyk cultivar was characterized by the strongest reduction in

GSH level at initial periods of aphid infestation. Together with GSH depletion, we observed

explicit increase in GSSG content and decrement in the GSH/GSSG ratio, what indicates

the induction of oxidative stress in maize plants stressed by M. dirhodum. Kar et al. [41] stated

that leaves of Terminalia arjuna Arjun infested with sap-sucking Trioza fletcheri Crawford

responded with a significant depletion in GSH levels, in relation to the non-infested control.

Furthermore, the GSH content substantially decreased in the leaves of cabbage (Brassica olera-
cea L.) infested with the cabbage aphid Brevicoryne brassicae L., compared to healthy, unin-

fested cabbage leaves [59]. Sytykiewicz [27] demonstrated a gradual depletion in the GSH
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content in tissues of two tested maize genotypes (relatively resistant Ambrozja and susceptible

Tasty Sweet) 8, 12 and 24 hours post-infestation with S. avenae and R. padi. The aphid-infested

seedlings of the more resistant maize genotype (Ambrozja cultivar) reacted with a greater

progressive depletion in GSH content. Moreover, a gradual increase in the GSSG level in

Ambrozja and Tasty Sweet from 2 to 24 h post infestation was revealed, but prolonged aphid

feeding was linked to significant GSSG elevation in Tasty Sweet seedlings and minor alter-

ations in Ambrozja plants [27]. Additionally, the aphid-infested leaves of more resistant maize

genotype (Ambrozja) responded an earlier and higher decrement in the GSH/GSSG ratio in

relation to the susceptible variety (Tasty Sweet) [27]. This tendency was confirmed in our

study, where the seedlings of resistant cultivar (Płomyk) stressed byM. dirhodum females,

exhibited the lowest the GSH/GSSG ratio over the two initial periods of the experiment. On

the contrary, the total glutathione pool of potatoes was enhanced after 48 h of infestation of

potato by the peach-potato aphidMyzus persicae Sulzer, while the GSH/GSSG ratio remained

unchanged [60]. Similarly, Liu et al. [61] demonstrated that the levels of GSH and GSSG

increased at the feeding sites in resistant wheat seedlings after Hessian fly (Mayetiola destructor
Say) infestation, but the GSH/GSSG ratio in infested plants was unaltered in comparison with

non-infested (control) seedlings. According to these authors, the level of total glutathione and

the GSH/GSSG ratio did not change in infested susceptible plants. Many reports have demon-

strated a decrease/increase in GSH concentrations under abiotic stress. Hou et al. [62] evi-

denced no significant differences in GSH contents between shoots and roots of maize

seedlings under mercury stress, but under vanadium-mercury combined stress the GSH con-

tent decreased with increasing Hg concentration. Upon salinity or osmotic treatment, the tran-

scripts of genes related to the GSH biosynthesis were significantly increased in transgenic wild

type of Arabidopsis thaliana L. [63]. During heat stress, GSH content in maize seedlings

decreased, but NAHS-treated plants maintained higher GSH level than non-treated controls.

Additionally, GSSG content rose up with duration of heat stress, but NAHS-treated maize

plants maintained lower GSSG level in comparison to non-treated seedlings [64]. Cadmium

remarkably increased the content of total GSH and reduced GSH in maize seedlings in com-

parison to control plants [65]. GSH level in the shoot and roots of Z.mays was elevated by salt

stress, with higher GSH content in saline/proline-treated seedlings compared with saline/

water-treated plants [66].

A reduced GSH level in mitochondria favours accumulation of ROS, which may induce

programmed cell death events [31]. In Nicotiana tabacum L. plants infected with an incompat-

ible strain of tobacco mosaic virus (TMV) a decrease in GSH content in mitochondria was

accompanied by the development of necrotic lesions [67]. In our study, the highest depletion

in TT, PT and GSH contents were noted in the resistant Płomyk cultivar and the lowest were

noted in the susceptible variety Złota Karłowa. The results of an earlier study demonstrated a

more marked elevation in superoxide anion radicals (O2¯) in the tissues of Ambrozja seedlings

(relatively resistant cultivar) in comparison to those of Tasty Sweet (susceptible cultivar) [19].

Additionally, Ambrozja plants infested with S. avenae and R. padi showed a more significant

decrease in total antioxidant capacity towards DPPH (1,1-diphenyl-2-picnylhydrazyl) radicals,

in relation to the susceptible Tasty Sweet cultivar [68]. It seems likely that the stronger deple-

tion of thiol compounds in resistant varieties of Z.maysmarkedly depressed the total antioxi-

dant capacity and favored the accumulation of O2¯ in infested maize seedlings.

GSH may directly react with ROS and may be utilised as substrate for reactions catalysed by

GST or by GPX. Some GST isoforms exhibit peroxidative activity associated with a reduction

of lipid peroxides and the removal of lipid peroxidation products [69]. The performed analysis

indicated thatM. dirhodum infestation elevated GST activity in maize seedlings. The highest

and earliest inductions of the enzyme were noted in aphid-stressed Płomyk plants. This is in
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line with results obtained by Sytykiewicz [27], where earlier and more substantial enhance-

ment of GST activity was revealed in Ambrozja (relatively resistant) plants infested with cereal

aphids in comparison to Tasty Sweet (susceptible) plants. According to this author, maximal

increase in enzyme activity occurred after 24 h post-infestation for both studied maize geno-

types. Furthermore, the expression of gst9, gst11, gst16, gst31 and gst38 genes was upregulated

in maize seedlings in response to stress caused by S. avenae and R. padi [27]. Ambrozja plants

were characterised by more profound increments in the levels of gst transcript in comparison

to the Tasty Sweet genotype [19]. A similar pattern was observed by Botha et al. [70] for T. aes-
tivum after infestation with Diuraphis noxiaMordvillko, where the activity of GST was signifi-

cantly higher in the resistant near-isogenic line in relation to the susceptible and tolerant lines.

Similarly to the results of the above-mentioned studies, Moran et al. [71] proved that the feed-

ing ofM. persicae on Arabidopsis thaliana L. resulted in nearly three-fold and five-fold eleva-

tions in the expression of gst1 and gst11 genes, respectively. Stotz et al.[72] elucidated that the

diamondback month (Plutella xylostella L.) feeding on the rosette leaves of A. thaliana wild-

type led to significant alternations in the expression of gst2 and gst6 genes compared to the

non-infested control. GST activity was found to be higher in roots of maize colonized by

Fusarium verticilloides Saccardo as compared to non-colonized plants [73]. The leaves of rice

late-infested with mite Schizotetranychus oryzae Rossi de Simons exhibited higher GST activity

than control leaves [74]. Alternations in GST activity have been demonstrated under the influ-

ence of abiotic stress factors. Sytykiewicz [38] revealed that four-days of juglone treatment

stimulated the transcriptional activity of GstI in maize seedlings compared to the control, but

after longer exposure (6 and 8 days) the gene expression responses were lower in relation to

non-stressed plants. In contrast, isoproturon significantly reduced GST isoform activities

(GSTCDNB, GSTALA and GSTMET), but had no effect on GSTATR in maize plants [55]. It is pro-

posed that the induction of GST activity is involved in limiting the cell death events resulting

from the elicitation of the hypersensitive type of resistance to pathogenic infections [67], [75–

78]. GST may suppress necrosis by detoxifying lipid hydroperoxides produced by the peroxi-

dation of membranes [79].

In conclusion, our experimental results indicate, that the defense mechanisms of maize

plants againstM. dirhodum attacks are based on the metabolism of thiol compounds, which is

evidenced by alterations in the level of total thiols, protein-bound thiols and GSH, as well as by

the activity of GST. The fluctuations in thiol content and GST activity were dependent on the

maize variety, the number of aphids and the duration ofM. dirhodum feeding. The strongest

modulation of the antioxidant system related to sulfhydryl compounds was noted in the resis-

tant variety, Płomyk, which highlights the role of thiols in the resistance of maize genotypes to

aphids.
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