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Abstract

Previous study found that rifampicin caused intrahepatic cholestasis. This study investi-

gated the effects of rifampicin on hepatic lipid metabolism. Mice were orally administered

with rifampicin (200 mg/kg) daily for different periods. Results showed that serum TG level

was progressively reduced after a short elevation. By contrast, hepatic TG content was

markedly increased in rifampicin-treated mice. An obvious hepatic lipid accumulation, as

determined by Oil Red O staining, was observed in mice treated with rifampicin for more

than one week. Moreover, mRNA levels of Fas, Acc and Scd-1, several key genes for fatty

acid synthesis, were elevated in rifampicin-treated mice. In addition, the class B scavenger

receptor CD36 was progressively up-regulated by rifampicin. Interestingly, hepatic

SREBP-1c and LXR-α, two important transcription factors that regulate genes for hepatic

fatty acid synthesis, were not activated by rifampicin. Instead, hepatic PXR was rapidly acti-

vated in rifampicin-treated mice. Hepatic PPARγ, a downstream target of PXR, was tran-

scriptionally up-regulated. Taken together, the increased hepatic lipid synthesis and uptake

of fatty acids from circulation into liver jointly contribute to rifampicin-induced hepatic lipid

accumulation. The increased uptake of fatty acids from circulation into liver might be par-

tially attributed to rifampicin-induced up-regulation of PPARγ and its target genes.

Introduction

Nonalcoholic fatty liver disease (NAFLD) has been considered the most common chronic liver
disease in developed countries and has been gradually increasing in Chinese adults in recent
decades [1,2]. The hallmark of NAFLD is excessive triglyceride (TG) accumulation in liver [3].
NAFLD represents a wide spectrum liver disease ranging from simple hepatic steatosis to non-
alcoholic steatohepatitis, fibrosis, cirrhosis, and even hepatocellular carcinoma [4]. Although
obesity, type 2 diabetes, high-fat diets, insulin resistance and metabolic syndrome have been
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recognized as common risk factors of NAFLD [5], drug-inducedhepatic steatosis and steatohe-
patitis are considered a rare but very important forms of NAFLD [6].

Rifampicin, one of the most commonly used front-line drugs in antituberculosis therapy,
has been well known to be hepatotoxic [7, 8]. Two in vitro studies showed that rifampicin
caused a direct toxic injury to rat hepatocytes [9, 10]. Several in vivo studies found that rifampi-
cin plus isoniazid induced hepatocyte apoptosis in rodent animals [11–13]. The mechanism
through which rifampicin induces liver injury remains obscure. An earlier study demonstrates
that oxidative stress in the mitochondria is involved in the pathogenesis of rifampicin plus iso-
niazid-induced apoptotic liver cell injury in mice [14]. According to a report from our labora-
tory, rifampicin causes intrahepatic cholestasis through altering integrity of hepatocyte ZO-1
and occluding [15].

The aim of the present study was to explore the effects of rifampicin on hepatic lipid metab-
olism in mice.We showed that rifampicin elevated hepatic TG content and caused hepatic
lipid accumulation.We found that rifampicin up-regulated genes for synthesis and transport
of hepatic fatty acids. Our results suggest that the increased hepatic lipid synthesis and uptake
of fatty acids from circulation into liver partially contribute to rifampicin-induced hepatic lipid
accumulation. The increased uptake of fatty acids from circulation into liver might be attrib-
uted to rifampicin-induced up-regulation of peroxisome proliferator-activated receptor γ
(PPARγ) and its target genes.

Materials and Methods

Chemicals

Rifampicin was purchased from Sigma Chemicals Co. (St. Louis, MO, USA). Antibodies
against SREBP-1c, LXR-α, PXR, PPARγ, and Lamin A/C were from Santa Cruz Biotechnolo-
gies (Santa Cruz, CA, USA). Chemiluminescence (ECL) detection kit was from Pierce Biotech-
nology (Rockford, IL, USA). TRI reagent was from Invitrogen (Carlsbad, CA, USA). RNase-
free DNase was from Promega Corporation (Madison,WI, USA). Oil Red O was from Sigma
Chemical Co. (St Louis, MO, USA). All the other regents were from Sigma or as indicated in
the specificmethods.

Animals and treatment

Thirty-twomale CD-1 mice were purchased from the Laboratory Animal Center of Anhui
Medical University. The animals were maintained on a 12-h light/dark cycle in a controlled
temperature (20–25°C) and humidity (50±5%) environment for a period of 1 week before use.
All mice were fed with regular diet. To investigate the effect of rifampicin on hepatic lipid accu-
mulation, mice were divided into four groups. All mice except controls were orally adminis-
tered with rifampicin (200 mg/kg) daily for 3 days, 1 week or 4 weeks, respectively. All thirty-
two male CD-1 mice survived to the end of the experiments. All mice were anesthetized with
ether and then sacrificedwith dislocation of cervical vertebrae 6 h after the last rifampicin
treatment. Serumwas collected for measurement of biochemical parameters. Liver was col-
lected and frozen immediately in liquid nitrogen for hepatic TG measurement, real-time
RT-PCR andWestern Blot, fixed in neutral-buffered formalin for histological examination, or
frozen fixed in OCTmounting media for Oil red O staining. This study was approved by the
Association of Laboratory Animal Sciences and the Center for Laboratory Animal Sciences at
Anhui Medical University (Permit Number: 15–0010). All procedures on animals followed the
guidelines for humane treatment set by the Association of Laboratory Animal Sciences and the
Center for Laboratory Animal Sciences at Anhui Medical University. In this study, all mice
were monitored at least twice per day. In addition, the rules of humane endpoints were strictly
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performed to determine whenmice should be euthanized. All efforts were taken to minimize
sufferingwhenmice met our euthanasia criteria.

Biochemical parameters and hepatic histology

Serumalanine transaminase (ALT), TG, total cholesterol (TC), high density lipoprotein choles-
terol (Chol-HDL) and very low density lipoprotein TG (TG-VLDL) were measured by routine
laboratorymethods using an autoanalyzer (Roche,Modular DPP, NO. 1549–06). Liver speci-
men was fixed in 4% paraformaldehyde phosphate buffer. Liver sections were stained with
hematoxylin and eosin and evaluated by the pathologists who were blind to sample assignment
to experimental groups.

Hepatic TG measurement

For measurement of hepatic TG content, liver samples were homogenized in 2 ml of buffer
that contains 18 mM Tris (pH 7.5), 300 mMmannitol, 50 mM EGTA, and 0.1 mM PMSF. For
extraction of hepatic TG, 400 μl of tissue homogenate was mixed with 4 ml of chloroform/
methanol (2:1) and incubated with shaking overnight at room temperature. Finally, 800 μl of
H2O was then added and vortexed, centrifuged at 3000 g for 5 min, and the lower lipid phase
was collected and dried. The lipid pellets were then dissolved in a 100 μl mixture of tert-butyl
alcohol/ Triton X-114/methanol (4.6:2:1) [16]. TG was determined by a commercially available
kit. Hepatic TG contents were expressed as μmol/g liver.

Oil Red O staining

To determine hepatic lipid accumulation, frozen sections of liver (10 μm) were stained with Oil
RedO for 10min, washed, and counterstainedwith hematoxylin for 45s. Representative photomi-
crographs were captured at 100×magnification using a system incorporated in the microscope.

Isolation of total RNA and real-time RT-PCR

Total RNA was extracted using TRI reagent. RNase-free DNase-treated total RNA (1.0 μg) was
reverse-transcribedwith AMV (Promega Corp., Madison,WI, USA). Real-timeRT-PCR was
performedwith Light Cycler 480 SYBR Green I Kit (RocheDiagnosticsGmbH, Manheim, Ger-
many) using genetic-specificprimers, as listed in Table 1. The amplification reactions were car-
ried out on a Light Cycler 480 Instrument (Roche Diagnostics GmbH, Mannheim, Germany)
with an initial hold step (95°C for 5 minutes) and 50 cycles of a three-step PCR (95°C for 15
seconds, 60°C for 15 seconds, 72°C for 30 seconds). The comparative CT-method [17] was
used to determine the amount of target, normalized to an endogenous reference (18S) and rela-
tive to a calibrator (2-ΔΔCt) using the LightCycler 480 software (Roche, version 1.5.0).

Nuclear protein extraction

For nuclear protein extraction from the liver, 400 mg liver tissue was homogenized in 5 mL ice-
cold buffer A [10 mMHEPES (pH 7.9), 150 mMNaCl, 0.6%NP-40, 0.1 mM EDTA, 1mM
dithiothreitol (DDT), and 0.5 mM phenylmethylsulfonyl fluoride (PMSF)] on ice. The homoge-
nate was centrifugedat 270× g for 30 s and the precipitate was discarded. The supernatant was
kept on ice for 5 min and centrifuged again at 3,000× g for 20 min at 4°C. The supernatant was
thenmixed with 1 mL ice-cold buffer A and centrifugedagain at 3, 000× g for 5 min. The precipi-
tate containing nuclei was reserved and homogenized in 100 μL Buffer B [20 mMHEPES (pH
7.9), 420 mMNaCl, 1.2 mMMgCl2, 25% glycerol, 0.2 mM EDTA, 0.5 mMDDT, 0.5 mM PMSF,
1% protease inhbitor cocktail (P8340, Sigma)] for 60 min on ice. Nuclear lysate was centrifuged at
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11, 000× g for 10 min at 4°C. The supernatant was collected and protein concentrations were
determinedwith the bicinchoninic acid (BCA) protein assay reagents (Pierce, Rockford, IL, USA)
according to the manufacturer’s instructions. For nuclear protein extraction from cells, the cells
were washed with ice-cold PBS/phosphatase inhibitors, collectedwith a cell scraper, and har-
vested by centrifugation. The cell pellet was then resuspended in hypotonic buffer and then kept
on ice for 15 min. The suspension was thenmixed with detergent and centrifuged for 30 s at 14,
000× g. The nuclear pellet obtained was resuspended in complete lysis buffer in the presence of
the protease inhibitor cocktail, incubated for 30 min on ice, and centrifuged for 10 min at
14,000 × g. Protein concentrations were determinedwith the BCAprotein assay reagents.

Western blot

Nuclear extracts were separated electrophoretically by SDS-PAGE and transferred to a polyvi-
nylidene fluoridemembrane. The membranes were incubated for 2 h with the following anti-
bodies: SREBP-1, LXRα, PXR and PPARγ. Lamin A/C was used as a loading control for
nuclear proteins. After washed in DPBS containing 0.05% Tween-20 four times for 10 min
each, the membranes were incubated with goat anti-rabbit IgG antibody for 2 h. The mem-
branes were then washed in DPBS containing 0.05% Tween-20 for four times for 10 min each
again, followed by signal development using an ECL detection kit.

Statistical analysis

All data were expressed as means ± SEM. SPSS 13.0 statistical software was used for statistical
analysis. All statistical tests were two-sided using an alpha level of 0.05. ANOVA and the Stu-
dent-Newmann-Keuls post hoc test were used to determine differences among different
groups. Student t test was used to determine differences between two groups.

Results

Rifampicin induces hepatic lipid accumulation

Although no significant difference on body weight was observed among different groups
(data not shown), the absolute liver weight was significantly increased one week and

Table 1. Oligonucleotide sequence of primers for RT–PCR.

Genes Forward (5’-3’) Reverse (5’-3’)

18s GTA ACC CGT TGA ACC CCA TT CCA TCC AAT CGG TAG TAG CG

Fas TAC TTT GTG GCC TTC TCC TCT GTA A CTT CCA CAC CCA TGA GCG AGT CCA GGC CGA

Acc CCG TTG GCC AAA ACT CTG GAG CTA A GAG CTG ACG GAG GCT GGT GAC A

Scd-1 GCC AGA CCG GGC TGA ACA CC GGC CTC CCA AGT GCA GCA GG

Cpt-1α TTC CCC GCG AGT CCC TCC AG TGG GCC AGT GCT GTC ATG CG

Cyp4a10 TAT GTG AAA AAC ATG GCC GA TCT TTT CCA GCT CTC CCT CA

Cyp4a14 GAT GTT GAC TCC AGC CTT CC CAT TCT GCA GCT GAG ACT TCC

Cd36 GAT GAC GTG GCA AAG AAC AG AAA GGA GGC TGC GTC TGT G

Fatp CGC CGA TGT GCT CTA TGA CT ACA CAG TCA TCC CAG AAG CG

L-fabp GGA AGG ACA TCA AGG GGG TG TCA CCT TCC AGC TTG ACG AC

Mttp GTT TTT CCC GGT CAA GCG TT TTT CAG TGG GGC GAT CTT CG

Apob AAG ACC ATC CTG AGC CAG AC TTA TGC CAG CTT GGT TGC AG

Ldlr TCA CAC AGC CTA GAG AAG TCG ATC CTC ACT GTG CTT CGG TG

Pparγ GGG CTG AGG AGA AGT CAC AC TCA GTG GTT CAC CGC TTC TT

Cyp3a11 CCT GGG TGC TCC TAG CAA TC GGC CCA GGA ATT CCC TGT TT

doi:10.1371/journal.pone.0165787.t001
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progressively elevated four weeks after rifampicin treatment (Fig 1A). Correspondingly, rela-
tive liver weight was slightly increased three days, significantly increased one week, and per-
sistently elevated four weeks after rifampicin treatment (Fig 1B). The effects of rifampicin on
biochemical parameters were analyzed. As expected, serumALT level was significantly ele-
vated in mice treated with rifampicin (Table 2). Moreover, the levels of serumTG and
TG-VLDL were progressively reduced after a short elevation at 3 days after rifampicin treat-
ment (Table 2). In addition, the levels of serum total cholesterol and Chol-HDL were pro-
gressively reduced in rifampicin-treated mice (Table 2). The effects of rifampicin on hepatic
TG content were then analyzed. In contrast to reduction of serumTG, hepatic TG content
was significantly elevated in rifampicin-treated mice (Fig 1C and 1D). An obvious hepatic
lipid accumulation, as determined by Oil Red O staining, was observed in rifampicin-treated
mice (Fig 1E).

Fig 1. Rifampicin induces hepatic lipid accumulation. All mice except controls were orally administered with rifampicin (200 mg/kg) daily for

three days, one week or four weeks, respectively. Liver tissue was collected and weighed. (A) Absolute liver weight; (B) Relative liver weight. (C

and D) Hepatic TG content was measured. (E) Hepatic lipid accumulation was evaluated using Oil Red staining. Upper row, representative

photomicrograph of H&E staining; Lower row, representative photomicrograph of Oil Red staining. Original magnification, 100×. All data were

expressed as means ± S.E.M. (n = 8). ** P < 0.01.

doi:10.1371/journal.pone.0165787.g001
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Rifampicin-induced up-regulation of genes for fatty acid synthesis is

independent of hepatic SREBP-1c and LXR-α activation

The effects of rifampicin on the expression of genes for fatty acid synthesis were analyzed. As
shown in Fig 2A and 2B, mRNA levels of hepatic Fas and Acc were significantly increased
whenmice were administered with rifampicin. In addition, mRNA level of hepatic Scd-1was
rapidly elevated in rifampicin-treatedmice (Fig 2C). SREBP-1c is one of the most important
factors that regulate genes involved in hepatic fatty acid synthesis at the transcriptional level.
The effects of rifampicin on hepatic nuclear SREBP-1c translocation were analyzed. As shown
in Fig 2D, there was no significant difference on the level of hepatic nuclear SREBP-1c between
rifampicin-treatedmice and controls. LXR-α is another important transcriptional factor that
regulates genes for fatty acids synthesis. The effects of rifampicin on hepatic nuclear LXR-α
translocation were then analyzed. As shown in Fig 2E, rifampicin had little effect on hepatic
nuclear LXR-α level.

Rifampicin up-regulates expression of genes for ω-oxidation of hepatic

fatty acids

Carnitine palmitoytransferase 1α (CPT-1α) is the key enzyme for β-oxidation of hepatic long-
chain fatty acid. The effects of rifampicin on hepatic Cpt-1α expression were analyzed. As
shown in Fig 3A, mRNA level of hepatic Cpt-1αwas slightly elevated only in mice treated with
rifampicin for four weeks. CYP4A10 and CYP4A14 are two key enzymes for ω-oxidation of
hepatic fatty acids. The effects of rifampicin on the expression of hepatic Cyp4a10 and Cyp4a14
were then analyzed. Interestingly, hepatic Cyp4a10 mRNA was rapidly elevated whenmice
were administered with rifampicin (Fig 3B). In addition, hepatic Cyp4a14 mRNA was progres-
sively up-regulated in rifampicin-treated mice (Fig 3C).

Rifampicin up-regulates expression of genes for transport of hepatic

fatty acids

The effects of rifampicin on genes for transport of hepatic fatty acids were evaluated. As shown
in Fig 4A, mRNA level of hepatic Cd36was progressively elevated after mice were administered
with rifampicin. Moreover, hepatic fatty acid transport protein (Fatp) and low-density lipopro-
tein receptor (Ldlr) were slightly up-regulated in rifampicin-treatedmice (Fig 4B and 4F). As
shown in Fig 4C–4E, rifampicin had little effect on the expression of hepatic L-fabp,Mttp and
Apob.

Table 2. Serum biochemical parameters.

Parameters Control Rifampicin

3d 1wk 4wk

Serum ALT(U/L) 23.50±3.09 32.60±3.37** 44.98±6.36** 212.14±55.55**

Serum TG (mmol/L) 1.97±0.13 2.82±0.26** 1.34±0.38*## 0.89±0.20**##

Serum total cholesterol(mmol/L) 4.40±0.49 3.86±0.40 2.86±0.21** 1.94±0.28**

Serum Chol-HDL(mmol/L) 4.26±0.49 3.40±0.29 2.85±0.21* 1.95±0.26**

Serum TG-VLDL(mmol/L) 0.73±0.05 1.04±0.12* 0.50±0.06**## 0.33±0.03**##

Data are means ± S.E.M.

* P < 0.05,

**P < 0.01 versus control group;
## P< 0.01 versus 3d group.

doi:10.1371/journal.pone.0165787.t002
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Rifampicin up-regulates hepatic PPARγ expression

Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated transcriptional fac-
tor. The effects of rifampicin on hepatic PPARγ expression were analyzed. As shown in Fig 5A,
hepatic PparγmRNA was progressively up-regulated whenmice were administered with
rifampicin. Moreover, the level of hepatic PPARγ protein was markedly elevated in rifampicin-
treated mice (Fig 5B). In addition, the level of hepatic nuclear PPARγ was progressively
increased in rifampincin-treatedmice (Fig 5C).

Fig 2. Rifampicin-induced up-regulation of genes for fatty acid synthesis is independent of hepatic SREBP-1c and LXR-α activation. All

mice except controls were orally administered with rifampicin (200 mg/kg) daily for three days, one week or four weeks, respectively. Liver tissue was

collected. (A-C) Hepatic Fas, Acc and Scd-1 were measured using real-time RT-PCR. (A) Fas; (B) Acc; (C) Scd-1. (D and E) Nuclear SREBP-1c and

LXR-αwere measured using Western blot. SREBP-1c and LXR-αwere normalized to the level of Lamin A/C in the same sample. (D) SREBP-1c; (E)

LXR-α. All data were expressed as means ± S.E.M. (n = 8). * P < 0.05, ** P < 0.01.

doi:10.1371/journal.pone.0165787.g002
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Rifampicin activates hepatic PXR signaling

PXR, which is highly expressed in liver, plays an important role in drugmetabolism. The effects
of rifampicin on hepatic PXR signaling were analyzed. As shown in Fig 6A, the level of hepatic
nuclear PXR was progressively increasedwhenmice were administered with rifampicin. In
parallel, mRNA level of hepatic Cyp3a11, a downstream target gene of PXR, was up-regulated
in rifampicin-treated mice (Fig 6B).

Discussion

Our previous study demonstrated that rifampicin, one of the most commonly used anti-tubercu-
lar drugs, caused intrahepatic cholestasis [15]. The present study investigated the effects of rifam-
picin on hepatic lipid metabolism in mice. Our results showed that serumTG and total
cholesterol levels were progressively reducedwhenmice were administered with rifampicin for
more than one week. By contrast, hepatic TG content was significantly elevated in rifampicin-
treatedmice.Moreover, an obvious hepatic lipid accumulation, as determinedby Oil RedO stain-
ing, was observedwhenmice were administered with rifampicin for more than one week. These
results suggest that rifampicin not only impairs bile transport but also hepatic lipid metabolism.

Increasing evidence demonstrates that hepatic de novo lipogenesis contributes much to the
development of steatosis [18]. The present study investigated the effects of rifampicin on sev-
eral key genes for hepatic fatty acid synthesis. As expected,mRNA levels of hepatic Acc and Fas
were significantly elevated whenmice were administered with rifampicin for three days. In
addition, hepatic Scd-1was rapidly up-regulated by rifampicin. These results are in agreement
with an in vitro report, in which SCD-1 and long chain free fatty acid elongase were up-regu-
lated in rifampicin-treated HepG2 cells [19]. These results suggest that rifampicin-induced
hepatic lipid accumulation is partially attributed to the increased hepatic lipid synthesis.

SREBP-1c is the most important transcription factor that regulates genes for hepatic fatty
acid and TG synthesis [20, 21]. The present study investigated whether rifampicin activates
SREBP-1c in mouse liver. Our results showed that there was no significant difference on hepatic
nuclear SREBP-1c level between rifampicin-treatedmice and controls. LXR-α is a nuclear recep-
tor that not only transcriptionally regulates hepatic SREBP-1c and its target genes but also

Fig 3. Rifampicin up-regulates expression of genes for ω-oxidation of hepatic fatty acids. All mice except controls were orally administered

with rifampicin (200 mg/kg) daily for three days, one week or four weeks, respectively. Liver tissue was collected and hepatic Cpt-1α, Cyp4a10 and

Cyp4a14 were measured using real-time RT-PCR. (A) Cpt-1α; (B) Cyp4a10; (C) Cyp4a14. All data were expressed as means ± S.E.M. (n = 8). *
P < 0.05, ** P < 0.01.

doi:10.1371/journal.pone.0165787.g003
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directlymodulates genes for hepatic fatty acid synthesis [22–24]. The present study found that
no significant difference on hepatic nuclear LXR-α level was observedbetween rifampicin-
treated mice and controls. These results suggest that rifampicin up-regulates key genes for
hepatic fatty acid synthesis and elevates hepatic lipid synthesis independent of SREBP-1c and
LXR-α activation. PXR is well known as a nuclear receptor that regulates xenobiotic and drug
metabolism and elimination [25]. According to an in vitro report, xenobiotic or drug-activated
PXR up-regulates FAS expression and promotes de novo lipogenesis via activation of the non-
classical S14 pathway in human hepatocytes [26]. Indeed, the present study showed that hepatic
PXR was rapidly activated in rifampicin-treatedmice. Therefore, it is reasonable to assume that
rifampicin-activated PXR is involved in up-regulation of genes for fatty acid synthesis.

In addition to hepatic de novo lipogenesis, the increased uptake of free fatty acids from cir-
culation to liver plays an important role in the development of hepatic lipid accumulation [27].

Fig 4. Rifampicin up-regulates expression of genes for transport of hepatic fatty acids. All mice except controls were orally administered with

rifampicin (200 mg/kg) daily for three days, one week or four weeks, respectively. Liver tissue was collected. Hepatic Cd36, Fatp, L-fabp, Mttp, Apob

and Ldlr were measured using real-time RT-PCR. (A) Cd36; (B) Fatp; (C) L-fabp; (D) Mttp; (E) Apob; (F) Ldlr. All data were expressed as means ± S.

E.M. (n = 8). * P < 0.05, ** P < 0.01.

doi:10.1371/journal.pone.0165787.g004
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The class B scavenger receptor CD36 is a membrane receptor that participates in the uptake of
fatty acids from circulation to hepatocyte [28, 29]. Several studies demonstrate that an
increased hepatic CD36 expression is associated with enhanced susceptibility to nonalcoholic
fatty liver disease [30–32]. The present study investigated the effects of rifampicin on genes for

Fig 5. Rifampicin up-regulates hepatic PPARγ expression. All mice except controls were orally administered with rifampicin (200 mg/kg) daily for

three days, one week or four weeks, respectively. Liver tissue was collected. (A) Hepatic PparγmRNA was measured using real-time RT-PCR. (B)

Hepatic PPARγwas measured using Western blot. PPARγwas normalized to the level of β-actin in the same sample. (C) Nuclear PPARγwas

measured using Western blot. PPARγwas normalized to the level of Lamin A/C in the same sample. All data were expressed as means ± S.E.M.

(n = 8). * P < 0.05, ** P < 0.01.

doi:10.1371/journal.pone.0165787.g005

Fig 6. Rifampicin activates hepatic PXR signaling. All mice except controls were orally administered with

rifampicin (200 mg/kg) daily for three days, one week or four weeks, respectively. Liver tissue was collected.

(A) Nuclear PXR was measured using Western blot. PXR was normalized to the level of Lamin A/C in the

same sample. (B) Hepatic Cyp3a11 mRNA was measured using real-time RT-PCR. All data were expressed

as means ± S.E.M. (n = 8). * P < 0.05, ** P < 0.01.

doi:10.1371/journal.pone.0165787.g006
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transport of hepatic fatty acids. We showed that hepatic Cd36 expression was progressively up-
regulated after mice were administered with rifampicin. In addition, mRNA levels of hepatic
Fatp, a fatty acid transporter that participates in the uptake of long-chain fatty acids [33], and
Ldlr, a surface receptor that removes cholesterol-carryingLDL from plasma by receptor-medi-
ated endocytosis [34], were slightly increased in rifampicin-treated mice. These results indicate
that rifampicin-evoked hepatic lipid accumulation is, at least partially, due to the increased
uptake of free fatty acids from circulation to liver.

PPARγ is a ligand-activated transcriptional factor that is predominantly expressed in adipose
tissues and to a lesser extent in liver [35, 36]. Several studies found that hepatic PPARγ was up-
regulated in high-fat diet-fed rodent animals [36, 37]. According to a recent report, PPARγ pro-
motes hepatic lipid uptake and lipid droplet accumulation [38]. Indeed, the class B scavenger
receptor CD36 is a downstream target gene of PPARγ [39]. The present study investigated
whether hepatic PPARγ was activated by rifampicin. Consistent with hepatic Cd36 up-regula-
tion, nuclear PPARγ level was progressively elevated in rifampicin-treatedmice. The mecha-
nism by which rifampicin activates hepatic PPARγ remains obscure. The present study showed
that hepatic PparγmRNA was up-regulated by more than ten folds whenmice were treated
with rifampicin for four weeks. Correspondingly, the level of hepatic PPARγ protein was ele-
vated by more than ten folds in rifampicin-treatedmice. These results suggest that rifampicin
up-regulates hepatic PPARγ expression at a transcriptional level. According to an earlier study,
PPARγ is a downstream target of PXR in mouse liver [40]. The present study showed that the
level of nuclear PXR was significantly increased by more than ten folds whenmice were treated
with rifampicin for four weeks. Moreover, mRNA level of Cyp3a11, a downstrean target gene of
PXR, was significantly up-regulated in rifampicin-treatedmice. Taken together, these results
suggest that the increased uptake of fatty acids from circulation into liver might be partially
attributed to rifampicin-induced PXR activation and PPARγ up-regulation in mouse liver.

CPT-1α is the key enzyme for β-oxidation of hepatic long-chain fatty acid [41]. On the
other hand, CYP4A10 and CYP4A14 are two key enzymes for ω-oxidation of hepatic fatty
acids [42]. Increasing evidence demonstrates that decreased hepatic fatty acids oxidation par-
tially contributed to the development of NAFLD [43, 44]. The present study analyzed the
effects of rifampicin on hepatic β-oxidation and ω-oxidation of hepatic fatty acids in mice.
Unexpectedly, hepatic Cpt-1α expression was slightly elevated after mice were administered
with rifampicin for four weeks.Moreover, the level of hepatic Cyp4a10 mRNA was rapidly
increased in rifampicin-treated mice. In addition, hepatic Cyp4a14was progressively up-regu-
lated by rifampicin. These results suggest that rifampicin-induced hepatic lipid accumulation is
independent of the decreased hepatic fatty acid oxidation.

In summary, the present study investigated the effects of rifampicin on hepatic lipid metab-
olism. Our results showed that rifampicin significantly elevated hepatic TG content and caused
hepatic lipid accumulation in mice.We found that rifampicin rapidly elevated expression of
genes for de novo lipogenesis and progressively up-regulated genes for uptake of fatty acids in
mouse liver. Our results suggest that the increased hepatic lipid synthesis and uptake of fatty
acids from circulation into liver jointly contribute to rifampicin-induced hepatic lipid accumu-
lation. The increased uptake of fatty acids from circulation into liver might be partially attrib-
uted to rifampicin-induced up-regulation of PPARγ and its target genes.
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