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Abstract

By focusing on high experimental control and realistic presentation, the latest research in

expertise assessment of soccer players demonstrates the importance of perceptual skills,

especially in decision making. Our work captured omnidirectional in-field scenes displayed

through virtual reality glasses to 12 expert players (picked by DFB), 10 regional league inter-

mediate players, and13 novice soccer goalkeepers in order to assess the perceptual skills

of athletes in an optimized manner. All scenes were shown from the perspective of the

same natural goalkeeper and ended after the return pass to that goalkeeper. Based on the

gaze behavior of each player, we classified their expertise with common machine learning

techniques. Our results show that eye movements contain highly informative features and

thus enable a classification of goalkeepers between three stages of expertise, namely elite

youth player, regional league player, and novice, at a high accuracy of 78.2%. This research

underscores the importance of eye tracking and machine learning in perceptual expertise

research and paves the way for perceptual-cognitive diagnosis as well as future training

systems.

1 Introduction

Along with physical performance, perceptual-cognitive skills play an increasingly important

role as cognitive performance factors in sport games [1–4]. In perceptual research examining

the underlying processes of these skills, subjects are typically placed in a situation where they

have to react while their behavior is being recorded and subsequently analyzed. Such behavior

can be assigned to a class to provide information about performance levels [5, 6]. Many studies

in sports, and soccer in particular [1–4, 7–9], have shown that athletes in a high performance

class have a higher level of perceptual-cognitive skill leading to greater success in their respec-

tive sports. However, this research still faces challenges, especially related to experimental con-

trol and a representative presentation of the situation being studied [10]. Furthermore, the

potential of novel technologies such as eye tracking to assess the underlying perceptual-cogni-

tive processes has not yet been fully exploited, particularly in regard to the analysis of complex

eye-tracking data [11]. In this work, we research how to handle and analyze large and complex

eye-tracking data in an optimized manner. We achieve this by applying common supervised
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machine learning techniques to the gaze behavior of soccer goalkeepers during a decision-

making task in build-up game situations that are presented as 360˚-videos in a consumer-

grade virtual reality headset.

The latest sports-scientific expertise research shows that, when it comes to decision-mak-

ing, experts have more efficient gaze behavior because they apply an advanced cue utilization

to identify and interpret relevant cues [12]. This behavior enables experts to make more effi-

cient decisions than non-experts, e.g. in a situation such as a goalkeeper facing game build-up.

From both a scientific and practical sports perspective, factors that lead to successful percep-

tion and form expertise are of particular importance. To measure perception based expertise, a

diagnostic system that recognizes expertise and provides well-founded information about the

individual attributes of perception is needed. These attributes are usually considered in isola-

tion allowing for the specific recognition of their influence on expertise. To permit athletes to

apply their natural gaze behavior, the experimental environment is important. However, one

of the main problems in perceptual cognitive research persists: realism vs. control. In a meta

review of more than 60 studies on natural gaze behavior from the last 40 years, Kredel et al.

[10] postulate that one of the main challenges in perception research lies in a trade-off between

experimental control and a valid, realistic presentation. Diagnostic and training models are

often implemented or supported by digital means.

This is nothing new. In sports psychological research, new inventions in computer science

such as presentation devices (i.e. CAVE [13], virtual reality head-mounted displays

(VR-HMD) [14]), interface devices (i.e. virtual reality trackers, leap motion etc.), or biometric

feature recognition devices (i.e. eye tracker [15]) are used more and more often. As a new

upcoming technology, virtual reality (VR) devices are used more frequently as stimulus pre-

sentation and interaction devices. Accordingly, a fundamental aspect of perception research is

a highly realistic presentation mode, which allows for natural gaze behavior during diagnostic.

VR technology makes this possible by displaying realistic, immersive environments. However,

this strength, facilitating natural gaze behaviour, comes less from the VR technology itself.

According to Gray [16], the degree to which the perceptual-cognitive requirements of the real

task are replicated in such environments depends on psychological fidelity. Next to immersion

and presence, Harris et al. [17] propose the expansion of a simulation characterization into a

typology of fidelity, also containing psychological fidelity, to determine the realism of a simula-

tion. VR offers an immersive experience through the use of 4k 360˚video in HMDs. This tech-

nology offers a higher level of realism than other systems, such as CAVE systems, by providing

higher levels of psychological fidelity [16, 17]. VR is therefore a popular and optimal tool for

perception research. Bideau et al. [18] summarize further advantages of VR in their work.

Their main contribution, however, is their immersive virtual reality that elicits expert

responses similar to those in the real world.

In a narrower sense, VR is based on computer generated imagery (CGI). One advantage of

fully CGI-based environments is the potential of user interaction with the environment, which

presumably increases the immersive experience. On the other hand, fully CGI-based environ-

ments contain moving avatars that are not always natural in appearance and often hide envi-

ronmental influences. This might prevent high immersion and could influence the

participant’s gaze behaviour. Therefore, we chose a realistic environment with 360˚ stimuli in

our work to provide a nearly natural environment that does not influence the participant’s

gaze behaviour. As this work focuses on the cognitive processes of decision-making, we con-

centrate less on realistic interaction methods.

Especially noteworthy are the developments of VR devices with regard to integrated mea-

suring devices. More and more devices integrate eye trackers directly. This, in combination

with a photo-realistic environment in VR glasses, allows for the measurement of almost
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optimal user gaze behavior while also exhibiting highly realistic stimuli. Eye trackers provide a

sound foundation with high temporal and spatial resolution for the research of perceptual pro-

cesses. The combination of VR and high speed eye tracking allow for the collection of a mas-

sive amount of highly complex data. The high quality eye images and freedom of movement

inherent in a mobile eye tracker in combination with the high speed of a remote eye tracker,

control over the stimulus in lab setting (VR), and realism of in-situ stimuli by omnidirectional

videos, leads to a highly complex outcome. Analysis of such data is a particular challenge, indi-

cating the need for new analysis methods. As we want to infer underlying mechanisms of per-

ceptual-cognitive expertise, tracking eye movements is our method of choice in this work.

Generally, perceptual research focuses on eye tracking because, as a direct measuring method,

it allows for a high degree of experimental control [19–22]. Besides a realistic presentation and

high degree of experimental control, VR can also be used to model the perception [23] of ath-

letes and thus creates a diagnostic system. A diagnostic system has the ability to infer the cur-

rent performance status of athletes to identify performance-limiting deficits, an interesting

provision of insight for the athletes and their coaches as well. Most importantly, such a diag-

nostic system forms the basis for an adaptive, personalized, and perceptual-cognitive training

system to work on the reduction of these deficits.

Thus far, eye tracking studies have focused on either in-situ setups with a realistic presenta-

tion mode and mobile eye trackers (field camera showing the user’s field of view) or on labora-

tory setups with high experimental control using remote eye trackers [24–29]. Since mobile

eye trackers are rarely faster than 100-120 Hz, saccades and smooth pursuits cannot be prop-

erly detected at such a speed. Investigations in an in-situ context are, therefore, limited to the

observation of fixations. Fixations are eye movement events during which the eye is focused

on an object for a certain period of time, and thus projects the object onto the fovea of the eye,

so that information about the object can be cognitively processed. The calculation of fixations

with such a slow input signal leads to inaccuracies in the recognition of the start and end of a

fixation. Only limited knowledge can be gained using such eye trackers because additional

information contained in other eye events, such as saccades and smooth pursuits, cannot be

correctly computed. This prevents the use of these eye trackers as robust expert measurement

devices. Saccades are the jumps between fixations that allow the eye to realign. They can be as

fast as 500˚/s. Smooth pursuits are particularly significant in ball sports because they are fixa-

tions on moving objects i.e. moving players. However, especially in perception studies in soc-

cer in VR-like environments, slow eye trackers with about 25-50 Hz are primarily used [30–

33]. This speed limits the significance of these studies to fixation and attention distribution in

areas of interest (AOI). Aksum et al. [32], for example, used the Tobii Pro Glasses 2 with a field

camera set to 25 Hz. Therefore, only fixations or low speed information were available and

there was no equal stimuli for comparable results between participants. In a review of 38 stud-

ies, McGuckian et al. [34] summarized the eye movement feature types used to quantify the

visual perception and exploration behaviour of soccer players. Except for Bishop et al. [35], all

studies were restricted to fixations thus restricting the knowledge that could be gained by

studying other eye movement features. The integration of high speed eye trackers into VR

glasses combines both strengths: high experimental control of a high speed eye tracker and a

photo-realistic stereoscopic VR environment.

As eye trackers are used more frequently and more accurate, faster, and ubiquitous devices

become available, huge amounts of precise data from fixations, saccades, and smooth pursuits

can be generated. This, however, cannot be handled in entirety utilizing previous analysis strat-

egies. Machine learning has the power to deal with large amounts of data. In fact, machine

learning algorithms typically improve with more data and allow, by publishing the model’s

parameter set, fast, precise, and objective reproducible ways to conduct data analysis. Machine
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learning methods have already been successfully applied in several eye tracking studies. Exper-

tise classification problems in particular can be solved using such methods as shown by Cast-

ner et al. in dentistry education [19, 36] and Eivazi et al. in microsurgery [20, 37–39]. Machine

learning techniques are the current state-of-the-art for expertise identification and classifica-

tion. Both supervised learning algorithms [36, 37] and unsupervised methods or deep neural

networks [19] have shown their proclivity for this kind of problem solving. This combination

of eye tracking and machine learning is especially well suited when it comes to subconscious

behaviors such as eye movements features. These methods have the potential to greatly benefit

the discovery of different latent features in gaze behavior and their relation and significance to

expertise classification.

In this work, we present a model for the recognition of soccer goalkeepers’ expertise when

making decisions in build-up game situations by means of machine learning algorithms that

rely solely on eye movements. We also present an investigation of the influence of single fea-

tures on explainable differences between single classes. This pilot study is meant to be a first

step towards a perceptual-cognitive diagnostic system and a perceptual-cognitive virtual reality

training system, respectively.

2 Method

2.1 Experimental setup

In this study, we employed an HTC Vive, a consumer-grade virtual reality (VR) headset. Gaze

was recorded through integration of the SMI high speed eye tracker at 250 Hz. The SteamVR

framework is an open-source software that interfaces common real-time game engines with

the VR glasses to display custom virtual environments. We projected omnidirectional 4k foot-

age on the inside of a sphere that envelopes the user’s field of view, leading to high immersion

in a realistic scene.

2.1.1 Stimulus material. We captured the 360˚-footage by placing an Insta Pro 360 (360˚-

camera) on the soccer field keyed to the position of the goalkeeper. Members of a German

First League’s elite youth academy were playing 26 different 6 (5 field players + goalkeeper)

versus 5 match scenes on one half of a soccer field. Each scene was developed with a training

staff team from the German Football Association (DFB) and each decision was ranked by this

team. There were 5 options (teammates) plus one “emergency” option (kick out). For choosing

the option rated the best by the staff team because it ensured continuation of the game, the par-

ticipant earned 1 point. All other options were rated with 0 points. Conceptually, all videos

had the following content: The video starts with a pass by the goalkeeper to one of the team-

mates. The team passes the ball a few times until the goalkeeper (camera position) receives the

last return pass. The video stops after this last pass and a black screen is presented. The partici-

pant now has 1.5 seconds time to report which option they’ve decided on and the color of the

ball that was printed on the last return pass (to force all participants to recognize the last return

pass realistically).

2.1.2 Participants. We collected data from 12 German expert youth soccer goalkeepers

(U-15 to U-21) during two youth elite goalkeeper camps. The data from 10 intermediates was

captured in our laboratory and comes from regional league soccer goalkeepers (semi-profes-

sional). Data from 13 novices came from players with up to 2 years of experience, no participa-

tion in competitions, and no training on a weekly basis. The experts train 8.83 hours per week

and are an average age of 16.6 years old. They have actively played soccer for about 9 years

which is significantly more than the novices (1.78 years), but less than the intermediates (15.5

years). This may be a result of their age difference. The intermediates are 22 years old on
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average, but train nearly half the number of hours per week as compared to the experts. Char-

acteristics of the participants can be seen in Table 1.

2.1.3 Procedure. The study was confirmed by the Faculty of Economics and Social Sci-

ences Ethic Committee of the University of Tübingen. After signing a consent form to allow

the usage of their data, we familiarized the participants with the footage.

The study contained two blocks consisting of the same 26 stimuli in each (conceptually as

mentioned in the stimulus material section). The stimuli in the second block were presented

in a different randomized order. Each decision made on the continuation of a video has a

binary rating as only the best decision counted as 1 (correct) while all other options were rated

0 (incorrect). At first, 5 different sample screenshots (example view see Fig 1 in equirectangular

form or S1 Video 4.1 for a cross section of the stimulus presentation sphere) and the corre-

sponding sample stimuli were shown and explained to acclimate participants with the setup.

To learn the decision options, we also showed a schematic overview before every sample

screenshot (see Fig 2).

Table 1. Participants summary.

Participants

Class Attribute Average Std. Dev.

Experts Age 16.60 1.54

Active years 9.16 5.04

Training hours/week 8.83 4.27

Intermediates Age 22.00 3.72

Active years 15.50 5.77

Training hours/week 4.94 0.91

Novices Age 28.64 3.72

Active years 1.78 5.21

Training hours/week 0.00 0.00

https://doi.org/10.1371/journal.pone.0251070.t001

Fig 1. Example stimulus in equirectangular format.

https://doi.org/10.1371/journal.pone.0251070.g001
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2.2 Eye tracking

The raw data of the SMI Eye tracker can be exported from the proprietary BeGaze software as

csv files. BeGaze already provides the calculation of different eye movement features based on

raw gaze points. As we receive high speed data from the eye tracker, we use built-in high speed

event detection. The software first calculates the saccades based on the peak threshold, which

means the minimum saccade duration (in ms) varies and is set dependent on the peak thresh-

old default value of 40˚/s. In a second step, the software calculates the fixations. Samples are

considered belonging to a fixation when they are between a saccade or blink. With a minimum

fixation duration of 50 ms, we reject all fixations below this threshold. As there is no generally

applicable method for the detection of smooth pursuits, this type of event is included and

encoded as a fixation with longer duration and wider dispersion. We marked fixations with a

fixation dispersion of more than 100 px as smooth pursuits. By doing this, we split fixations

into normal length fixations and long fixations, the latter considered and referred to as smooth

pursuits. Since there is no information about the pixel size of the HMD in mm, it is hard to

define a robust threshold in pixels. Therefore, this threshold is an empirical value based on the

typical length of the player’s routes as main stimuli in the video. The following section

describes the steps that are necessary to train a model based on these eye movement features.

2.2.1 Feature selection. Since it is not completely clear which subset of eye movement fea-

tures explain differences in expertise, we pursued a brute-force method. All possible measures

Fig 2. Schematic overview of the response options. Emergency option kick out is not shown.

https://doi.org/10.1371/journal.pone.0251070.g002
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issued by the eye tracking device were considered and their importance subsequently evalu-

ated. For the classification of expertise level we focused on the following features:

• event duration and frequency (fixation/saccade),

• fixation dispersion (in ˚),

• smooth pursuit duration (in ms)

• smooth pursuit dispersion (in ˚)

• saccade amplitude (in ˚),

• average saccade acceleration (in ˚/s2),

• peak saccade acceleration (in ˚/s2),

• average saccade deceleration (in ˚/s2),

• peak saccade deceleration (in ˚/s2),

• average saccade velocity (in ˚/s),

• peak saccade velocity (in ˚/s).

Each participant viewed all 26 stimuli two times, resulting in 52 trials per subject. First, we

viewed the samples from these 52 trials and checked the confidence measures of the eye track-

ing device. We removed all trials with less than 75% tracking ratio, as gaze data below this

threshold is not reliable. Due to errors in the eye tracking device, not all participant data is

available for every trial. Table 2 shows an overview of the lost trials. For two participants, 11

trials had a low tracking ratio. On participant 18, we lost 35 trials. On participant 33, one trial

was lost. This results in 1658 out of 1716 valid trials in total. 3.3% of the trials were lost due to

eye tracking device errors.

2.2.2 Data cleaning. We checked the remaining data for the quality of saccades. This data

preparation is necessary to remove erroneous and low quality data that comes from poor

detection on behalf of the eye tracking device and does not reflect the correct gaze. We investi-

gated invalid samples and removed (1) all saccades with invalid starting position values, (2) all

saccades with invalid intra-saccade samples, and (3) all saccades with invalid velocity, accelera-

tion, or deceleration values.

(1) Invalid starting position: 0.22% saccades started at coordinates (0;0). This is an encoding

for an error of the eye tracking device. As amplitude, acceleration, deceleration and velocity

are calculated based on the distance from start- to endpoint, these calculations result in physio-

logical impossible values, e.g., over 360˚saccade amplitudes.

(2) Invalid intra-saccade values: Another error of the eye tracking device stems from the

way the saccade amplitude is calculated through the average velocity (Eq 1) which is based on

Table 2. Overview of the amount of erroneous trials, based on eye tracking device errors.

Overview erroneous trials

Participant Number of invalid trials

1 11

8 11

18 25

33 1

all others 0

https://doi.org/10.1371/journal.pone.0251070.t002
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the distance of the mean of start and endpoints on a sample-to-sample basis (see Eq 2). 3.6% of

the saccades had at least one invalid gaze sample and were removed (example see Fig 3).

�Velocity � EventDuration ð1Þ

1

n
�
Xn

1

distðstartpointðiÞ; endpointðiÞÞ
EventDurationðiÞ ð2Þ

On Fig 3, the gaze signal samples 7, 8, 14-16, 18-20 (x-axis) both, the x- and y-signal (blue

and red line, respectively) show zero values and thereby indicate a tracking loss. As the saccade

amplitude is based on the average velocity which is calculated on a sample-to-sample Eq 2, the

velocity from samples 6 to 7, 8 to 9, 13 to 14, 16 to 17, 17 to 18, and 20 to 21 significantly

increase the average velocity as the distances are high (on average over 2400 px for x-signal

and over 1000px for y-signal, which corresponds to a turn of 225˚ on x-axis and 187.5˚ on y-

axis in the time of 4 ms between two consecutive samples).

There are two interpretations for saccadic amplitude. The first refers to the shortest distance

from start to end point of a saccadic movement (i.e., a straight line) and the second describes

the total distance traveled along the (potentially curved [40], p.311) trajectory of the saccade.

The SMI implementation follows the second definition. We could have potentially interpo-

lated invalid intra-saccade samples instead of completely removing the complete saccade from

analysis, but this leads to uncertainties that can affect the amplitude depending on the number

of invalid samples and does not necessarily represent the true curvature of the saccade.

Fig 3. Example of invalid intra-saccade values. The x-axis shows the number of the gaze signal sample (40 samples, 250 Hz, 160 ms duration) and the

y-axis shows the position in pixel. The blue line represents the x-signal of the gaze and the orange line the y-signal.

https://doi.org/10.1371/journal.pone.0251070.g003
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(3) As the velocity increases as a function of the saccade amplitude [41], 4.8% of the sac-

cades were ignored because of the restriction on velocities greater than 1000˚/s. Similar to

extreme velocities, we removed all saccade samples that exceeded the maximum theoretical

acceleration and deceleration thresholds. Saccades with longer amplitudes have higher veloc-

ity, acceleration, and deceleration, but can not exceed the physiological boundaries of

100.000˚/s2 [40]. 4.0% of all saccades exceeded this limit. As most of the invalid samples had

more than one error source, we only removed 5.5% of the saccades (3.5% of all samples) in

total.

After cleaning the data, we used the remaining samples to calculate the average, maximum,

minimum, and standard deviation of the features. This resulted in 36 individual features. We

use those for classifying expertise in the following.

2.3 Machine learning model

In the following, we refer to expert samples as trials completed by an elite youth player from a

DFB goalkeeper camp, intermediate samples as those completed by regional league players,

and novice samples as those completed by amateur players. We built a support vector machine

model (SVM) and validated our model in two steps: cross-validation and leave-out validation.

We trained and evaluated our model in 1000 runs with both validations. For each run, we

trained a model, validated with cross-validation, with samples from 8 experts, 8 intermediates,

and 8 novices. We used samples from two participants representing each group of those

remaining to predict their classes (leave-out validation). The expert as well as the intermediate

and novice samples in the validation set were picked randomly for each run.

2.3.1 Sample assignment. We found that the way in which the data set samples are

divided into training and evaluation sets is key and a participant-wise manner should be

applied. By randomly picking samples independent of the corresponding participant, partici-

pant samples are usually distributed on both the training and the evaluation sets (illustrated in

Fig 4). This leads to an unexpected learning behavior that does not necessarily classify expertise

directly. Rather, the method matches the origin of a sample to a specific participant thereby

indirectly identifying that participant’s level of expertise. This means that a model should work

perfectly for known participants, but is unlikely to work for unseen data. Multiple studies

show that human gaze behavior follows idiosyncratic patterns. Holmqvist et al. [40] show that

a significant number of eye tracking measures underlie the participants’ idiosyncrasy which

also means that inter-participant differences are much higher than intra-participant

Fig 4. Example sample assignment. Top row shows a random assignment of samples, independent of the

corresponding participant. Bottom row shows participant-wise sample assignment to training and evaluation set.

https://doi.org/10.1371/journal.pone.0251070.g004
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differences. A classifier learns a biometric, a person-specific measure, instead of an expertise

representation.

2.3.2 Model building. To find a model that is robust to high data variations, we applied a

cross-validation during training. The final model is based on the average of k = 50 models,

with k = number of folds in the cross-validation. For each model mi, with i 2 {1, . . ., k}, we

used all out-of fold data of the i-th fold to train and evaluate mi with the in-fold data of the i-th

fold (this procedure is illustrated in Fig 5). The final model was evaluated with a leave-out vali-

dation. The cross-validation step during training is independent from the leave-one-out vali-

dation which requires entirely new data that the model has never seen before. Information

from cross-validation is used during the building and optimizing of the model while leave-

one-out validation only provided information about the model’s prediction accuracy when

using completely new data.

With a total of 810 valid samples, equally distributed between expert, intermediate and nov-

ice samples, we built a subset of 552 samples for training the model and a subset of 258 samples

for evaluation. As each sample represents one trial, our approach here was to predict whether

a trial belongs to an expert, intermediate or novice class. We tested assumption in different

approaches.

2.3.3 Classifiability. First, we used all 46 features to check the classifiability of this kind of

data. The first approach contains all features from section Feature selection 2.2.1 with their der-

ivations, (namely average, maximum, minimum, and standard deviation) to build an SVM

model (Tables 3–5 show all features with their derivations, divided by class). When the binary

case (expert vs. intermediates) results point out the ability of classification, the ternary case

(expert vs. intermediate vs. novice) should be investigated.

2.3.4 Significant features. Second, we looked at the features themselves, checking for dif-

ferences between the single features according to their class as well as the significance level of

feature differences under 0.11%. We built a model based on the features with a significance

level under 0.11% (Tables 3–5 all white cells, gray cells indicate that there is no significant dif-

ference between the groups).

2.3.5 Most frequent features. In a third approach, we reduced the number of features by

running the prediction on all 46 features 1000 times. By taking the most frequent features in

the model, we searched for a subset of features that would prevent the model from overfitting

Fig 5. Illustration of the k cross-validation procedure. Each of the k models has a different out-of-fold and in-fold

data set. We build the final model on the average of all predictions from all k models.

https://doi.org/10.1371/journal.pone.0251070.g005
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Table 3. All 46 features with their derivations. Novice class.

Novices

Features average std. dev. minimum maximum

Fixation

frequency (Hz) 0.214 - - -

duration (ms) 214.017 31.926 190.49 239.30

dispersion (pixels) 72.092 25.68 24.67 110.523

Saccade

frequency (Hz) 0.071 - - -

duration (ms) 71.688 38.869 26.514 175.460

amplitude (˚) 9.294 9.417 0.574 51.402

Saccade mean acceleration

mean (˚/s2) 4263.381 2482.019 366.666 13984.563

peak (˚/s2) 9322.483168 5777.273817 231.836 28355.224

Saccade deceleration

peak (˚/s2) -6848.104 4166.262 -35563.646 -411.760

Saccade velocity

mean (˚/s) 105.463 65.023 20.288 298.134

peak (˚/s) 215.245 129.294 40.310 766.157

Smooth pursuit

duration (ms) 302.637 278.112 75.629 1026.329

dispersion (pixels) 622.805 201.268 185.437 1085.903

Gray cells show features with no significant differences between classes. Orange cells stand for a most frequent feature.

https://doi.org/10.1371/journal.pone.0251070.t003

Table 4. All 46 features with their derivations. Intermediate class.

Intermediates

Features average std. dev. minimum maximum

Fixation

frequency (Hz) 0.255 - - -

duration (ms) 255.225 53.379 215.835 299.623

dispersion (pixels) 73.173 26.548 23.070 114.762

Saccade

frequency (Hz) 0.084 - - -

duration (ms) 84.349 59.726 26.127 246.121

amplitude (˚) 9.883 10.674 0.572 54.835

Saccade mean acceleration

mean (˚/s2) 4123.970 2685.991 315.346 15472.889

peak (˚/s2) 8920.177 5989.251 216.722 28266.000

Saccade deceleration

peak (˚/s2) -6948.491 4770.063 -36334.137 -231.355

Saccade velocity

mean (˚/s) 104.199 66.682 21.520 331.111

peak (˚/s) 213.835 136.529 40.109 764.027

Smooth pursuit

duration (ms) 291.092 278.718 73.835 977.120

dispersion (pixels) 425.089 124.853 168.320 694.370

We consider samples as belonging to a smooth pursuit when the dispersion of the samples is greater than 100 px. As the size of the players in the stimulus varies around

90 pixel + a buffer.

https://doi.org/10.1371/journal.pone.0251070.t004
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and allow for illustrative results representing differences between expertise classes with a mini-

mum number of features. These most frequent features are imperative for the model to distin-

guish the classes. During training, the model indicated which features were the most

important for prediction in each run. The resulting features with the highest frequency (and

therefore highest importance for the model) in our test can be seen in Tables 3–5, in orange.

3 Results

We first report the results of a classification test to determine whether gaze variations between

experts are smaller than the differences between classes. Then, as we first need to identify any

potential differences between experts and novices, the classifiablity test (binary classification)

provides a deeper analysis on the model trained with all features for distinguishing experts and

novices. The remaining chapter describes two ternary models based on a subset of features

obtained through 1) their significance level and 2) their frequency in the all feature model.

3.1 Expert variation classification

To strengthen this work’s implicit assumption that it is possible to distinguish between nov-

ices, intermediates, and experts based on gaze behavior, we evaluated expert data separately by

reversing a subset of experts with intermediates. After 100 iterations in which half of the

experts where randomly labeled as intermediates, the average classification accuracy was

below chance-level. This means that the model can’t differentiate between experts and reversed

experts properly and thus strengthens our assumption that gaze variations between experts are

smaller than the differences between experts, intermediates, and novices.

Table 5. All 46 features with their derivations. Expert class.

Experts

Features average std. dev. minimum maximum

Fixation

frequency (Hz) 0.241 - - -

duration (ms) 241.509 58.629 198.132 291.721

dispersion (pixels) 72.837 25.989 21.736 114.549

Saccade

frequency (Hz) 0.007 - - -

duration (ms) 65.472 35.548 25.019 163.415

amplitude (˚) 8.938 9.430 0.567 52.029

Saccade mean acceleration

mean (˚/s2) 4769.655 3064.343 390.094 18965.944

peak (˚/s2) 10026.456 7094.930 175.242 39445.125

Saccade deceleration

peak (˚/s2) -7912.190 5492.287 -43479.916 -362.396

Saccade velocity

mean (˚/s) 110.675 72.737 21.182 375.363

peak (˚/s) 238.371 157.740 40.262 935.514

Smooth pursuit

duration (ms) 276.785 265.679 74.404 953.660

dispersion (pixels) 399.939 112.414 336.016 505.031

https://doi.org/10.1371/journal.pone.0251070.t005
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3.2 Binary classification

The classifiability test shows promising results. This binary model is able to distinguish

between experts and intermediates with an accuracy of 88.1%. The model has a false negative

rate of 1.6% and a false positive rate of 18.6%. This means the binary model predicted two out

of 260 samples falsely as class zero and 29 samples that are class zero as class one. As the false

negative rate is pretty low, the resulting miss rate is low (11.9%) as well. The confusion matrix

(Fig 6) shows the overall metrics. The binary model is better at predicting class zero samples

(intermediates) than class one samples (experts). The overall accuracy of 88.1% is sufficient to

investigate on a ternary classification. In the following, we offer deeper insights into ternary

Fig 6. Binary confusion matrix about predictions on 100 randomized runs.

https://doi.org/10.1371/journal.pone.0251070.g006
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approaches by looking at the accuracy, miss rate, and recall of ternary models and comparing

those values between the All-feature model (ALL), most frequent features model (MFF), and

significant features model (SF). This is to identify the potential for a better performing model

with fewer features.

3.3 Accuracy

The differences in accuracy between the three approaches are barely visible when looking at

the median (ALL: 75.08%, MFF: 78.20%, SF: 73.95%), but even greater when comparing the

75th percentile (ALL: 80.989%, MFF: 85.44%, SF: 79.25%, see Fig 7). All models show a wider

range of accuracy values which means these models might overfit more on some runs and

underfit on others. The lower adjacent of all models is higher than chance level (ALL: 53.46%,

MFF: 52.93% and SF:52.41%), which means all models perform better as guessing. The chance

level for 3 classes is 33.33%. A system that only guesses the correct class usually ends up with

an accuracy of about 33.33%. Although not in each run, on average all models show a much

better performance. Even the worst classification is over 20% higher than chance level. A suc-

cessful performance for classification expertise in machine learning models is typically when

their average accuracy is between 70% and 80%. A statement about the performance of a

model with lower than 70% accuracy depends on the task and how much data is available.

Sometimes there are only a few people in the world who are truly considered to be experts. As

the accuracy is a rough performance metric that only provides information about the number

of correct predictions (true positives and true negatives), we offer a more detailed look into the

performance of theses methods by comparing the miss rates of single approaches.

Fig 7. Boxplot showing the accuracy values of the ternary methods. All three models have median accuracy values*75 − 80%.

https://doi.org/10.1371/journal.pone.0251070.g007
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3.4 Miss rate

The miss rate is a metric that measures the rate of wrongly classified samples belonging to class

x, but predicted to belong to class y. The models are better at predicting the membership of

samples belonging to expert and intermediate classes than to the novice class. This results in

miss rates that are only little lower than chance level when looking at the median miss rates

(All: 28.12%, MFF: 23.81% and SF: 26.80%, see Fig 8). The upper adjacent shows a high range

of miss rates reaching even values of over 43.19% for the SF-model. The MFF-model has the

lowest median miss rate of all three methods with a miss rate of 41.96%.

3.5 Recall

Recall provides information about the rate of predicted samples belonging to class x in relation

to the number of samples that really belong to class x. All three models have a median recall of

over 70% (as can be seen on Fig 9). In the ternary case, chance level is at 33.33% which means

all models have a recall over two times higher than chance level as the lower adjacent of all

three models is higher than 33.33%. The MFF-model median is the highest at 76.18% followed

by the SF-model at 73.194% and the ALL-model at 71.87%. Again, the MFF-model has the best

performance values of all three methods.

3.6 Most frequent features

The most frequent features in 100 runs are summarized in Table 6. Only the minimum of the

saccade duration has p> 0.011. This means the differences are not statistically significant. All

Fig 8. Miss rates of ternary methods.

https://doi.org/10.1371/journal.pone.0251070.g008
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other features show significant differences, indicating that a Mann-Whitney-U-test discards

the null hypothesis that there are no differences with p< 0.011 for each of the features.

4 Discussion

In this work, we have presented a diagnostic model to classify the eye movement features of

soccer goalkeepers into expert, intermediate and novice classes. We further investigated how

successfully the features provided by the diagnostic model resulted in explainable behaviour.

Our model has shown that eye movement features are highly informative and well suited to

distinguish different expertise classes. Based on a support vector machine as a simple machine

learning model, we were able to classify three different expertise groups at an average accuracy

of 78.2% (compared to the baseline of 33.3% in a three-class classification problem), a quality

Fig 9. Recall values of ternary methods.

https://doi.org/10.1371/journal.pone.0251070.g009

Table 6. All most frequent features.

Most frequent features

Features derivation novice intermerdiate expert p-value hypothesis discarded

saccade duration (ms) std. dev. 38.869 59.726 35.548 3.33�e-08 1

saccade duration (ms) minimum 26.514 26.127 25.019 0.242216408 0

peak saccade deceleration (˚/s2) std. dev. 4166.262 4770.063 5492.287 2.49�e-18 1

peak saccade velocity (˚/s) std. dev. 129.294 136.529 157.740 6.19�e-07 1

smooth pursuit dispersion (pixels) average 622.805 425.089 399.939 9.66�e-82 1

smooth pursuit dispersion (pixels) minimum 185.437 168.320 336.016 5.44�e-12 1

smooth pursuit dispersion (pixels) maximum 1085.903 694.370 505.031 1.52�e-81 1

https://doi.org/10.1371/journal.pone.0251070.t006
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result for current machine learning techniques. As the performance values differ, the real-

world application will have to be further evaluated with larger subject groups.

A closer look at the classification results reveals that our model can successfully distinguish

between experts and intermediates. This is due to the fact that experts and intermediates have

already proven their ability by playing in the higher leagues. Thus, there is a ground truth for

these classes. A limitation of the classification model is the novice group. Since our novice

group consists of participants with no regular training or involvement in competitions, novices

can be equally talented players, as revealed through their gaze behaviour, who have yet to

prove their ability in a competition. This assumption is especially evident in the false negative

rate of 1.6% and the false positive rate of 18.6% from the binary model. This means that 18.6%

of novice samples are classified as intermediate samples, but only 1.6% of the intermediate

samples are classified as novice. As is typical in expertise research, a portion of low performers

(novices) can also be found in higher classes. Our models confirm that the correct classifica-

tion of novices is considerably more difficult than other classes because there is, to date, no

objective ground truth. Despite this limitation, our model achieved a very good average accu-

racy of 78.2%. Most likely, a model with more subjects and a finer graduation of the novice

class would achieve better results. Machine learning models are data-driven and therefore

learn more from more data. However, the number of elite youth goalkeepers in Germany who

can provide samples for the expert class is limited. Out of 56 in total, we only collected data

from 12 in our study. Defining a more robust ground truth for participants classified as nov-

ices is an important step for future models. Since the current model fundamentally does not

downgrade participants with higher expertise to a lower class, it can still be used as a diagnostic

model. As aforementioned, the false positive rate shows that only some novices with limited

experience perform better than others and can, therefore, be classified into a higher class.

Namely, their gaze behaviour is closer to that of intermediates than it is to typical novices.

By examining the individual eye movement features in more detail, we have shown that a

subset of features is sufficient to create a solid classification. We also found, however, that the

difference in eye movement behaviour between the individual groups is difficult to interpret.

We only investigated the most frequent features because they built the best performing model.

The differences are noticeable, but hard to interpret due to the fact that there are no simple

characteristics behind these features.

There are indications that experts (std. dev. 35.54 ms) and novices (std. dev. 38.86 ms) have

a more homogeneous saccade behaviour when compared to intermediates (std. dev. 59.72 ms).

The lengths of the saccades differ less. However, it would be a fallacy to attribute the same

viewing behavior to novices and experts due to the similar standard deviation and minimum

duration of the saccades (novice: 26 ms, intermediate: 25 ms, expert: 25 ms). It is clear that

both groups have saccades of a similar length, but the novices have similarly long saccades and

the experts similarly short saccades. Conversely, this means that the experts may have longer

fixations than novices and intermediates. These findings are in line with Mann et al. [20] who

show that experts are over-represented in fewer, but longer fixations. Their visual strategy is

often based on longer fixations to avoid saccadic suppression (which might lead to information

loss). In our statistics, the duration of fixations did not differ significantly between the three

groups which is in line with the findings of Klostermann et al. [11]. This may be based on the

division of fixation values into short fixations and smooth pursuits. Differences could also

stem from the age difference between single groups (see Table 1). With the current data, it is

difficult to determine the reasoning behind the differences with any certainty.

Further differences between groups can be found in the maximum peak deceleration of the

saccades. There is a continuous increase in the maximum deceleration speed of the novices’

saccades (4166.262˚/s2) to intermediates(4770.063˚/s2) when compared to experts (5492.287˚/
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s2). This is in line with the findings of Zwierko et al. [42] who found that deceleration behav-

iour can be inferred from different expertise classes.

One observation made by the experimenter during the study was that novices often follow

the ball with their gaze for a long time. This behavior is less evident among experts. Experts

only tend to look at the ball when it has just been passed or when they themselves are not in

play. At such times, the ball can not change its path. This observation is supported by the val-

ues of the smooth pursuit dispersion. With 505.031 pixels maximum and 336 pixels minimum,

experts have a very narrow window of smooth pursuit lengths. Essentially, the maximum

smooth pursuit for experts (505.03 pixels) is less than half as long as for novices (1085.90 pix-

els) and the minimum smooth pursuit (expert: 399 pixels, intermediate 425 pixels, novices 622

pixels) is still 1/3 shorter than for novices. The intermediates are placed in the middle between

the two groups. Again, the values are continuously decreasing. Based on the continuity of the

average smooth pursuits that correlate negatively with the classes, as well as the maximum and

standard deviation, it can be concluded that experts tend to make smooth pursuits that are

more regular in length. One explanation for this could be that, in addition to the opponents

and players, the ball, as an almost continuously moving object, attracts a high level of attention.

In order to maintain a clear overview of the decision-making process, soccer players are taught

the following behavior: shortly before the ball arrives at the pass goal, look at it. This is done

until the ball is passed away. Since the path of the ball can only be changed by the player who is

in possession of the ball and not in the middle of a pass, it is only necessary to follow the path

of the ball at the beginning and end of the pass. In the meantime, players should scan the envi-

ronment for changes to keep track of options in the field. This leads to short smooth pursuits

around the ball before the end and at the beginning of each pass so that experts can appreciate

the ball and follow the ball with similarly long smooth pursuits. On the other hand, as afore-

mentioned, novices follow the ball’s path almost continuously or, at least, very frequently. The

characteristics of the smooth pursuit support this theory. The characteristics of smooth pur-

suits differ significantly from one another in the three groups with an average, minimum and

maximum significant p-value of less than 1 � 10−12. The novices with 622.81 pixels make, on

average, much longer smooth pursuits than the intermediates (525.09 pixels) and significantly

more than the experts (399.93 pixels). With 185.44 pixels, the novices’ shortest smooth pursuits

are smaller than those of the intermediates (168.32 pixels) and the experts (336.01 pixels). The

maximum values show a uniform behaviour. With 1085.9 pixels, the novices have the highest

maximum values after the intermediates with 694.37 pixels and the experts with 505.03 pixels.

Although the standard deviation of the lengths of the smooth pursuits does not belong to

the MF-features, clear differences can be seen here as well. The dispersion of smooth pursuits

with 201.27 pixels scatters far more among the novices than among the intermediates (124.85

pixels) and experts (112.41 pixels). These findings lead us to believe that a stimuli oriented

investigation of gaze distribution for expertise recognition might reveal even more pro-

nounced differences, i.e correlation between ball movement and smooth pursuits.

4.1 Conclusion and implications

After the ternary classification of expertise, the next step should be the evaluation of a more

robust classification model. As machine learning techniques are data-driven, adding more

subjects to each group presumably leads to better results. A more sensible model with a finer

grained gradation and the ability to classify participants into additional classes by predicting

their class with greater nuance should also be considered. In future work, we plan to expand

our data set to additional subjects in the current groups, add more nuanced classes, and add

a physical response mode to infer speed and correctness in a standardized, controllable, and
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objective manner, thus increasing immersion. However, a fully interactive mode will only be

possible when CGI can provide cost-efficient, high quality environments. Another step is to

focus on the research of person-specific, gaze-based expertise weakness detection. As soon

as a robust model is achieved, we plan to integrate the model into an online diagnostic sys-

tem. To use the model online, the gaze signal can be drawn directly online at 250 Hz from

the eye tracker by using the vendor’s API. Using a multi-threaded system, data preparation

and feature calculation can be performed directly online in parallel with data collection.

Only the higher level features (e.g. std. deviations) need to be computed when the trial ends

and fed as feature vector to the already trained model in order to estimate the class of the

current trial. As prediction is completed by solving a function, the prediction result is sup-

posed to be available a few moments after the trial ends. This is necessary as the prediction is

the input for the adaption of the training. This work will be implemented in an online sys-

tem for real-time gaze-based expertise detection in virtual reality systems with an automatic

input for the presentation device to ensure dynamic manipulation of a scene’s difficulty.

With a prototype running in VR, we are planning to expand the system to be used in-situ

with augmented reality-glasses (AR). This may even further pronounce differences and lead

to better classifications. By mapping expertise on a larger number of classes, a more sensible

model would allow for the dynamic manipulation of difficulty level in a virtual training sys-

tem exercise or game level. Next to a training system for athletes and other professional

groups, the difficulty level of a VR game can be dynamically adjusted based on the user’s

gaze behavior. We are, however, aware that the small sample size restricts potential conclu-

sions and could lead to contentious results. Another limitation of this work is the restriction

presented by head movements unrelated to eye movement features and the absence of a

detailed smooth pursuit detection algorithm. Therefore, in our future work we will imple-

ment an appropriate event calculation method i.e. based on the work of Agtzidis et al. [43].

This work does, however, strengthen the assumption that there are differences in the gaze

behavior of experts, intermediates and novices and these differences can be ascertained

through the methods discussed.

Using machine learning techniques on eye tracking data captured in a photo-realistic

environment as displayed through virtual reality glasses is a potential first step towards the

development of a virtual reality training system (VRTS). Objective expertise identification

and classification can lead to the adaptive and personalized design of such systems because

these measures have the ability to define certain states in a training system. For example, a

VRTS that can be used at home and, based on its objective and algorithmic kind, allow for

self-training. The choice of difficulty can be adapted based on the expertise of the user. For

highly skilled users, the level of difficulty can be raised by pointing out fewer cues or show-

ing more crowded, faster, and dynamic scenes that increase the pressure placed on deci-

sions. With enough data, it is also possible to adapt the training level based on personal

deficiencies discovered during expertise identification in a diagnostic system. This can

result in a system that knows a user’s personal and perceptual weak spots in order to provide

personalized cognitive trainings (e.g. different kinds of assistance like marking options, tim-

ing head movements, showing visual and auditory cues). Such a system is also potentially

applicable in AR. The findings on the photo-realistic VR setup can be used in AR settings

(i.e. in-situ). For uses like AR trainings, that are meant to enhance physical trainings, funda-

mental findings must be rooted in real gaze signals. As a second step, training systems can

be developed based on diagnostic findings. This is, in addition to physical training, espe-

cially relevant as there is increasing research on forms of perceptual-cognitive training

going on. [44–47].

PLOS ONE Goalkeeper expertise eye movements

PLOS ONE | https://doi.org/10.1371/journal.pone.0251070 May 19, 2021 19 / 22

https://doi.org/10.1371/journal.pone.0251070


Supporting information

S1 Video. Example video of experimental VR environment. The video first shows the view

at the inside of the sphere. With the head of the participant and the field of view. There is an

example gaze signal jumping between players. A real stimulus is played on the inside of the

sphere. Later the camera zooms out of the sphere to show how the video is projected on its

inside.
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