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ABSTRACT
Sulphamate and sulphamide derivatives have been largely investigated as carbonic anhydrase inhibitors
(CAIs) by means of different experimental techniques. However, the structural determinants responsible for
their different binding mode to the enzyme active site were not clearly defined so far. In this paper, we
report the X-ray crystal structure of hCA II in complex with a sulphamate inhibitor incorporating a nitroimi-
dazole moiety. The comparison with the structure of hCA II in complex with its sulphamide analogue
revealed that the two inhibitors adopt a completely different binding mode within the hCA II active site.
Starting from these results, we performed a theoretical study on sulphamate and sulphamide derivatives,
demonstrating that electrostatic interactions with residues within the enzyme active site play a key role in
determining their binding conformation. These findings open new perspectives in the design of effective
CAIs using the sulphamate and sulphamide zinc binding groups as lead compounds.
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Introduction

Carbonic anhydrases (CAs; EC: 4.2.1.1) are a family of metalloen-
zymes present in all kingdoms of life that catalyse the interconver-
sion of carbon dioxide and bicarbonate1. Based on their structural
features, they are grouped into seven different classes, namely a-,
b-, c-, d-, f-, g- and h-CAs. a-CAs are predominantly expressed in
vertebrates, bacteria, algae and cytoplasm of green plants, b-CAs
in bacteria, algae and chloroplasts, c-CAs in archaea and some

bacteria, d- and f-CAs in some marine diatoms, g-CAs only in the
protozoan parasite Plasmodium spp., whereas the recently discov-
ered h-class has been so far found only into the marine diatom
Phaeodactylum tricornutum1–8. Humans encode 12 catalytically
active a-CA isozymes, which differ in molecular features, oligo-
meric arrangement, kinetic properties and cellular localisation,
with isoforms I, II, III, VII and XIII localised in the cytosol, CA IV, IX,
XII and XIV associated with the cell membrane, CA VA and VB
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confined in mitochondria, and CA VI secreted in saliva and milk1. All
catalytically active human (h) CAs contain in the active site a Zn2þ

ion essential for catalysis; this ion is coordinated by three conserved
histidine residues (His94, His96 and His119) and a water molecule/
hydroxide ion1. hCAs participate in several physiological processes,
among which pH homeostasis, CO2 and HCO3

� transport, cell differ-
entiation and proliferation, respiration, bone resorption, neurotrans-
mission, ureagenesis, gluconeogenesis, lipogenesis, and
fertilisation9,10. Abnormal levels and/or activities of these enzymes
have been often associated with different human diseases, such as
glaucoma, epilepsy, high-altitude sickness, as well as cancer11. For
these reasons, hCAs represent an important target for the design of
inhibitors or activators with biomedical applications11,12.

The most studied carbonic anhydrase inhibitors (CAIs) are sul-
phonamide derivatives (R-SO2NH2), which are able to bind in a
tetrahedral geometry the active site zinc ion, substituting the
water molecule/hydroxide ion present in the native enzyme1.
These molecules have been largely investigated, due to their cap-
ability to strongly bind to the hCA active site, with many such
agents in clinical use11,13; however, the occurrence of various
undesired side effects due to the lack of selectivity against the dif-
ferent CA isoforms strongly limits their use as drugs1,11. Therefore,
other CAI classes with different zinc-binding groups (ZBGs) have
been developed over the years, with sulphamates (R-O-SO2NH2)
and sulphamides (R-NH-SO2NH2) among the most important ones.
These compounds differ from sulphonamides for the additional
presence of an electron withdrawing group, an oxygen atom in
the case of sulphamates14 and an NH group in the case of sulpha-
mides15. As observed for sulphonamides, also sulphamates and
sulphamides exert their inhibitory action through coordination to
zinc ion and consequent substitution of the water molecule/
hydroxide ion1. Plenty of studies has been reported showing that
many sulphamates possess effective inhibitory properties against
all known human isoforms1,11,16–19, with some derivatives, such as
the sugar sulphamate topiramate (compound 1 in Figure 1), suc-
cessfully used for the treatment of a variety of diseases such as
epilepsy, migraine, and obesity20,21. Although the sulphamide
group was initially considered not particularly suitable for obtain-
ing potent CAIs22, several compounds containing a primary sul-
phamide moiety have also been proved to possess a high CA
inhibition activity1,11,19,23. As an example, compound JNJ-26990990
(2) (see Figure 1), which presents excellent anticonvulsant activity
and can be potentially used in the treatment of multiple forms of
epilepsy, is also a nanomolar inhibitor of several CA isoforms24,25.

We recently reported the synthesis of a series of sulphona-
mide/sulphamide/sulphamate derivatives incorporating nitroimida-
zole moieties26. Inhibition studies against isoforms I, II, IX, and XII
showed that these compounds, in particular, the sulphamate/
sulphamide derivatives 3 and 4 (Figure 1), are good CAIs, with KI
values in the nanomolar range. Moreover, compound 4 was dem-
onstrated to inhibit in vitro the hypoxia-induced extracellular acid-
osis in two cell lines overexpressing CA IX and to enhance in vivo,
in co-treatment with doxorubicin, sensitisation towards radiother-
apy and chemotherapy of CA IX containing tumours26. The X-ray
crystal structure of the hCA II/4 adduct was also reported, high-
lighting the principal interactions responsible for the binding of
the inhibitor to the enzyme active site26.

Within a research project aimed at understanding at the atomic
level, the inhibition properties of sulphamate/sulphamide CAIs,
here we report the X-ray crystal structure of the hCA II/3 adduct
and compare it with the previously obtained hCA II/4 structure.
Surprisingly, even if the two inhibitors differ for only one atom

(see Figure 1), they adopt a completely different binding mode
within the CA II active site. Binding free energy calculations have
been used to rationalise this result.

Materials and methods

Crystallisation, X-ray data collection, and refinement

Crystals of the hCA II/3 complex were prepared by soaking hCA II
100K crystals (obtained using the hanging drop vapour diffusion
technique) for 1 h in the crystallisation solution (1.3M sodium cit-
rate, 100mM Tris-HCl, pH 8.5) saturated with the inhibitor. Prior to
X-ray data collection, crystals of the complex were transferred
from the drops to a cryoprotectant solution prepared by the add-
ition of 20% glycerol to the precipitant solution and then flash-
cooled to 100K in a nitrogen stream. A complete dataset was col-
lected at 1.80 Å resolution from a single crystal, at 100 K, with a

Figure 1. Structural formulas of topiramate (1), JNJ-26990990 (2), 2-methyl-5-
nitro-imidazole-sulphamate (3), 2-methyl-5-nitro-imidazole-sulphamide (4) and the
topiramate sulphamide analogue (5). hCA II inhibition constants for compounds 3
and 4 are also reported26.
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copper rotating anode generator developed by Rigaku and
equipped with Rigaku Saturn CCD detector.

Diffraction data were indexed, integrated and scaled using the
HKL2000 software package27. A total of 107,169 reflections were
measured and reduced to 22,183 unique reflections. Crystal
parameters and relevant X-ray data collection statistics can be
found in Table 1. Initial phases were calculated using hCA II crys-
tallised in the P21 space group (PDB code 1CA2)28 as starting
model after deletion of non-protein atoms. An initial round of rigid
body refinement followed by simulated annealing and individual
B-factor refinement was performed using the programme
Crystallography and NMR system (CNS)29,30. Model visualisation
and rebuilding were performed using the graphics programme
O31. After an initial refinement, limited to the enzyme structure, a
model for the inhibitor was easily built and introduced into the
atomic coordinates set for further refinement. Crystallographic
refinement was carried out against 95% of the measured data. The
remaining 5% of the observed data, which was randomly selected,
was used for Rfree calculations to monitor the progress of refine-
ment. Restraints on inhibitor bond angles and distances were
taken from the Cambridge Structural Database32, whereas stand-
ard restraints were used on protein bond angles and distances
throughout refinement. Water molecules were built into
peaks>3r in jFoj � jFcj maps that demonstrated appropriate
hydrogen-bonding geometry. Several alternate cycles of refine-
ment and manual model building were performed to reduce the
Rwork and Rfree to the final values of 0.157 and 0.195, respectively.
Relevant refinement statistics can be found in Table 1. The refined
model contained 2055 protein atoms, 237 waters, and one

inhibitor molecule. Coordinates and structure factors have been
deposited with the Protein Data Bank (accession code 5O07).

Computational study

Systems preparation
Complex_O and complex_N models were built from the hCA II/3
and hCA II/426 crystallographic structures, by replacing the
2-methyl-5-nitro-imidazole moiety of the two inhibitors with a
methyl group. The third model, namely complex_NO, was
obtained by substituting the N2 atom of complex_N with an oxy-
gen atom. Hydrogen atoms were added to all the models and
their positions were energy minimised by 500 steps of Conjugate
Gradient using the Discover module of InsightII package
(Insight2000, Accelrys, San Diego, CA).

The partial atomic charges for ligands and zinc ion were
obtained by quantum mechanical (QM) calculations (B3LYP/
6–31G�) using the Gaussian09 software33 via the Restrained
ElectroStatic Potential (RESP) fitting procedure as implemented in
the PyRED server34,35. The charges calculations were performed on
model systems including the ligand, the zinc ion and the side
chains of the three coordinating histidine residues. Since literature
data suggest that the sulphamate and sulphamide groups, simi-
larly to sulphonamides36,37, bind the zinc ion in a deprotonated
form, the total charge for ligands was set at �1 e. A charge of 1.5
e was obtained for the zinc ion, whereas a high negative charge
was derived for the deprotonated nitrogen atom N1 (� �1.7 e) in
all the three ligands. A complete list of the partial charges com-
puted for the ligands atoms is reported in Table 2. The General
AMBER force field38, and the AMBERff14SB force field39 were used
for the ligands and proteins, respectively. Van der Waals parame-
ters for the Zn2þ ion were adopted from the work of Li et al.40

(r¼ 1.271; E (kcal/mol)¼ 0.00330286).

Binding free energy calculations
The binding free energies (DGbind in kcal/mol) were calculated
using the Molecular Mechanics/Generalised Born Surface Area
(MM/GBSA) method41,42 implemented in AmberTools1443.
Moreover, to identify the key protein residues responsible for the
ligands binding process, the binding free energy was decomposed
on a per-residue basis.

For each complex, the binding free energy of MM/GBSA was
estimated as follows:

DGbind ¼ Gcomplex�Gprotein�Gligand

where DGbind is the binding free energy and Gcomplex, Gprotein and

Table 1. Data collection and refinement statistics. Values in parentheses refer to
the highest resolution shell (1.86–1.80 Å).

Crystal parameters
Space group P21
a (Å) 42.2
b (Å) 41.3
c (Å) 71.7
c (�) 104.3
Number of independent molecules 1

Data collection statistics
Resolution (Å) 25.3–1.80
Wavelength (Å) 1.54178
Temperature (K) 100
Rmerge (%)

a 3.5 (9.1)
<I>/<r(I)> 35.8 (10.6)
Total reflections 107,169
Unique reflections 22,183
Redundancy (%) 4.8 (2.7)
Completeness (%) 98.8 (92.9)

Refinement
Resolution (Å) 25.3–1.80
Rwork (%)

b 15.7
Rfree (%)

b 19.5
RMSD from ideal geometry
Bond lengths (Å) 0.012
Bond angles (�) 1.7
Number of protein atoms 2055
Number of water molecules 237
Number of inhibitor atoms 16
Average B factor (Å2)
All atoms 13.3
Protein atoms 12.1
Inhibitor atoms 16.0
Water molecules 23.2

aRmerge¼RhklRijIi(hkl)�<I(hkl)>j/ RhklRiIi(hkl), where Ii(hkl) is the intensity of
an observation and< I(hkl)> is the mean value for its unique reflection; sum-
mations are over all reflections.
bRwork¼RhkljjFo(hkl)j � jFc(hkl)jj/RhkljFo(hkl)j calculated for the working set of
reflections. Rfree is calculated as for Rwork, but from 5% of the data that was not
used for refinement.

Table 2. Partial atomic charges (e) computed for the three ligands in
complex_O, complex_N and complex_NO, respectively. Charges were calculated
via the RESP fitting procedure as implemented in the PyRED server using
Gaussian09 software.

Complex_O Complex_N Complex_NO

Ligand atom Charge Ligand atom Charge Ligand atom Charge

N1 �1.7264 N1 �1.7369 N1 �1.6903
H1 0.6300 H1 0.5896 H1 0.5976
S1 1.2394 S1 1.4216 S1 1.3758
O1 �0.4723 O1 �0.5319 O1 �0.4851
O2 �0.5586 O2 �0.5903 O2 �0.6095
O3 �0.3736 N2 �0.7886 O3 �0.4657
C1 0.0398 H2 0.4052 C1 0.3176
H11 0.1055 C1 0.2330 H11 0.0483
H12 0.0678 H11 0.0232 H12 �0.0588
H13 0.0484 H12 �0.0722 H13 �0.0300

H13 0.0473
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Gligand are the free energies of complex, protein, and ligand,
respectively. The energies were estimated as shown below:

DGbind ¼ DEgas þ DGsol�TDS

If ligands have similar structures and binding modes, it is
acceptable to exclude the entropy contribution (–TDS) in prac-
tise42,44,45. Then the binding free energy is evaluated by46:

DGbind ¼ DEgas þ DGsol

DEgas ¼ DEMM ¼ DEelec þ DEvdW
DGsol ¼ DGGB þ DGSA

where DEgas, the complete gas phase force field energy, is the
molecular mechanics (MM) part DEMM, including van der Waals
(DEvdW) and electrostatic (DEelec) contributions; DGsol is the solvation
free energy, and is the sum of electrostatic (DGGB) and non-polar
(DGSA) interactions. The electrostatic solvation free energy (DGGB) is
evaluated via Generalised Born implicit solvation model47, and the

non-polar solvation free energy (DGSA) is estimated by the Linear
Combination of Pairwise Overlaps (LCPO) method48.

Results and discussion

Crystal structure of hCA II in complex with compound 3 was deter-
mined at 1.80 Å resolution, revealing a clear electron density for
the inhibitor molecule in the enzyme active site (Figure 2). The
model was refined with CNS29,30, giving final Rwork and Rfree values
of 15.7% and 19.5%, respectively. The average B factors were 12.1
Å2 for the protein, 23.2 Å2 for the solvent and 16.0 Å2 for the
inhibitor molecule. Data collection and refinement statistics are
shown in Table 1.

The binding of the inhibitor to hCA II did not generate major
changes in the protein structure as proved by the low value of
the r.m.s.d. calculated by superimposing the Ca atoms in the
adduct and the non-inhibited enzyme (0.3 Å). Similarly to what
previously observed for other hCA II/sulphamate complexes solved
so far49–65, compound 1 interacts directly with the zinc ion of the
active site, with its sulphamate nitrogen atom N1 (for atom num-
bering see Figure 1) displacing the water molecule/hydroxide ion,
which in the not-inhibited enzyme occupies the fourth coordin-
ation position. Additional hydrogen bonds between the sulpha-
mate moiety and residues within the enzyme active site
contribute to stabilise the binding. In detail, the sulphamate nitro-
gen atom N1 donates a hydrogen bond to the Thr199OG1 atom,
whereas one of the two sulphamate sp2 oxygens accepts another
hydrogen bond from the main chain nitrogen of the same residue
(Figure 2). No other polar interactions were observed between the
inhibitor and enzyme residues, but a large number of van der
Waals contacts were present, with the imidazole ring being
located in the middle of the active site cavity and the nitro group
being oriented towards the hydrophilic region of it (Figure 2)66.

To compare the binding mode of compounds 3 and 4 to the
hCA II active site, the crystallographic structures of the hCA II/3
and hCA II/4 adducts were superimposed showing that the two
inhibitors adopt a completely different binding mode to the
enzyme (Figure 3(A)). Main differences were observed in the orien-
tation of the imidazole rings, which were rotated of about 140� in
the two complexes (Figure 3(A)). Because of the different orienta-
tion, inhibitor 4 established a higher number of favourable interac-
tions with active site residues (Figure 3(B)), thus explaining its
higher affinity for the enzyme (see KI values in Figure 1). Since
compounds 3 and 4 differ only for one atom (O3 instead of N2) in

Figure 3. (A) Structural superposition between hCA II/3 (green) and hCA II/4 (white, PDB code 4MO8)26. (B) Active site region in the hCAII/4 complex. Hydrogen bonds,
active site Zn2þ coordination and residues establishing van der Waals interactions (distance <4.0 Å) with the inhibitor are reported.

Figure 2. Active site region in the hCAII/3 complex. Hydrogen bonds, active site
Zn2þ coordination and residues establishing van der Waals interactions (distance
<4.0 Å) with the inhibitor are reported. Sigma-A weighted j2Fo-Fcj simulated
annealing omit map (at 1.0 sigma) relative to the inhibitor molecule is also
shown.
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their ZBG (see Figure 1), the structural basis of the different orien-
tation of the imidazole rings in the active site cavity should be
searched in the interactions that this atom can establish with
neighbouring residues within the active site cavity. In the hCA II/4
complex, the nitrogen atom N2 is at 3.2 Å from the Thr200OG1
atom; this distance being compatible with the formation of a
weak hydrogen bond interaction. On the contrary, in the hCA II/3
complex, the distance between the sulphamate oxygen O3 and
the Thr200OG1 atom becomes of 4.7 Å. This slide away causes the
rearrangement of the imidazole ring within the active site and the
loss of the hydrogen bond interactions between the nitroimida-
zole moiety and residues His64 and Thr200.

To understand if the different position assumed by N2 and O3
atoms in the enzyme active site was associated to a peculiarity of
the two complexes under investigation, or to a more general
behaviour of sulphamate and sulphamide derivatives, a compara-
tive analysis of all hCA II/sulphamate and hCA II/sulphamide struc-
tures available in the PDB was undertaken25,26,49–65,67–71.
Surprisingly, the analysis of all these structures revealed that, inde-
pendently of the nature of the moiety attached to the ZBG, the
distance between the Thr200OG1 atom and the sulphamide nitro-
gen N2 in hCA II/sulphamide complexes was generally shorter
than the corresponding distance between the sulphamate oxygen
O3 and the same enzyme atom in hCA II/sulphamate complexes
(see Tables 3 and 4). Moreover, in most of the hCA II/sulphamide
adducts, such a distance is compatible with the formation of an H-
bond, the situation not observed in the case of enzyme/sulpha-
mate complexes.

To understand why the sulphamate oxygen O3 atom was
always pushed away from the Thr200OG1 atom with respect to
the corresponding atom in sulphamides, binding free energy cal-
culations were carried out. At this aim, the MM/GBSA method,
which allows obtaining a per-residue decomposition of the bind-
ing free energy, was utilised. To make results independent on the
nature of the moiety attached to the ZBG, simplified models of
sulphamate/sulphamide derivatives were used. In particular, three
model systems, hereafter indicated as complex_O, complex_N
and complex_NO, were built. The first two models were obtained
starting from the hCA II/3 and hCA II/4 crystallographic structures
and replacing the 2-methyl-5-nitro-imidazole moiety of the two
inhibitors with a methyl group. The third model was obtained by
substituting the N2 atom of complex_N with an oxygen atom. It
is important to highlight that, whereas complex_O and
complex_N represent a simplified version of the hCA II/sulpha-
mate and hCA II/sulphamide crystal structures, complex_NO corre-
sponds to a hypothetical hCA II/sulphamate adduct, where the
oxygen atom O3 is forced to assume the same position occupied
by N2 in hCA II/sulphamide complexes. Before calculations, hydro-
gen atoms, which were not visible in the crystallographic struc-
tures, were added to the models and their positions were energy
minimised using the Discover module of InsightII package. It is
worth of note that in all the protonated complexes, in agreement
with what observed in the neutronic structure of hCA II crystallised
at pH 7.5 (PDB code 4Q49)72, the hydrogen bound to the
Thr200OG1 atom was oriented towards Pro201O atom, in a direc-
tion opposite to the position of the ligand (Figure 4).
Consequently, the Thr200OG1 atom can act only as a hydrogen
bond acceptor when interacting with the ligand. Accordingly, in
complex_N Thr200OG1 atom establishes a hydrogen bond inter-
action with the N2 atom of the ligand (Figure 4(A)), which is a
hydrogen bond donor. On the contrary, in complex_O and
complex_NO, it cannot form such interaction with O3 atom,
since the O3 atom can act only as hydrogen bond acceptor
(Figure 4(B,C)).

Table 5 reports results of MM/GBSA calculations, which allowed
the identification of all the enzyme residues, beyond the zinc ion,
giving a stabilising contribution to the binding of the ligands.
Interestingly, in all three model systems four residues, namely
Val143, Leu198, Thr199 and Thr200, were identified as major con-
tributors to the binding. Among these, Val143, Leu198, and Thr199
contribute in a similar way in all complexes, whereas Thr200 pro-
vides a different contribution to binding free energy in each
model, thus confirming the critical role, suggested by crystallo-
graphic studies, played by this residue for sulphamate/sulphamide
binding. In particular, this residue interacts more favourably with
ligand in the case of complex_N, showing the lowest value of
total binding free energy (DGbind-Thr200¼�3.164 Kcal/mol),
whereas it interacts less favourably with ligand in complex_NO
with a total binding free energy value of �1.290 Kcal/mol. These
data can be explained by looking at the individual energy

Table 3. Distances between Thr200OG1 atom and the sulphamide N2 atom in
hCA II/sulphamide complexes. Only sulphamides of the type R-NH-SO2NH2 were
considered.

Compound N2-Thr200OG1 distance (Å) PDB code

N

N N
H S NH2

O

OO2N

3.2 4MO8

O

O

O

O
O

N
H
S

O

O

NH2
3.5 2H15

O N
H

NH
S
NH2

O

O

O

O 3.0 3M2X

N
H

S
NH2

O

O

B
O

O
3.2 3MNU

BBBB
B
B

BB B
B

N
H

S
NH2

O

O

3.0 4MDG
3.0 4Q78

BBBB
B
B

BB B N
H

S
NH2

O

O

3.4 4MDM

BBBB
B
B

BB
B
B

N
H

S
NH2

O

O

2.9 4MDL

O
N
H

S NH2

O

O

5.0 4PQ7

S

N
H

S
NH2

O

O 3.7 5FDC

S

N
H

S
NH2

O

O

O
O

3.7 5FDI
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Table 4. Distances between Thr200OG1 atom and the sulphamate O3 atom in hCA II/sulphamate complexes.

Compound O3-Thr200OG1 distance (Å) PDB code Compound O3-Thr200OG1 distance (Å) PDB code

N

N O S NH2

O

OO2N

4.7 5O07 N
O

O

O

S
NH2

O

O

3.9 2WD2

O
S

NH2

O

O

4.1 3IBU O
S

NH2

O

O

4.0 3IBI

O
S

NH2

O

O
O

S
NH2

O

O 4.2 3IBN
O

SO
S

NH2

O

O

NH2

O

O 4.1 3IBL

O

S

NH2

O
O

N

N

N N

N

Br
4.4 1XQ0

O

S

NH2

O
O

N

N

N N

N

4.8 1XPZ

O
S

NH2

O

O

OH 4.6 3OIM O
S

NH2

O

O

O 3.8 3OKU

O

O

O

OH

OH

O

O
O

S
NH2

O

O

4.3 3T85 O

O

O

OH

OH

O

O
O

S
NH2

O

O

4.6 3T82

OSNH2

O

O

O
S

NH2

O

O

5.2 2X7T
O

S

NH2

O
O

OOSNH2

O

O H

H
H

5.0 2GD8

OH

O

O

S NH2

O

O

4.4 2X7U OSNH2

O

O

O

OH

4.8 2X7S

O

O

O

O

O

O

O O O

S
N
H

O

O
O

S
NH2

O

O

4.6 4ZWY
O

OH

OH S

OH

O
O

N

O

O O
S

NH2

O

O

O

O

4.1 4ZX0

O
S

NH2

O

OS
O O

4.7 3DD8
O

O

O

S

NH2

O
O

4.5 1TTM

O
S

NH2

O

O

N

N

O

O

4.7 3C7P O

O
S

NH2

O

O

N

H

H
H

4.9 3BET

O

O

O

O
O

O
S

O

O

NH2

4.6 3HKU
O

O

O

S
O

O

O
O

O
S

O

O

NH2

4.5 1EOU

S

O

O
OO

OH

OH
OH

O
S

NH2

O

O

O

4.1 4ZWI
N OS

S
NH2

O

O

O

O
OOH

OH

OH
OH

4.8 4R5B

O

O

OH

OH

O

O
S

NH2

O

O

OH 4.3 3T84
O

O

O

OH

O

O
O

S
NH2

O

O

O

O

4.7 3T83

O

S

NH2

O
OCl

N

N

N

N 4.5 2WD3
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components of DGbind-Thr200 reported in Table 6. Major differen-
ces are observed in the contribution of the electrostatic term
(DEelec). This term has always a positive value, indicating in all
three complexes the presence of unfavourable charge interactions
between Thr200 and ligand. Such unfavourable interactions can
be mainly ascribed to the repulsion between the partial charges
on the backbone nitrogen atom of Thr200 and the N1 atom of
the three ligands. Although these atoms are quite far apart in all
models (4.5 Å), the energetic calculations probably overestimate
their charge repulsion due to the very high negative charge on N1
atom obtained through QM methods (see “Materials and
Methods” section). However, since the distance between the back-
bone nitrogen atom of Thr200 and the N1 atom of the ligand is
the same in all three systems, the extent of this repulsive inter-
action can be considered the same in all of them. Thus, additional
contributions have to be considered to explain the observed dif-
ferences in the electrostatic term. A detailed inspection of the
three model systems reveals the presence, in the case of
the complex_NO, of additional repulsive interactions between the
negative partial charges on O3 and Thr200OG1 atoms, which are
at a relatively close distance (3.2 Å) (Figure 4(C)), leading to the
highest value of DEelec (2.673 Kcal/mol). In complex_O, where the

distance between O3 and Thr200OG1 atoms is larger (4.7 Å)
(Figure 4(B)), this repulsive electrostatic contribution is significantly
reduced ( DEelec¼ 1.076 Kcal/mol), thus giving a justification for
the preferential binding of sulphamate in this conformation, as
observed in crystallographic studies. Finally, in complex_N, DEelec
is further reduced (0.526 Kcal/mol) due to the stabilising contribu-
tion of the N3-Thr200OG1 hydrogen bond (Figure 4(A)).

In conclusion, energetic calculations showed that in the crystal-
lographic structures of hCA II/sulphamate adducts the O3 sulpha-
mate oxygen atom prefers to be placed in a position more distant
from the Thr200OG1 atom with respect to the corresponding N2
atom in hCA II/sulphamide complexes, in order to reduce
unfavourable electrostatic interactions.

Conclusions

Sulphamates and sulphamides derivatives have been largely inves-
tigated as CAIs1,14,15 by means of different experimental techni-
ques. However, the structural determinants responsible for their
different binding mode to the enzyme active site were not clearly
defined so far. In this paper, we report a combined crystallo-
graphic and theoretical study on these compounds, demonstrating
that electrostatic interactions with residues within the enzyme
active site play a key role in determining the binding conform-
ation of these molecules. Due to these interactions, molecules that
differ only for one atom, as in the case of compounds 3 and 4,
can assume a completely different orientation within the CA active
site. A similar situation was observed also in the case of topira-
mate 1 and its sulphamide analogue 5 (see Figure 1). Indeed, also
in this case, a single atom substitution creates differences in the
arrangement of the organic scaffold with the CA II active site, and
consequently in KI values against the enzyme69. These findings
open new important perspectives in the field of CAI drug design.
Indeed, as mentioned in the ‘Introduction’ section, in the past sul-
phamide derivatives were considered not particularly suitable for
obtaining potent CAIs, mainly due to lower acidity of the sulpha-
mide group with respect to sulphamate one and to the lower ten-
dency to form the anionic form required for CA inhibition22. The
study here reported demonstrates that other factors can play a
key role in determining the affinity of sulphamide/sulphamate
derivatives for the CA active site and that, as observed for

Figure 4. Detail of the active site in the model systems Complex_N (A), Complex_O (B) and Complex_NO (C). In all three cases the ligand, the zinc ion, the three
coordinating histidines, Glu106, and enzyme residues giving a major contribution to ligand binding are shown. Only polar hydrogens are shown. Hydrogen bonds are
highlighted with red dotted lines, while the distances between O3 and Thr200OG1 are indicated with black arrows.

Table 5. Per-residue binding energy decomposition (given in kcal/mol), calcu-
lated by the MM/GBSA method for complex_N, complex_NO and complex_O.
Only residues contributing more than �1.0 kcal/mol to the binding are reported.

DGbind-Val143 DGbind-Leu198 DGbind-Thr199 DGbind-Thr200

complex_N �1.224 �5.536 �1.409 �3.164
complex_NO �1.177 �5.467 �1.604 �1.290
complex_O �1.625 �5.209 �1.764 �2.007

Table 6. Individual energy components (kcal/mol) of DGbind-Thr200 calculated
by the MM/GBSA method for complex_N, complex_NO and complex_O.

DEvdW
[a]-Thr200 DEelec

[b]-Thr200 DGGB
[c]-Thr200 DGsur

[d]-Thr200

complex_N �1.430 0.526 �1.249 �1.011
complex_NO �1.362 2.673 �1.716 �0.885
complex_O �1.002 1.076 �1.221 �0.860
[a]van der Waals contribution.
[b]Electrostatic contribution.
[c]Generalised-Born solvation contribution.
[d]Non-polar solvation contribution.
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compounds 3 and 4, these factors can also lead to a higher affin-
ity of sulphamide derivatives with respect to the corresponding
sulphamates for CAs.
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