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Macrophage Giant Cells

Multinuclear macrophage giant cells were described by Evans 
et al. in 1914 as giant cells associated with tuberculosis.1 
Multinuclear giant cells were also observed in association with 
tumors and foreign materials,2,3 and their multi-nucleation was 
considered to be the result of the cell–cell fusion of mono-nuclear 
cells rather than abnormal cell division with a lack of cytokine-
sis.3 The formation of multi-nuclear giant macrophages by cell–
cell fusion was experimentally proved by Aronson and Elberg in 
1962.4 Osteoclast cell–cell fusion was described by Jee, Nolan, 
and Tonna in 1963.5,6

Macrophage Fusion and Cytokines

Macrophage giant cell formation in vitro was attempted by 
Galindo in 1973.7 Galindo treated normal rabbit alveolar mac-
rophages with supernatants of Bacillus Calmette–Guerin 
(BCG)-sensitized lymph node cells to promote multi-nuclear 
macrophage formation,7 and stated that macrophage fusion fac-
tor (MFF) was released from sensitized T cells upon stimulation 
with a specific antigen.8 In 1988, McInnes and Rennick reported 
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Macrophages play a pivotal role in host defense against 
multiple foreign materials such as bacteria, parasites and 
artificial devices. Some macrophage lineage cells, namely 
osteoclasts and foreign body giant cells (FBGCs), form multi-
nuclear giant cells by the cell–cell fusion of mono-nuclear cells. 
Osteoclasts are bone-resorbing cells, and are formed in the 
presence of RANKL on the surface of bones, while FBGCs are 
formed in the presence of IL-4 or IL-13 on foreign materials such 
as artificial joints, catheters and parasites. Recently, fusiogenic 
mechanisms and the molecules required for the cell–cell 
fusion of these macrophage lineage cells were, at least in part, 
clarified. Dendritic cell specific transmembrane protein (DC-
STAMP) and osteoclast stimulatory transmembrane protein 
(OC-STAMP), both of which comprise seven transmembrane 
domains, are required for both osteoclast and FBGC cell–cell 
fusion. STAT6 was demonstrated to be required for the cell–cell 
fusion of FBGCs but not osteoclasts. In this review, advances in 
macrophage cell–cell fusion are discussed.
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that multi-nuclear macrophages were formed by IL-4,9 and that 
MFF was likely to be IL-4.

From then, multi-nuclear giant macrophage formation has 
been promoted by IL-4 or other cytokines such as IL-13 and their 
combination, such as IL-4,9 IL-13,10 GM-CSF plus IL-4, IL-3 
plus IL-4, M-CSF plus IL-4, and M-CSF + IL-13.11-15

RANKL and Osteoclastogenesis

In vitro osteoclast formation was established by a co-culture sys-
tem of osteoblastic and osteoclast progenitor cells.16 Osteoclasts 
were formed on the osteoblastic cells in the presence of osteotropic 
factors such as 1,25(OH)

2
D

3
, and the direct interaction of osteo-

blastic and osteoclast progenitor cells was reportedly required 
for osteoclast formation.16 Thus, some membrane-bound factors 
expressed in osteoblasts were considered to be required for osteo-
clast formation.

Osteoclast formation was reportedly negatively regulated 
by osteoclastogenesis inhibitory factor (OCIF)/osteoprotegerin 
(OPG), a soluble receptor belonging to the TNFα receptor 
superfamily.17,18 Since OCIF/OPG inhibited osteoclast forma-
tion by binding to 1,25(OH)

2
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3
-treated osteoblastic cells, the 

membrane-bound osteoclastogenesis inducing factor expressed 
in osteoblastic cells was considered to be the ligand of OCIF/
OPG.19 Indeed, the cytokine, which was required for osteoclas-
togenesis and was identified as the OCIF/OPG binding ligand: 
osteoclast differentiation factor, ODF, and osteoprotegerin 
ligand, OPGL,20,21 was a membrane-bound ligand belonging to 
the TNF superfamily, and the expression was stimulated upon 
1,25(OH)
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3
 treatment. ODF/OPGL was now called receptor 

activator of nuclear factor kappa B ligand (RANKL) since ODF/
OPGL was identical to RANKL, which was identified before the 
cloning of ODF/OPGL.22 RANKL was found to be expressed in 
T cells and activate dendritic cells through its receptor, RANK, 
expressed in dendritic cells.23 Although RANKL was a mem-
brane-bound ligand, as expected, the soluble form of RANKL 
also actively induced osteoclast differentiation, and osteoclasts 
were formed in the presence of the soluble form of RANKL and 
macrophage colony stimulating factor (M-CSF), which is also an 
essential cytokine for osteoclastogenesis,23 without osteoblastic 
cells.20

Identification of DC-STAMP: An Essential Cell–Cell 
Fusion Regulator of Macrophages and Osteoclasts

The identification of RANKL enabled us to screen for osteoclast-
specific genes since osteoclasts were formed without osteoblastic 
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in vitro.14 Since osteoclast differentiation marker expression in 
OC-STAMP-deficient mono-nuclear osteoclasts was equivalent 
to those with wild-type multi-nuclear osteoclasts, OC-STAMP 
was considered specifically required for osteoclast cell–cell fusion 
rather than differentiation as DC-STAMP.14 OC-STAMP was 
also demonstrated to be required for FBGC cell–cell fusion.14 
Recently, OC-STAMP antibody was demonstrated to inhibit 
osteoclast and FBGC cell–cell fusion.37 Thus, DC-STAMP and 
OC-STAMP were both required for osteoclast and FBGC cell–
cell fusion.

STATs and Macrophage Cell–Cell Fusion

Signal transducer and activator of transcription (STAT) fam-
ily molecules were found to be required for the transduction 
of cytokine signals. STATs consist of seven family members, 
STAT1–4, 5A, 5B, and 6, and each STAT has its own cytokines 
to transduce their signals. Among them, STAT6 plays a pivotal 
role in transducing signals of IL-4 and IL-13, both of which pro-
mote FBGC formation.9-15 Thus, STAT6 was suggested to play 
a role in macrophage cell–cell fusion. Indeed, Moreno et al. 
reported that STAT6 was required for FBGC cell–cell fusion, 
and that STAT6-deficient mice showed the marked inhibition of 
FBGC multi-nucleation.38 They demonstrated that expressions 
of DC-STAMP and E-cadherin were significantly inhibited in 
STAT6-deficient FBGCs.38 We also found that STAT6-deficient 
mice exhibited significant inhibition of multi-nuclear FBGC for-
mation in vivo and in vitro, and the expressions of DC-STAMP 
and OC-STAMP were both significantly inhibited in STAT6-
deficient FBGCs.15 Thus, DC-STAMP and OC-STAMP were 
considered the targets of IL-4-STAT6 signals.15 In addition, since 
FBGC formation was promoted in the presence of GM-CSF plus 
IL-4, we searched for activated molecules under stimulation of 
GM-CSF, and found that STAT1 was activated by GM-CSF.15 
STAT1-deficient cells showed accelerated cell–cell fusion in 
FBGCs, suggesting that STAT1 was considered an inhibitor of 
FBGC multi-nucleation.15 STAT1 and STAT6 reportedly recip-
rocally regulate each other in T cells.39 Interestingly, STAT1 was 
strongly activated in STAT6-deficient FBGCs in the presence 
of GM-CSF + IL-4, indicating that STAT6 was the inhibitor of 
STAT1 in FBGCs, and that IL-4 induced STAT6 activation fol-
lowed by STAT1 suppression was required for FBGC formation 
(Fig. 1).15 Indeed, STAT1-deficiency was sufficient to promote 
cell–cell fusion in FBGCs without IL-4.15 In contrast, neither 
STAT1 nor STAT6 were required for osteoclast cell–cell fusion.15

Future Perspectives Regarding JAK-STAT  
and Macrophage Fusion

Various factors discussed below were identified and demonstrated 
to play a role in cell–cell fusion of osteoclasts or macrophages 
or both; however, their regulation by STATs was not fully dem-
onstrated. Since IL-4/STAT6-STAT1 signals are specifically 
required for macrophage cell–cell fusion and DC-STAMP/
OC-STAMP expression, the other molecules required for macro-
phage cell–cell fusion are likely to be regulated by STAT6-STAT1.

cells. We further established a pure osteoclast culture system 
by culturing purified osteoclast progenitor cells in the presence 
of M-CSF and a soluble form of RANKL (hereafter termed 
RANKL).24-26 We found that osteoclast cell–cell fusion was pro-
moted by RANKL stimulation,27 and thus, we tried to isolate osteo-
clast fusion molecules by subtractive screening between M-CSF + 
RANKL-induced multi-nuclear osteoclasts and M-CSF-induced 
mono-nuclear macrophages.13 We identified dendritic cell specific 
transmembrane protein (DC-STAMP), a seven transmembrane 
protein, as a highly expressed molecule in osteoclasts with this 
screening, and DC-STAMP was not expressed in M-CSF-treated 
mono-nuclear macrophages but was strongly upregulated by stim-
ulation with RANKL.13 DC-STAMP was originally identified in 
dendritic cells as DC-STAMP and IL-4-stimulated macrophages 
as IL-4-induced (FIND), respectively.28,29 DC-STAMP was also 
identified in osteoclasts and implicated in osteoclast differentia-
tion.30 We generated DC-STAMP-deficient mice, and found that 
they exhibited complete abrogation of multi-nuclear osteoclast 
formation in vivo and in vitro.13 Since tartrate resistance acid 
phosphatase (TRAP), a marker of osteoclasts, or other osteo-
clast differentiation markers such as Cathepsin K were equally 
expressed in DC-STAMP-deficient mono-nuclear osteoclasts as 
multi-nuclear wild-type osteoclasts, DC-STAMP was consid-
ered specifically required for osteoclast cell–cell fusion rather 
than differentiation.13 Osteoclast cell–cell fusion was reportedly 
promoted in heterogeneous osteoclast precursors expressing low 
and high levels of DC-STAMP.31 DC-STAMP expression in 
osteoclasts was promoted by nuclear factor of activated T cells 
1 (NFATc1),13,32 an essential transcription factor for osteoclas-
togenesis.33 DC-STAMP was also demonstrated to be promoted 
by vitamin E-induced MITF, or tal1-PU.1/MITF pathway in 
osteoclasts.34,35 Similar to osteoclasts, multi-nuclear FBGC for-
mation was also completely inhibited in DC-STAMP-deficient 
mice in vivo and in vitro; thus demonstrating that DC-STAMP 
was required for both osteoclast and FBGC cell–cell fusion.13 
DC-STAMP expression in FBGCs was regulated by NFκB.13

Identification of OC-STAMP

Since DC-STAMP was identified as specifically expressed 
in RANKL-induced multi-nuclear osteoclasts but not in 
M-CSF-induced mono-nuclear macrophages, we overexpressed 
DC-STAMP in M-CSF-induced macrophages and ana-
lyzed whether cell–cell fusion was induced in DC-STAMP-
overexpressed macrophages without RANKL.36 However, 
cell–cell fusion was not induced in DC-STAMP-overexpressed 
macrophages without RANKL, suggesting that some molecules 
other than DC-STAMP were required for osteoclast cell–cell 
fusion.36 Then, we tried to isolate the next molecules for osteo-
clast cell–cell fusion, and identified osteoclast stimulatory trans-
membrane protein (OC-STAMP) in osteoclasts.14 Similarly to 
DC-STAMP, OC-STAMP was a seven transmembrane protein, 
and was not expressed in M-CSF-treated macrophages but was 
strongly upregulated with RANKL stimulation.14 We gener-
ated OC-STAMP-deficient mice, and found that they exhibited 
complete abrogation of osteoclast cell–cell fusion in vivo and 
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MFR or the soluble form of the extracellular domain of MFR 
blocked the cell–cell fusion of macrophages.60,61 CD47 is a ligand 
of MFR, and it was also implicated in macrophage cell–cell 
fusion.62 DNAX activating protein of 12 kD (DAP12), DAP12 
associated receptor triggering receptor expressed by myeloid 
cells 2 (TREM2), and the downstream signaling molecule Syk 
were shown to be required for IL-4-induced macrophage cell–
cell fusion by using DAP12-knockin and knockout mice, Syk-
knockout mice and RNAi against DAP12 and TREM2.63 Matrix 
metalloprotease 9 (MMP9) and scavenger receptor CD36 were 
shown to play a role in macrophage cell–cell fusion by using their 
blocking antibodies and MMP9- or CD36-deficient mice.64,65 
Rac inhibitor NSC23766 or Rac1 knockdown by siRNA resulted 
in attenuation of macrophage cell–cell fusion.66
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STAT6 is activated by IL-4 and IL-13, both of which promote 
macrophage fusion, via JAK1 and JAK3.40 Meanwhile, STAT1 
is activated by interferon gamma via JAK1 and JAK2.40 JAK1-
deficient mice exhibited impaired lymphoid development,41 while 
JAK2-deificient mice presented with no definitive erythropoi-
esis.42,43 JAK3-deficient mice exhibited defective lymphoid devel-
opment and dysregulated myelopoiesis.44-46 However, the roles of 
JAKs in macrophage fusion were not demonstrated. The mol-
ecules demonstrated to play a role in osteoclast or macrophage 
cell–cell fusion are listed in Tables 1, 2, and 3. It is still possible 
that other STATs contribute to osteoclast and macrophage cell–
cell fusion, and further studies will uncover the molecular mech-
anisms of osteoclast and macrophage cell–cell fusion by STATs.

Molecules for both osteoclast and macrophage cell–cell 
fusion. Meltrin-α, also called A disintegrin and metalloprotease 
12 (ADAM12), was demonstrated to play a role in both osteo-
clast and macrophage cell–cell fusion by using anti-sense oligo.47 
The d2 isoform of vacuolar (H[+]) ATPase (v-ATPase) V(0) 
domain (Atp6v0d2) was demonstrated to play a role in cell–cell 
fusion of both osteoclasts and FBGCs, and Atp6v0d2-deficient 
cells showed marked inhibition of osteoclast and FBGC cell–
cell fusion.48 Monocyte chemoattractant protein 1 (MCP1, also 
called chemokine C–C motif ligand 2, CCL2) and its receptor 
chemokine C–C motif receptor 2 (CCR2) were implicated in 
macrophage and osteoclast cell–cell fusion.49 Meanwhile, MCP1/
CCR2 was demonstrated to play a role in osteoclast differen-
tiation rather than cell–cell fusion.50-52 ADAM8 was reportedly 
highly expressed in osteoclasts, and overexpression of ADAM8 in 
transgenic mice under a control of TRAP-promoter resulted in 
increased multi-nucleation of osteoclasts and bone loss.53

Molecules for osteoclast cell–cell fusion. E-cadherin, inter-
cellular adhesion molecule-1 (ITAM1), and leukocyte function-
associated antigen-1 (LFA1) were demonstrated to be involved 
in osteoclast cell–cell fusion and maturation by using a neutral-
izing antibody.54-56 CD200-deficient mice exhibited inhibition 
of osteoclast cell–cell fusion and an increased bone mass.57 SH3 
and PX domains 2A (SH3PXD2A, also called Tks5), a substrate 
of c-Src, was demonstrated to play a role in osteoclast cell–cell 
fusion downstream of phosphoinositide 3-kinase and Src.58

Molecules for macrophage cell–cell fusion. Interferon-
gamma (IFNγ) and intercellular adhesion molecule-1 (ICAM1) 
were reportedly involved in macrophage cell–cell fusion, and 
monoclonal antibodies against LFA1 or ICAM-1 inhibited the 
multi-nuclear macrophage formation.59 Macrophage fusion 
receptor (MFR: also called SHPS-1), belonging to the immuno-
globulin (Ig) superfamily, was highly expressed in macrophages 
at the stage of cell–cell fusion, and monoclonal antibodies against 

Figure 1. Schematic signaling for macrophage cell–cell fusion. GM-CSF 
activates STAT1 through the GM-CSF receptor (GM-CSFR), while IL-4 ac-
tivates STAT6 through IL-4 receptor (IL-4R). Activation of STAT6 followed 
by STAT1 inhibition is required for the expression of DC-STAMP and 
OC-STAMP, both of which are essential molecules for macrophage and 
osteoclast cell–cell fusion. STAT6 is not involved in osteoclast cell–cell 
fusion.
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