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High-throughput docking is an established computational screening approach in

drug design. This methodology enables a rapid identification of biologically active

hit compounds, providing an efficient and cost-effective complement or alternative

to experimental high-throughput screenings. However, limitations inherent to the

methodology make docking results inevitably approximate. Two major Achille’s heels

include the use of approximated scoring functions and the limited sampling of the

ligand-target complexes. Therefore, docking results require careful evaluation and further

post-docking analyses. In this article, we will overview our approach to post-docking

analysis in virtual screenings. BEAR (Binding Estimation After Refinement) was developed

as a post-docking processing tool that refines docking poses by means of molecular

dynamics (MD) and then rescores the ligands based on more accurate scoring functions

(MM-PB(GB)SA). The tool has been validated and used prospectively in drug discovery

applications. Future directions regarding refinement and rescoring in virtual screening

are discussed.
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INTRODUCTION

High-throughput screening (HTS) is a widely used method for the discovery of biologically active
hits. However, the high costs and the low hit rates characterizing such experiments often make
HTS not affordable for academic labs or small companies (Sliwoski et al., 2014). As a consequence,
high-throughput docking screenings represent an attractive alternative (Irwin and Shoichet,
2016). Structure-based virtual screenings (SBVSs) require the knowledge of the three-dimensional
structure of the target of interest, as well as the access to large libraries of small molecules available
in public databases (Kar and Roy, 2013; Rastelli, 2013). Docking programs generate binding poses
of compounds in the active site of a target and evaluate the ligand binding strength by means of
scoring functions (Lengauer and Rarey, 1996; Kitchen et al., 2004). Several docking software relying
on different algorithms have been developed for virtual screening so far (Rarey et al., 1996; Morris
et al., 1998; Friesner et al., 2004; Sánchez-Linares et al., 2012). However, although remarkable
improvements have been obtained along the years, several drawbacks and limitations still exist
(Huang and Zou, 2010; Rastelli, 2013). First of all, sampling the conformational space accessible
to ligand-target complexes in an induced-fit context is a difficult and target-dependent task. To
help overcoming such limitations, several in silico strategies including molecular dynamics or
induced fit strategies have been introduced (Sherman et al., 2006; Nabuurs et al., 2007; Caporuscio
and Rastelli, 2016). Secondly, docking scores and experimental binding affinities usually do not
correlate, because screening large numbers of compounds in a reasonable time requires the
use of approximate scoring functions. Together, the two effects imply that a variable number
of false-positive and false-negative hits populate the ranked lists, which then require careful
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evaluation and further post-docking analyses. Hence, it has
become general opinion that docking results should be
improved by means of more rigorous post-docking processing
strategies. Several post-processing strategies have been developed
to overcome docking limitations over the past decades. In
particular, methods based on binding free energy estimations
have demonstrated to provide higher hit rates and to be more
suitable for ranking cognate ligands in virtual screening (Hou
et al., 2011; Genheden and Ryde, 2015; Pu et al., 2017), the
predicted binding free energy usually correlating better with
experimental data (Brandsdal et al., 2003). One of the first
reported energy-based methods is MM-PB(GB)SA, which was
developed to more accurately assess the relative free energy
of binding for a given macromolecular system from molecular
dynamics simulations (Kollman et al., 2000). This method
represented a remarkable step forward to the obtainment of in
silico predicted binding affinities that are in good agreement
with experiments. In fact, it was extensively used to evaluate
the free energy of binding for a number of complexes in the
last years (Gohlke et al., 2003; Hou and Yu, 2007; Ferri et al.,
2009; Yang et al., 2012). For example, it was successfully used
for identifying residue hot-spots outside the binding interface
of the Ras–Raf and Ras–RalGDS protein-protein complexes,
discussing also their implications for an allosteric activation of
the proteins (Gohlke et al., 2003). More recently, this method was
also employed for predicting binding affinities of few inhibitors
of HIV-1 protease and to help rationalize drug resistance caused
by the mutations on the enzyme binding site (Hou and Yu,
2007). However, it should also be noted that MM-PB(GB)SA
results are dependent on the employed parameters and receptor
structures used in the calculations (Xu et al., 2013; Sun et al.,
2014, 2018; Genheden and Ryde, 2015). More accurate free
energy-based methods have also been reported (Brandsdal et al.,
2003; Jorgensen and Thomas, 2008; Parenti and Rastelli, 2012;
Limongelli et al., 2013; De Vivo et al., 2016). Among them, it is
worth mentioning the Free Energy Perturbation (FEP) method,
which allows to estimate the free energy of binding of a ligand
to a protein by decomposing the system through a series of
“alchemical transformations” (Jorgensen and Thomas, 2008; De
Vivo et al., 2016). More recently, funnel-metadynamics (FM)
methods that use a funnel-shaped potential limiting the sampling
space available for a ligand to bind/unbind to a protein have been
proposed (Limongelli et al., 2013; De Vivo et al., 2016). However,
although these methods demonstrated to accurately estimate
ligand binding, they are time-consuming and therefore not
suitable for virtual screening rescoring of large databases. With
the aim of improving ligand-binding estimations of docking
complexes at reasonable computational costs, we developed
Binding Estimation After Refinement (BEAR) (Rastelli et al.,
2009). BEAR is an automated post-docking tool based on
conformational refinement of docking poses with molecular
dynamics followed by a more accurate prediction of binding free
energies performed with MM-PBSA and MM-GBSA, which take
into account desolvation energies (Kuhn et al., 2005; Lyne et al.,
2006; Rastelli et al., 2010; Genheden and Ryde, 2015). As it allows
accurately rescoring docking poses in reasonable times, BEAR
can be considered an efficient tool that could be routinely used for

virtual screening. In this article, we will briefly describe the BEAR
tool, providing an overview of the validation studies performed
so far. Finally, we will describe its prospective applications in
drug discovery campaigns and comment on future directions of
refinement and rescoring methods.

THE BEAR TOOL

The BEAR workflow (Figure 1; Rastelli et al., 2009) consists of an
initial pre-processing step in which hydrogen atoms are added
to the protein, atomic charges (AM1-BCC) are calculated for
the docked molecules, and missing force-field parameters are
assigned. Then, topologies for the ligand, the protein, and the
ligand-protein complex are built. In particular, ligand atom types
are assigned according to the Generalized Amber Force Field
(GAFF) (Wang et al., 2004), while, the atom types and charges of
amino acids are assigned according to the Amber ff03 force field
(Duan et al., 2003). The following iterative three steps procedure
is based on molecular mechanics (MM) and molecular dynamics
(MD) cycles. In particular, an initial MM energy minimization
of the whole protein–ligand complex is performed, followed by a
short MD simulation where the ligand is allowed to move, and a
final re-minimization of the entire complex. All the minimization
tasks are performed through 2000 steps without restraints, and
with a distance-dependent dielectric constant ε = 4r and a cutoff
of 12 Å. The MD simulation is performed at 300K for 100 ps,
with the SHAKE parameter turned on and a time-step of 2.0 fs.
This protocol allows evaluating the reliability of the predicted
docking complex and to establish potential additional ligand-
protein interactions resulting from the structural refinement
of the complex, thus obtaining more accurate binding energy
predictions. After refinement of the complex, the free energy of
binding of the ligand is calculated with the MM-PBSA and MM-
GBSA methods. These operations are implemented with the use
of AMBER modules (Case et al., 2018). Further details about the
BEAR tool are described in Rastelli et al. (2009).

BENCHMARKING STUDIES

The post-docking tool BEAR has been extensively validated in
various test cases. First of all, the MM/MD protocol described
above was investigated on a series of aldose reductase inhibitors
with notable chemical diversity. Remarkably, the calculated free
energies of binding after refinement of ligand-protein complexes
resulted to be highly correlated with experimental affinities. This
study demonstrated that different classes of aldose reductase
inhibitors could be accurately rescored with our procedure
(Ferrari et al., 2007). Extensive validations were also made
on Plasmodium falciparium dihydrofolate reductase (PfDHFR).
These simulations aimed at evaluating the performance of BEAR
in virtual screening settings of different size and complexity.
Firstly, BEAR performed well in discriminating 14 known
inhibitors of PfDHFR from the 1,720 compounds included in
the National Cancer Institute diversity database (Rastelli et al.,
2009). The achieved performances were clearly superior to those
of AutoDock (Morris et al., 1998), demonstrating that rescoring
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FIGURE 1 | Computational workflow applied in BEAR.

of the predicted docking poses with BEAR heavily improved
SBVS results. In a second experiment, enrichment factors (EFs)
obtained with BEAR were evaluated by seeding 201 known
inhibitors with 7,150 decoys as contained in the DHFR data set of
the Directory of Useful Decoys database (Mysinger et al., 2012).
Moreover, the same set of ligands was also seeded into the 1.5
million compounds belonging to the lead-like subset of the ZINC
database (Irwin et al., 2012), this latter benchmark reflecting a
typical virtual screening setting. In both cases, BEAR refinement
and rescoring yielded significantly higher EFs compared to
docking (Degliesposti et al., 2011). This was also an opportunity
for fine-tuning the BEAR parameters, and thus achieving good
performances at reasonable computational costs.

The BEAR performance was also assessed on biological targets
characterized by flexible binding sites and/or containing water
molecules in the binding pocket. Such targets are particularly
challenging for SBVS (Elokely and Doerksen, 2013). In fact,
certain ligand chemotypes could fit with favorable scores into
certain protein conformations but not in others, thus hampering
their identification in a virtual screening. To evaluate whether
docking intomultiple protein conformations (ensemble docking)
instead of using a single representative structure would improve
BEAR predictions for “difficult” targets (Sgobba et al., 2012), we
investigated targets of different families (adenosine deaminase,

factor Xa, estrogen receptor, thymidine kinase, aldose reductase,
and enoyl ACP reductase). Interestingly, a comparative analysis
of the EFs obtained for different proteins and multiple protein
conformations revealed that the application of BEAR was able in
several cases to yield higher EFs compared to docking. However,
in challenging targets such as adenosine deaminase and enoyl
ACP reductase, all scoring functions failed in yielding high EFs.
This effect was attributed to difficulties in predicting correct
ligand binding modes in these two targets. In particular, when
the docked pose was completely wrong, for example head-to-
tail with respect to the correct binding mode, the MM/MD
refinement stage was not enough to turn the binding mode into
the correct one. Therefore, the advantage of using MM-PBSA
and MM-GBSA in prioritizing active compounds is dependent
on the obtainment of correct binding modes, which makes the
refinement and rescoring procedures intimately connected.

More recently, BEAR was also applied to screen ligands
of G-protein coupled receptors (GPCRs) with known crystal
structure, namely β2-adrenergic (β2), adenosine A2A (A2A),
dopamine D3 (D3), and histamine H1 (H1) receptors (Anighoro
and Rastelli, 2013). Results were analyzed in terms of the
ability to recognize known antagonists from decoys, as well
as to predict correct binding modes. In all cases except
for A2A, significant or dramatic improvements of EFs were
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obtained after the application of BEAR. A2A was challenging
because antagonists participated to an extended water-mediated
hydrogen bond network. Interestingly, explicit consideration
of a suitable number of these structural waters significantly
improved the predictions. This finding is in line with the fact
that MM-PB(GB)SA calculations do not explicitly consider water
molecules mediating ligand-protein interactions, and binding
mode predictions heavily depend on the presence of bridging
water molecules participating to hydrogen bond networks. For
all GPCRs, a more accurate account of desolvation effects, such
as the one performed by MM-PBSA, is important to accurately
predict the affinity of the protonated biogenic amines. We also
found that five known H1 and D3 receptor antagonists were top-
scored and ranked well in each of the two target screenings,
prospecting for the first time the utility of post-docking tools
in multi-target drug design (Anighoro et al., 2014). Indeed, as
the free energy of binding calculated by BEAR allows to more
accurately predicting the affinity of ligands for their target(s)
with a reasonable computer time investment, we envision that
in silico strategies embedding this tool can be useful to allow the
identification of ligands with the desired multi-target profiles.

PROSPECTIVE VALIDATIONS

The BEAR workflow has also been implemented in the
computing GRID infrastructure EGEE, as part of the WISDOM
(Wide in silico DOcking on Malaria) initiative against malaria
(Kasam et al., 2009). Then, it was deployed to perform virtual
screenings against antimalarial drug targets. One massive data
challenge was performed on Plasmepsin II, an aspartic protease
involved in the metabolism of P. falciparum (Degliesposti et al.,
2009). In this work, BEAR was used to refine and rescore
the 5,000 top-scoring compounds docked with FlexX (Rarey
et al., 1996). Then, the final step of candidates’ selection was
performed on the top 200 compounds resulting from both MM-
PBSA and MM-GBSA ranked lists. Interestingly, an analysis
of the BEAR ranked lists, together with an inspection of the
protein-ligand complexes and a similarity-based clustering of the
ligands allowed selecting 30 compounds belonging to 5 different
chemotypes as potential Plasmepsin II inhibitors. Remarkably,
26 of them were active, resulting in an impressive hit rate
of 87%, and some of the compounds displayed nanomolar
inhibitory activity.

More recently, BEAR was successfully applied in a virtual
screening campaign that allowed the identification of the first-
in-class allosteric inhibitors of CDK2 (Rastelli et al., 2014). In
this work, around 600.000 commercially available compounds
were screened against a crystal structure of CDK2 with an open
type III allosteric pocket, by using AutoDock for docking and
BEAR for post-docking analyses. The adopted virtual screening
protocol led to the identification of 7 allosteric ligands of
CDK2, providing a hit rate of 20%. Interestingly, the most
potent compound was able to selectively inhibit CDK2-mediated
Retinoblastoma phosphorylation, confirming that its mechanism
of action is fully compatible with a selective inhibition of
CDK2 phosphorylation in cells. Moreover, some of these ligands
inhibited the proliferation of MDA-MB231 and ZR-75-1 breast

cancer cells with IC50 values in the low micromolar range
(Rastelli et al., 2014).

FINAL REMARKS

Although many progresses have been made in molecular
docking, limitations deriving from the use of rigid protein
conformations and of approximate scoring functions often
impair virtual screening results. Therefore, docking results
require careful evaluation and further post-docking analyses.
BEAR is a post-processing tool that performs binding free
energy estimations after MM and MD refinement of docking
complexes. Our previous studies demonstrated that BEAR
performed well in a number of benchmarking investigations,
as well as in discovering biologically active hits in different
prospective virtual screening campaigns. Moreover, as it not
computationally demanding as other free energy-based methods,
it constitutes a reasonable compromise to obtain accurate
rescoring of ligands at reasonable computational costs. One
might argue that the application of more accurate workflows
would require longer computing times with respect to docking.
This is especially true considering the recent contributions
provided by high performance computing systems to molecular
docking, which enable the screening of millions of compounds
in a reasonable time (Perez-Sanchez andWenzel, 2011; Guerrero
et al., 2012; Dong et al., 2018). However, future advances in
hardware and software will help circumventing such limitation
(De Vivo et al., 2016; Wang et al., 2018). Moreover, further
advances in our ability to correctly estimate entropies of
binding, which are usually not considered in the calculations,
will certainly improve post-docking tools, and binding free
energy predictions in general. The implementation of enhanced
sampling MD protocols in post-docking protocols is another
possibility that may enable a more efficient sampling of
ligand-protein complexes. Because free energy predictions are
heavily dependent on correct binding modes, this may have
dramatic consequences on our ability to predict active ligands
in virtual screenings. Another interesting question is how to
further increase hit rates while enabling post-docking tools
to identify significantly vs. moderately active hits. This is
an important aspect that would make the subsequent hit-to-
lead optimization much easier. Exponential consensus ranking
approaches such as the one developed by Palacio-Rodríguez
et al. (2019) could be of help, for example to favorably
exploit both MM-PBSA and MM-GBSA ranked lists, which
generally differ.
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