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Abstract 

Objective: Gastric cancer is more open related to genetic predisposition. In our RNA sequencing study on gastric 
cancer patients, Runt‑related transcription factor‑3 (RUNX3) expression was significantly down‑regulated in gastric 
cancer. We showed that decreased levels of RUNX3 are significantly associated with c‑MET (r = − 0.4216, P = 0.0130). 
In addition, c‑MET expression is a candidate for targeted therapy in gastric cancer. Therefore, in the present study, 
the anti‑cancer effects of the c‑MET inhibitor on gastric cancer cells from positive or negative for c‑MET amplification 
were evaluated.

Results: INC280 treatment inhibits growth of a c‑MET‑amplified MKN45 (RUNX3‑positive) and SNU620 (RUNX3‑
negative) diffuse type cells. Then, INC280 showed the highest inhibition and apoptotic rates with the lowest  IC50s in 
MKN45 cells but not in c‑MET‑reduced MKN28 (intestinal type) cells. We also showed that INC280 inhibits the WNT 
signaling pathway and SNAIL expression in MKN45 cells. The data indicate that INC280 could be used as therapeutic 
agents for the prevention or treatment of diffuse gastric cancer positive for c‑MET amplification.
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Introduction
High-incidence areas of GC include Eastern Europe, 
South America, and East Asia [1–3]; however, the mor-
tality rates have decreased markedly in recent years [4]. 
In Korea, despite a decline in the incidence of GC, it 
remains the second most common cancer [5]. In addition, 
unsatisfactory treatment outcomes are caused by differ-
ences in the histological classifications of GC between 
the intestinal- and diffuse-type. Intestinal-type GC is 
related to Helicobacter pylori infection and diffuse-type 

GC is more open related to genetic predisposition. Thus, 
diffuse-type is less related to environmental factors [6]. 
To overcome this problem, and to develop and identify 
new drug candidates, determining tumor characteristics 
and treatment parameters is important.

The Wnt/β-catenin signaling pathway and EMT are 
associated with a wide range of GC progression events. 
EMT was observed in the invasive progression of can-
cer that initiates diffuse GC in the absence of hyper-
proliferation and β-catenin activation [7]. SNAIL, a key 
transcriptional repressor of E-cadherin expression, is a 
well-known trigger of EMT, leading to irreversible tum-
origenesis in mice [8]. Recent studies have revealed that 
downregulation of the proto-oncogene MET suppresses 
EMT in prostate cancer [9]. Moreover, MET amplifica-
tion is a frequent molecular abnormality in GC [10, 11].
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In the present study, we applied an RNA-seq approach 
to identify MET and RUNX3 genes differentially 
expressed in the GC and adjacent normal tissues from 34 
patients. We evaluated the effects of INC280 on the sup-
pression of GC proliferation, migration, and apoptosis 
according to Lauren’s classification.

Main text
Methods
Materials
INC280 was supplied from Novartis (Basel, Switzerland). 
The compounds were dissolved in dimethyl sulfoxide at 
10 mmol/L prior to use in all in vitro studies.

Human gastric tissue specimen collection
The GC and adjacent normal tissues obtained from 34 
patients were approved by the Ethics Committee of Hal-
lym University Sacred Heart Hospital (2015-I078) and 
were selected as the discovery cohort for RNA-seq. Addi-
tional file 1: Table S1 summarizes the discovery sets.

RNA‑seq analysis
RNA-seq experimental procedures were performed using 
standard procedures. The raw reads were saved in the 
FASTQ format, and the dirty raw reads were removed 
before analyzing the data. Reads that could be uniquely 
mapped to a gene were used to calculate the gene expres-
sion levels, which were measured based on the number of 
reads per kilobase of transcript per million mapped reads. 
We identified differentially expressed genes between 
paired tumor and normal samples, and a P value ≤ 0.001 
was deemed to indicate statistical significance.

Cell lines and cell culture
The human GC cell lines SNU5, SNU16, SNU620, 
MKN7, MKN28, MKN45, MKN74, AGS, and KATO-III 
were obtained from the KCLB (Seoul, Korea). Cell cul-
ture was performed using standard procedures.

Growth inhibition assays
The  IC50 values of INC280 on SNU620, MKN28 and 
MKN45 cells were measured using the MTS assay for 
the selected drugs at concentrations of 10, 1, 0.1, 0.05, 
0.0025, 0.00125, 0.001, 0.0001, 0.00001 or 0.000001  µM 
for 48  h. On the day of the proliferation assay, the 
medium was removed, and 200 µL of fresh medium was 
added to each well of the 96-well plates, followed by 
20 µL of MTS solution, and the plates were incubated at 
37 °C for 2 h in a humidified environment with 5%  CO2. 
The absorbance was read at 490  nm using a Synergy-2 
Multi-Mode Microplate Reader (BioTek). The  IC50 values 
were determined after fitting growth inhibition curves to 

dose–response curves using GraphPad Prism software 
(GraphPad Software Inc., USA).

Cell migration assay
MKN28 and MKN45 cells were diluted and seeded at 
a density of about 1 × 105 cells per well in 6-cm plates. 
After incubation for 1  day, a straight scratch was made 
on the cells using a P200 pipette tip. The cells were then 
washed with phosphate-buffered saline and were fur-
ther cultured with or without INC280 in RPMI1640. 
After incubation for 0, 24, and 72 h, the gap width of the 
scratch re-population was photographed and then com-
pared with the initial gap size at 0 h.

Apoptosis analysis
The MKN28, SNU620, and MKN45 cells seeded into 
6-well plates at a density 5 × 104 cells per millilitre were 
treated with  IC50 values of INC280. Cell death was deter-
mined using the annexin V-APC/PI apoptosis detection 
kit (Thermo Fisher Scientific, USA) using a CytoFLEX 
flow cytometer (Beckman Coulter, USA). The percentage 
of intact and apoptotic cells were calculated using CytEx-
pert software (Beckman Coulter).

qRT‑PCR analysis
To quantitate mRNA expression, the total RNA from 
each sample was reverse-transcribed into cDNA using 
the High Capacity cDNA reverse Transcription Kit 
(Applied Biosystems, USA). qRT-PCR was performed 
using the Power SYBR Green PCR Master mix and a 
LightCycler 96 instrument (Roche Applied Science, 
USA). The transcript levels of GAPDH were used for 
sample normalization. Primer sequences are listed in 
Additional file 1: Table S2.

Immunoblot analysis
Immunoblot analysis was performed using standard pro-
cedures. The antibodies are listed in detail in Additional 
file 1: Table S3.

Immunofluorescence microscopy
MKN45 cell cultured on chamber slides were washed 
with PBS and fixed with 4% paraformaldehyde, after 
which they were incubated with anti-β-catenin mono-
clonal antibody (BD Transduction Laboratories) and 
stained with anti-mouse IgG Alexa Fluor 488 (Invitro-
gen). Cells were examined using a ZEISS LSM700 confo-
cal laser scanning microscope (Carl Zeiss, Oberkochen, 
Germany).

Statistical analysis
The data were statistically analyzed using Prism 5. All 
values are presented as mean ± standard error of the 
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mean. Statistical significance was examined using the 
Mann–Whitney test and Fisher’s exact test. The Kaplan–
Meier method was used to estimate OS, and differences 
between genotypes were compared by using the log-rank 
method. A P value < 0.05 was deemed to indicate statisti-
cal significance.

Results
Baseline characteristics
Thirty-four subjects were enrolled in the genetic altera-
tions study using RNA-seq, and we identified differen-
tially expressed genes such as MET and RUNX3. The 
associations of MET and RUNX3 expression with clin-
icopathological characteristics are shown in Additional 
file  1: Table  S1. We found a correlation between the 
down-regulation of RUNX3 and MET overexpression 
(Fig. 1a), whereas only one (SNU620) cells showed a cor-
relation pattern (Fig. 1b). Low expression of RUNX3 was 
significantly associated with poor differentiation (52.9%; 
P < 0.001), high expression of Ki-67 (79.4%; P < 0.001), 

diffuse-type histology (41.2%; P < 0.001) and recurrence 
(100%; P < 0.001) (Additional file 1: Table S1). OS analy-
sis comparing contribution of MET or RUNX3 genotype 
of GC showed no statistically significant differences (log-
rank P = 0.1346 and P = 0.4200, respectively; Fig. 1c). In 
this study, MET amplification doesn’t associated with a 
poor outcome. It is probably because MET amplification 
is present in 2–20% of GC patients, however, only 7% of 
tumors overexpressed p-MET in overexpressed MET 
[12]. p-MET was significantly associated with poor out-
come [13].

Determining the effective dose of INC280 in intestinal 
and diffuse‑type cells
To investigate the effect of the INC280 on c-MET ampli-
fied cell with or without RUNX3, c-MET and RUNX3 
protein expression was evaluated in GC cells. c-MET and 
RUNX3 proteins were expressed in SNU5 and MKN45 
cells. Interestingly, p-MET amplified gastric cancer cell 
lines belong to the diffuse-type (Fig.  1b). We tested the 

Fig. 1 Correlation between RUNX3 levels and c‑MET levels in gastric cancer patients. a Clinical significance of decreased RUNX3 expression and 
increased MET expression in gastric tumors. Expression of RUNX3 and MET mRNA in gastric cancer and normal pair samples as determined by 
RNA‑sequencing. R = − 0.4216, P = 0.0130 by Spearman correlation. b Immunodetection of endogenous c‑MET, phosphor c‑MET (pY1234/1235) 
and RUNX3 in diffuse type‑ and intestinal type‑gastric cancer cell lines. c Overall survival (OS) of patients with MET‑ or RUNX3‑amplified tumors 
compared with low amplification
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dose-dependent inhibitory effects of INC280 in MKN28 
(intestinal-type), SNU620 (RUNX3-negative diffuse-
type), and MKN45 (RUNX3-positive diffuse-type) cells 
(Fig. 2). The cells were treated with different concentra-
tions of INC280 for 48 h, and the optimal dose was deter-
mined by evaluating the cell viability using MTS assays. 
Treatment with the INC280 decreased the cell viabil-
ity in a dose-dependent manner in c-MET-amplified 
SNU620 and MKN45 cells but not in c-MET-reduced 
MKN28 cells (n = 3) (Fig.  2). The  IC50 value of INC280 
was determined using non-linear regression analysis 
[IC50 = 1.7 nM (MKN45) or 2.4 nM (SNU620)].

Effects of INC280 on cell migration
To determine the inhibitory effects of INC280 on 
MKN28 and MKN45 cells, cell migration was examined 
by wound-healing assay using the respective IC50 val-
ues of INC280 (Additional file 2: Figure S1). The wound 
gaps in the c-MET-amplified MKN45 cells treated with 
INC280 were significantly wider than those of treated 
c-MET-reduced MKN28 cells. INC280 showed an inhibi-
tory effect on the c-MET-amplified cell line.

Effects of INC280 on cell apoptosis
To evaluate the effects of INC280 on cell death in 
MKN28, SNU620, and MKN45 cells, apoptosis was 
examined by staining with annexin V-APC/PI, fol-
lowed by flow cytometry (Additional file  2: Figure S2). 
Cells were stained with annexin V-APC and PI, which 
assess early apoptotic and late apoptotic cell popula-
tions, respectively. INC280 showed the best cell death 
rates in SNU620 and MKN45 cells but not in MKN28 
cells. The percentage of apoptotic cells was 22.59% 
and 23.56 ± 1.08% after exposure to INC280 for 48  h, 

respectively. By contrast, these drugs were inactive 
against MKN28 cells, which express low levels of c-MET.

INC280 inhibits c‑MET activation and WNT/β‑catenin 
signaling in RUNX3‑positive diffuse‑type cells
To examine the inhibitory effects of INC280 on MKN28 
and MKN45 cells, oncogenic pathways were examined by 
analyzing gene and protein expression (Fig. 3a–c). When 
cells were treated with INC280, the levels of GSK3β 
and E-cadherin were increased in MKN45 cells; by con-
trast, the levels of total c-MET, phosphorylated c-MET, 
β-catenin, Wnt/β-catenin downstream target gene 
(c-MYC, CCND1), angiogenic marker (CD31), and EMT 
marker (SNAIL) were decreased. However, these drugs 
were inactive against MKN28 cells. Confocal micros-
copy analysis of the cellular distribution of endogenous 
β-catenin on MKN45 cells showed a membranous stain-
ing pattern (Fig. 3d). Membranous β-catenin was highly 
reduced after 20  h of INC280 treatment. Surprisingly, 
treatment of MKN45 cells with INC280 that resulted in 
increased cell size. In mammalian cells, cell size increases 
when cell cycle progression is blocked [14]. INC280 may 
induce apoptosis and cell cycle arrest by degradation of 
cytosolic β-catenin.

Discussion
Cancer is a disease caused by genetic alterations. There-
fore, we conducted RNA-seq in GC samples and their 
matched adjacent normal tissues to identify genetic alter-
ations. The RNA-seq study showed that decreased lev-
els of RUNX3 were significantly associated with c-MET, 
however cell lines were no correlated between RUNX3 
and c-MET. RUNX3 loss is an early event in GC progres-
sion due to aberrant Wnt/β-catenin signaling [15–17], 
which mediates EMT in GC [18], a process whereby epi-
thelial cells are converted into migratory and invasive 
cells [19, 20].

c-MET amplification is present in 2–20% of GC and is 
associated with a poor outcome [10, 11, 21, 22]. c-MET 
is known to activate cancer cell proliferation, migration 
and tumor invasiveness [23, 24]. Recent preclinical stud-
ies have revealed that c-MET inhibitors, including onar-
tuzumab, foretinib, crizotinib, and PHA-665752, have 
failed in clinical trials in GC patients [25, 26]. Therefore, 
identifying an appropriate c-MET-positive GC group that 
is sensitive to c-MET inhibition is an urgent issue. There-
fore, in the present study, c-MET inhibitor drugs were 
screened to determine whether they could be used as 
therapeutic agents for the treatment of GC using growth 
inhibition assays of MKN45 cells. Among the six c-MET 
inhibitor drugs tested, INC280 showed high inhibitory 
activity; therefore, this drug was selected for further 
study. INC280 works against putative c-MET-dependent 

Fig. 2 Effect of INC280 in c‑MET amplified gastric cancer cells 
positive or negative for RUNX3 expression. MKN28, SNU620, and 
MKN45 cells were treated with various concentrations of INC280 for 
48 h. The values of cell viability were then normalized against that of 
the control
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Fig. 3 Effect of c‑MET downregulation on RUNX3, SNAIL and the Wnt/β‑catenin signaling pathway. mRNA expression of c‑MET‑RUNX3‑regulated 
genes in MKN28 (a) and MKN45 (b) cells. c Protein levels of c‑MET‑RUNX3‑regulated genes in MKN28 and MKN45 cells. ***p < 0.001. d A presentative 
confocal microscopy showing decreased of membrane bound β‑catenin in INC280 treated MKN45 cells
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tumor types [27]. In the present study, INC280 showed 
increased inhibition and apoptotic rates, indicating ther-
apeutic utility in MKN45 cells. When MKN45 cells were 
treated with INC280, the levels of total c-MET, phospho-
rylated c-MET, total β-catenin, CCND1, c-MYC, CD31, 
and SNAIL proteins or genes were decreased. By con-
trast, the levels of phosphorylated β-catenin, RUNX3, 
E-cadherin, and GSK-3β were increased. Our results 
additionally indicated that INC280 may suppress EMT 
through decreasing SNAIL expression. Indeed, our 
results showed that INC280, as well as GSK3β-mediated 
signaling, inhibits Wnt/β-catenin signaling by inhibiting 
c-MET phosphorylation in diffuse GC.

The results of this study indicate that c-MET and 
RUNX3 are differentially expressed in GCs compared 
with normal adjacent gastric mucosa and found a correla-
tion between low RUNX3 levels and c-MET overexpres-
sion and tumor recurrence. INC280 shows significant 
inhibitory activity in c-MET-expressed diffuse GC. Our 
in vitro study strongly supports the clinical evaluation of 
INC280, which prevents c-MET-associated GC.

Limitations
Our study reports an association between MET and dif-
fuse-type. However, the lack of significance in our study 
could be due to relatively small sample size. Although dif-
fuse GC positive for c-MET amplification might serve as 
a predictor for poor outcome, it is considered as action-
able target.
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Additional file 2: Figure S1. Wound‑healing assay was used to assess 
the effect of INC280 on the migration ability of MKN28 and MKN45 cells. 
INC280‑treated MKN45 cells showed suppressed migration ability com‑
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