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In Brief
The implementation of DIA in the
immunopeptidomics translational
research domain has remained
limited because the amount of
HLA peptides eluted from clinical
samples is typically not sufficient
for acquiring bothmeaningful DDA
data for generating
comprehensive spectral libraries
and DIA MS measurements. We
implemented a DIA
immunopeptidomics workflow
and assessed its sensitivity and
accuracy with libraries of growing
complexity and multi-HLA
libraries. In addition, we
demonstrated the analysis of DIA
data with predicted MS/MS
spectra of clinically relevant HLA
ligands.

Highlights
• So far, DIA in the immunopeptidomics translational research has been limited.• DIA immunopeptidomics data were analyzed against a complex multi-HLA spectral library.• This resulted in improved sensitivity with no detrimental effect on the specificity.• We implemented DIA for clinical antigen discovery combined with predicted MS/MS spectra.
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Sensitive Immunopeptidomics by Leveraging
Available Large-Scale Multi-HLA Spectral
Libraries, Data-Independent Acquisition, and
MS/MS Prediction
HuiSong Pak1, Justine Michaux1, Florian Huber1, Chloe Chong1, Brian J. Stevenson2,
Markus Müller1,2, George Coukos1, and Michal Bassani-Sternberg1,*
Mass spectrometry (MS) is the state-of-the-art method-
ology for capturing the breadth and depth of the immu-
nopeptidome across human leukocyte antigen (HLA)
allotypes and cell types. The majority of studies in the
immunopeptidomics field are discovery driven. Hence,
data-dependent tandem MS (MS/MS) acquisition (DDA) is
widely used, as it generates high-quality references of
peptide fingerprints. However, DDA suffers from the sto-
chastic selection of abundant ions that impairs sensitivity
and reproducibility. In contrast, in data-independent
acquisition (DIA), the systematic fragmentation and
acquisition of all fragment ions within given isolation m/z
windows yield a comprehensive map for a given sample.
However, many DIA approaches commonly require
generating comprehensive DDA-based spectrum libraries,
which can become impractical for studying noncanonical
and personalized neoantigens. Because the amount of
HLA peptides eluted from biological samples such as
small tissue biopsies is typically not sufficient for
acquiring both meaningful DDA data necessary for
generating comprehensive spectral libraries and DIA MS
measurements, the implementation of DIA in the immu-
nopeptidomics translational research domain has
remained limited. We implemented a DIA immunopepti-
domics workflow and assessed its sensitivity and accu-
racy by matching DIA data against libraries with growing
complexity—from sample-specific libraries to libraries
combining 2 to 40 different immunopeptidomics samples.
Analyzing DIA immunopeptidomics data against a com-
plex multi-HLA spectral library resulted in a two-fold in-
crease in peptide identification compared with sample-
specific library and in a three-fold increase compared
with DDA measurements, yet with no detrimental effect on
the specificity. Furthermore, we demonstrated the imple-
mentation of DIA for sensitive personalized neoantigen
discovery through the analysis of DIA data with predicted
MS/MS spectra of clinically relevant HLA ligands. We
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conclude that a comprehensive multi-HLA library for
DIA approach in combination with MS/MS prediction is
highly advantageous for clinical immunopeptidomics,
especially when low amounts of biological samples are
available.

Deep characterization of the human leukocyte antigen (HLA)
immunopeptidome can advance the development of thera-
peutics against cancer and infectious diseases (1–4). In can-
cer, CD8+ T cells can directly recognize and eliminate tumor
cells through specific interactions between their T cell re-
ceptors and antigens presented on the tumor cells as short
peptides (8–11 amino acids in length) in complex with HLA
molecules. MS is the state-of-the-art methodology for
capturing the breadth and depth of the immunopeptidome
across HLA allotypes and cell types (5, 6). MS-based identi-
fication of cancer-specific HLA-binding peptides has led to
the development of cancer vaccines and T cell–based thera-
pies that have been shown to induce anticancer immune re-
sponses (7, 8). The likelihood of identifying clinically relevant
antigens, such as mutated neoantigens (9–15) and canonical
(7, 16–18) and noncanonical tumor antigens (19–22), among
the plethora of eluted HLA-binding peptides, increases with
the depth of the ligandome. Hence, much effort has been
directed at improving the sensitivity of MS-based immuno-
peptidomics approaches, at the peptide sample preparation
step, at the MS acquisition step, and at the computational
interpretation of the MS data (23–26).
The majority of studies in the immunopeptidomics field are

discovery driven, and data-dependent tandem MS (MS/MS)
acquisition (DDA) is commonly used (6). DDA methods are
ideal for the discovery of targets of interests as they generate
high-quality references of peptide fingerprints, thanks to the
isolation centered on the selected peptide m/z before MS/MS
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Multi-HLA Spectral Libraries for DIA Immunopeptidomics
(27). However, DDA suffers from the stochastic selection of
abundant ions that often leads to lower sensitivity of detected
molecules and a reduced reproducibility between samples.
Thus, the method is less suited to accurately quantify mole-
cules across different samples (28, 29).
In contrast, in data-independent acquisition (DIA), the frag-

mentation and acquisition of all fragment ions from a pre-
defined list of precursor isolation windows yields a
comprehensive map for a given sample (30, 31). Often, either a
set of small isolation windows of 2 to 5 m/z (32, 33) or a set of
larger isolation windows of 20 m/z (34) is used to acquire MS/
MS data and either peptide-centric (spectral library) or
spectrum-centric (library-free) strategies to solve the
complexity of MS/MS spectra to identify peptides. In the
spectrum-centric approach, identifications are obtained after
deconvolution of the acquired complex MS/MS spectra,
mainly with fragmentation coelution profiles, followed by
database search (35–37). In the peptide-centric strategy, m/z
and retention time (RT) from DDA-obtained spectral libraries
are used to match the DIA spectra (34, 38).
Because the amount of HLA peptides eluted from clinical

samples, such as small tumor tissue biopsies, is typically not
sufficient for acquiring both meaningful DDA data for gener-
ating comprehensive spectral libraries and DIA MS measure-
ments, the implementation of DIA in the immunopeptidomics
translational research domain has remained limited. Only a
few proof-of-concept DIA immunopeptidomics studies in cell
line models have been published to date (39–42). They re-
ported the feasibility of using large spectral libraries of pep-
tides with defined HLA-binding specificities (39), and that, as
expected, DIA outcompetes DDA in terms of both reproduc-
ibility and sensitivity when measuring low-yield samples
(40, 42). For example, Caron et al. (6) collected high-quality
immunopeptidomics MS/MS DDA data containing RT and
fragmentation information for thousands of HLA ligands and
generated HLA allele-specific peptide spectral libraries that
are used for matching MS/MS DIA peptidomics data of HLA-
matched samples. Schittenhelm et al. (41) combined DIA and
multiple reaction monitoring to quantify HLA-B27 restricted
peptides across eight of the most frequent HLA-B27 allotypes.
However, the specificity of the spectral library matching has

yet to be adequately addressed especially in the context of
large-scale immunopeptidomics libraries of mixed HLA re-
strictions (i.e., multi-HLA). Furthermore, the extent to which
large-scale immunopeptidomics spectral libraries across
different cell types and HLA restrictions can facilitate sensitive
and accurate DIA-based detection of HLA peptides has never
been systematically assessed. Here, we implemented a DIA
immunopeptidomics workflow and assessed its sensitivity
and accuracy by matching DIA data against libraries with
growing complexity—from sample-specific libraries to li-
braries combining 2 to 40 different immunopeptidomics
samples. Analyzing DIA immunopeptidomics data against a
2 Mol Cell Proteomics (2021) 20 100080
multi-HLA spectral library resulted in a two-fold increase in
peptide identification compared with a sample-specific library
and a three-fold increase compared with DDA measurements,
yet with no detrimental effect on the specificity. Furthermore,
we demonstrated how integration of Prosit-based prediction
of MS/MS spectra with DIA-based immunopeptidomics can
lead to the sensitive detection of neoantigens and other clin-
ically relevant antigens.
EXPERIMENTAL PROCEDURES

Experimental Design and Statistical Rationale

We collected HLA-I peptidomics datasets for re-analysis from the
following ProteomeXchange (43) sources: PXD000394, PXD013649,
PXD013831, PXD006939, PXD014017, and PXD009925 (20, 24,
44–48). In addition, we included new DDA immunopeptidomics
datasets for the B cell lines RA957 and JY, and a T cell sample TIL1.
We generated 2 to 3 replicates of DIA measurements of immuno-
peptidomics samples from RA957, JY, and OD5P samples, without
inclusion of RT internal standards. Information about the number and
type of samples and the name of raw files and their inclusion in
different spectral libraries is available in supplemental Table S1. In
total, we included 41 biological samples (cell lines or tissues), each
measured across different technical and/or biological replicates,
reaching in total 217 raw files. This collection of samples covered 23
HLA-A, 27 HLA-B, and 21 HLA-C alleles. HLA typing information for
all samples included in the article is provided in supplemental
Table S2. This work abides by the Declaration of Helsinki principles,
and the translational research has been approved by the Centre
Hospitalier Universitaire Vaudois ethics committee (protocols 2017-
00305).

Purification of HLA-Binding Peptides

We performed HLA immunoaffinity purification according to our
previously established protocols (24, 49). W6/32 mAbs were purified
from the supernatants of HB95 (ATCC HB-95) using protein-A
Sepharose 4B (Pro-A) beads (Invitrogen), and antibodies were then
cross-linked to Pro-A beads. Cells were lysed with PBS containing
0.25% sodium deoxycholate (Sigma-Aldrich), 0.2 mM iodoacetamide
(Sigma-Aldrich), 1 mM EDTA, a 1:200 protease inhibitor cocktail
(Sigma-Aldrich), 1 mM phenylmethylsulfonyl fluoride (Roche), and 1%
octyl-beta-D glucopyranoside (Sigma-Aldrich) at 4 ◦C for 1 h. The
lysates were cleared by centrifugation in a table-top centrifuge
(Eppendorf) at 4 ◦C for 50 min at 21,191g. We used the Waters Pos-
itive Pressure-96 Processor (Waters) and 96-well single-use micro-
plates with 3-μm glass fibers and 10-μm polypropylene membranes
(Seahorse Bioscience, ref no: 360063). The lysates were passed
through a plate containing pan HLA-I antibody-crosslinked beads at
4 ◦C. The beads in the plates were then washed with varying con-
centrations of salts using the processor. Finally, the beads were
washed twice with 2 ml of 20 mM Tris HCl, pH 8. Sep-Pak tC18 100-
mg Sorbent 96-well plates (Waters, ref no: 186002321) were used for
the purification and concentration of HLA-I peptides. The C18 sor-
bents were conditioned, and the HLA complexes and bound peptides
were directly eluted from the affinity plate with 1% TFA (Sigma-
Aldrich). After washing the C18 sorbents with 2-ml of 0.1% TFA, HLA-I
peptides were eluted with 28% acetonitrile (Sigma-Aldrich) in 0.1%
TFA. Recovered HLA-I peptides were dried using vacuum centrifu-
gation (Concentrator plus, Eppendorf) and stored at −20 ◦C.
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LC-MS/MS DDA and DIA Analyses

The LC-MS/MS system consisted of an Easy-nLC 1200 (Thermo
Fisher Scientific) hyphenated to a Q Exactive HF-X mass spectrometer
(Thermo Fisher Scientific). Peptides were separated on a 450-mm
analytical column (8-μm tip, 75-μm inner diameter, PicoTip emitter,
New Objective) packed with ReproSil-Pur C18 (1.9-μm particles, 120 Å
pore size, Dr Maisch GmbH). The separation was performed at a flow
rate of 250 nl/min by a gradient of 0.1% formic acid in 80% acetonitrile
(solvent B) and 0.1% formic acid in water (solvent A). HLA-I peptides
were analyzed by the following gradient: 0 to 5 min (5% B); 5 to 85 min
(5–35% B); 85 to 100 min (35–60% B); 100 to 105 min (60–95% B);
105 to 110 min (95% B); 110 to 115 min (95–2% B); and 115 to
125 min (2% B).

Two different parameter settings were used to acquire DDA data for
the sample-specific libraries (recent data) and the combined, mixed,
and BigLib libraries that composed of old data. For DDA measure-
ments, full MS spectra were acquired in the Orbitrap fromm/z = 300 to
1650 with a resolution of 60,000 (m/z = 200) and an ion-accumulation
time of 80 ms. The automatic gain control (AGC) was set to 3e6 ions.
MS/MS spectra were acquired in a data-dependent manner on the 20
most abundant precursor ions with a resolution of 30,000 (m/z = 200)
for sample-specific and on the ten most abundant precursor ions with
a resolution of 15,000 (m/z = 200) for the other libraries. The ion-
accumulation time was set to 120 ms with an isolation window of
1.2 m/z. The AGC was set to 2e5 ions, the dynamic exclusion was set
to 20 s, and a normalized collision energy of 27 was used for frag-
mentation. No fragmentation was performed for HLA-I peptides with
assigned precursor ion charge states of four and above, and the
peptide match option was disabled.

For DIA measurements, the cycle of acquisitions consists of a full
MS scan from 300 to 1650 m/z (R = 60,000 and ion accumulation time
of 60 ms) and 22 DIA MS/MS scans in the orbitrap (supplemental
Table S3). For each DIA MS/MS scan, a resolution of 30,000, an
AGC of 3e6, and a stepped normalized collision energy (25.5, 27, and
30) were used. The maximum ion accumulation was set to auto, the
fixed first mass was set to 200 m/z, and the overlap between
consecutive MS/MS scans was 1 m/z.

DDA and DIA Data Analyses

We used the MaxQuant computational platform, version 1.5.5.1
(50), to search the peak lists against the UniProt databases (human
42,148 entries, March 2017) and a file containing 246 frequently
observed contaminants. The default settings were used except the
following parameters: enzyme specificity was set to ‘unspecific,’
methionine oxidation and protein N-term acetylation were set as
variable modifications and no fixed modification was set, and peptide
spectrum match (PSM) false discovery rate (FDR) was set to 0.01 with
no protein FDR. The initial allowed mass deviation of the precursor ion
was set to 6 ppm, and the maximum fragment mass deviation was set
to 20 ppm.

The spectral library for each sample was generated using results
from MaxQuant discovery search for each experiment (sample-spe-
cific, combined, mixed, and BigLib) by uploading mqpar.xml,
msms.txt, evidence.txt, and fasta files into Spectronaut (version
14.6.2, Biognosys). The default settings were used except the
following parameters. For the mass tolerance, the calibration search
was set to ‘dynamic,’ and a correction factor of 1 was used for MS and
MS/MS. For identification, an FDR threshold of 0.01 and unspecific
digestion rule were used in agreement with the MaxQuant search. For
spectral library filtering, we applied the default settings, meaning that
the minimum fragment length was set to 3 and only peptide identifi-
cations with at least three best fragments (up to 6) were considered. A
deep learning–assisted index retention time (iRT) regression and an
R-square of 0.8 were used for iRT reference strategy and correlation
score, respectively. The selection of fragment ions based on intensity
was used. For identification, the library was matched against JY,
OD5P and RA957 DIA MS/MS data with q-value cut-off of 0.01 and 1,
respectively, for precursor and protein (51). MS and MS/MS data were
extracted using maximum intensity strategy within the given mass
tolerance. A dynamic mass tolerance and a correction factor of 1 were
used for both MS and MS/MS. The quantification was done at MS/MS
level, using at least three fragments. A global normalization per run
based on the median was used for cross run normalization.

The results from Spectronaut were exported in MSstat file and two
custom peptide-centered file formats: peptide quantity and peptide
score. In peptide quantity export, columns corresponding to
PG.Genes, PG.UNiProtIds, PG.ProteinNames, PEP.StrippedSe-
quence, EG.PrecursorId, EG.ModifiedSequence, PEP.Quantity,
EG.Qvalue, and EG.ApexRT were exported to analyze data from
sample-specific to BigLib library (supplemental Tables S4–S8). From
this export, reverse hits and contaminant peptides were removed in
agreement with MaxQuant search before data analysis. For peptide
score export, columns corresponding to R.FileName, PEP.-
GroupingKey, PEP.Quantity, EG.iRTPredicted, EG.PrecursorId,
EG.Pvalue, EG.Qvalue, EG.ApexRT, EG.Cscore, EG.IntCorrScore,
FG.FragmentCount, and FG.ShapeQualityScore were exported to
analyze predicted peptides (supplemental Table S9).

HLA-I-Binding Predictions and Peptide Clustering

To evaluate the binding affinity of identified peptides to the
respective HLA-I molecules, NetMHCpan 4.1 prediction software (52)
was run on all identified peptides ranging in length from 9 to 13 amino
acids. Peptides with a rank of ≤2% were considered as binders. For
each peptide, the HLA allele with the lowest rank was assigned.
Binding motif deconvolution of 9 mer HLA-I peptides was performed
using the MixMHCp 2.1 (47, 53), with the default settings except for
the number of maximum motifs set to 10 motifs. Upon completion of
deconvolution, motifs were manually analyzed and assigned to patient
HLA allotypes.

DIA Data Analysis With In Silico–Predicted MS/MS

Spectrum predictions were performed by a locally installed docker
version of the Prosit software (54), version 1.1, obtained from https://
github.com/kusterlab/prosit. The nontryptic HCD fragmentation model
(Schmidt, Tobias; Wilhelm, Mathias (2020): https://doi.org/10.6084/
m9.figshare.12936947.v1) and the iRT model (Schmidt, Tobias
(2018): https://doi.org/10.6084/m9.figshare.6965801.v1) were down-
loaded from https://figshare.com/projects/prosit/35582. Our installa-
tion of Prosit ran on a NVIDIA GeForce RTX 2080 Ti graphic card with
11 GB GDDR6 memory and required 6 ms to predict a single spec-
trum, where the computation time scaled linearly with the number of
spectra. If not otherwise indicated, Prosit predicted a spectrum of
charge 1, 2, and 3 for each peptide. Methionine oxidation M(ox) was
used as a variable modification, that is, for a methionine containing
peptide, all combinations of M and M(ox) were used with up to 2
oxidations per peptide. Cysteine-containing peptides were excluded
from this study because Prosit assumes all cysteines are carbami-
domethylated, which is not the case for our sample preparation. After
Prosit prediction, spectra were annotated with a protein ID for
compatibility with Spectronaut.

Spectral libraries were predicted by Prosit as mentioned above for
all peptides included in the BigLib library (DDA-to-Prosit-to-DIA) and
analyzed by Spectronaut using the same settings described above. A
list of 39 peptides derived from known tumor-associated antigens
(TAAs) identified in OD5P sample with the DDA method (1% FDR) and
validated with parallel reaction monitoring (PRM) was obtained from
Chong et al. (20). We compared their detection in the OD5P DIA data
Mol Cell Proteomics (2021) 20 100080 3
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analyzed against the BigLib (DDA-to-DIA) and compared their detec-
tion using Prosit-predicted BigLib library (DDA-to-Prosit-to-DIA).

In addition, for the detection of peptides derived from the trans-
lation product of the novel ORF in the ABCB5 gene previously re-
ported by Chong et al. (20), we performed MaxQuant analysis of the 16
OD5P DDA measurements reported previously by Chong et al. We
searched the MS/MS data against the UniProt databases (human
42,148 entries, March 2017) in which the in silico–translated product
of the novel ORF of ABCB5 was included (DDA-to-DIA). Here, a PSM
FDR of 3% was set in MaxQuant to be in agreement with the dis-
covery search done by Chong et al. (20). In addition, to explore if
additional predicted peptides from the ABCB5 novel ORF could be
identified in the DIA analysis, even if not detected initially by DDA, a
generic list of 9- and 10-mer HLA-I peptides predicted to bind frequent
HLA allotypes (A*01:01, A*02:01, A*03:01, A*24:02, A*26:01, B*07:02,
B*08:01, B*27:05, B*39:01, B*40:01, B*58:01, B*15:01) was generated
with the PRIME (https://github.com/GfellerLab/PRIME) algorithm (55)
(rank ≤ 1%; 27 peptide candidates; supplemental Table S10). 17 non–
cysteine-containing noncanonical peptide candidates were then pre-
dicted by Prosit (Prosit-to-DIA) with the settings described above.

Prosit-generated outputs were analyzed against OD5P DIA data
with Spectronaut using the settings described above with a precursor
q-value cut-off of 0.01. To estimate the quality of matched TAAs and
ABCB5-derived peptides with the predicted libraries, we extracted
each matched feature with elution group scores (EG.Cscore), the
Spectronaut identification score, which is based on advanced mPro-
phet scoring where a high score indicates high-quality identification
(56).

RESULTS

Sensitivity of DIA Immunopeptidomics With Sample-
Specific DDA Libraries

We started our investigation of assessing the sensitivity of a
DIA immunopeptidomics approach using sample-specific
spectral libraries (Fig. 1A) to reflect the ‘best case’ results
that would then allow comparisons with multi-HLA spectral
libraries generated from publicly available DDA data from our
laboratory (Fig. 1B). We applied overall standard DIA param-
eters (see the Experimental Procedures section for more de-
tails). However, because we routinely select single-, double-,
and triple-charged ions, we extended the m/z range to 1650
and set isolation windows with varying sizes along the m/z
scale (Fig. 1, C and D and supplemental Table S3).
We isolated from the RA957B cell line HLA-I-binding pep-

tides by immunoaffinity purification with the pan-HLA W6/32
antibody followed by a desalting step. We measured three
technical replicates of this HLA-I immunopeptidome sample
by DDA. With the same instrument and LC-MS setup, we
measured two additional DIA measurements of the same
RA957 immunopeptidome sample, as well as two technical
replicates, each of the sample diluted 3-fold (3×) and 5-fold
(5×) (supplemental Table S1). We searched the DDA MS/MS
data with MaxQuant at 1% FDR and identified in the three
replicates 10,988, 10,638, and 10,572 peptides, respectively,
and 14,789 unique peptides in total. With Spectronaut, we
generated a spectral library, comprising in total 14,784 unique
peptide identifications. We matched the RA957 immuno-
peptidomics DIA data against this RA957-specific library
4 Mol Cell Proteomics (2021) 20 100080
(q-value ≤0.01) and identified in two DIA measurements
14,442 and 14,470 unique peptides, respectively, recovering
more than 97% of the peptides included in the library (Fig. 2A
and supplemental Table S4). In addition, we assessed the
overall accuracy of the HLA-I peptide identification by (1)
observing peptide length distribution, (2) the correlations be-
tween measured RT in the DIA data and the predicted RT
calculated by Spectronaut, (3) an unbiased approach to reveal
the consensus HLA-I-binding motifs with the MixMHCpred
tool (47, 53), and (4) calculating the fraction of peptides pre-
dicted by NetMHCpan (52) to bind the expressed HLA allo-
types (rank ≤ 2%) (supplemental Table S2). The identified
peptides recapitulated the expected length distribution (an
average length of 9.96 amino acids), and RTs were well
correlated (Fig. 2, B and C). In addition, clustering of the 9 mer
peptides with MixMHCp tool revealed the typical binding-
motif specificities of the HLA allotypes expressed in the
RA957 sample (Fig. 2D), which were highly similar to the
reference motifs from NetMHCpan motif viewer (supplemental
Fig. S1). Two subspecificities were detected for HLA-A*68:01
as reported previously (47). The only observed exception was
related to the HLA-C*04:01 and HLA-C*07:02 allotypes, where
the relatively low number of identified peptides (n = 281 of 9-
mers) matching these allotypes clustered into a single motif.
Overall, 96% of the peptides (of length 9–13 amino acids) were
predicted to bind the respective HLA allotypes. The overlap
between the three DDA replicate samples was 66% compared
with 99% for the two normal DIA replicates. Even in the 3× and
5× diluted RA957 samples (supplemental Fig. S2, A and B), a
similar depth was achieved, with 14,441 and 14,395 unique
sequences identified on average, respectively (Fig. 2A and
supplemental Table S4). The quality of the peptide identifica-
tions, in terms of the peptide length and binding specificity,
was similarly high. As expected, the reproducibility of peptide
detection and quantification in the DIA measurements was
higher than in the DDA; averaged Pearson correlations of r =
0.97 and 0.87 were calculated for comparing the pairs of DIA
replicates and the three DDA replicates, respectively
(supplemental Fig. S2, C and D).
Next, we compared the sensitivity of matching DIA MS

measurements against a sample-specific spectral library
created from DDA data measured several months apart in our
laboratory, with a similar Orbitrap MS instrument, acquisition
parameters, and liquid chromatography conditions. We
created a JY-specific spectral library comprising three previ-
ously available MS measurements of the HLA-I peptidome of
the B cell line JY (supplemental Table S1). We purified HLA
peptides from a pellet of cells that was a replica of the sample
used for the DDA measurements, and we performed three DIA
MS measurements. Overall, 4284 peptides were identified that
recapitulated the expected length distribution (an average
length of 10.15 amino acids) that is typical for the HLA allo-
types expressed in the JY sample and RTs were well corre-
lated (Fig. 2, F and G and supplemental Table S4). 95% of the

https://github.com/GfellerLab/PRIME


FIG. 1. Overview of the application of DIA immunopeptidomics. A schematic overview of the application of sample-specific library for DIA
approach for immunopeptidomics (A) and multi-HLA library for DIA immunopeptidomics leveraging existing large-scale immunopeptidomics
datasets (B). As a proof of concept, we applied the MaxQuant and Spectronaut computational environments for DDA library preparation and DIA
data analysis, respectively. Schematic representation of the variable isolation windows across the m/z space applied for the DIA acquisition
method (C). Histogram of m/z values of all HLA peptides included in the multi-HLA BigLib spectral library (D). DDA, data-dependent MS/MS
acquisition; DIA, data-independent acquisition; HLA, human leukocyte antigen.

Multi-HLA Spectral Libraries for DIA Immunopeptidomics
peptides identified with the JY sample–specific library were
predicted to bind the HLA allotypes expressed in JY cells, and
the resolved binding motifs were found, as expected, to be
specific for the HLA-A*02:01 and HLA-B*07:02 allotypes
(Fig. 2H). Additional motif for HLA-C*07:02 could not be
resolved, likely because of the lower expression of the HLA-C
molecule and the relatively lower contribution of HLA-C–
binding peptides to the peptidome of JY cells.
We further explored the performance of this approach by

matching DIA measurements of HLA-I-binding peptides
against sample-specific library of immunopeptidomics data
generated in our laboratory, again with a similar Orbitrap MS
Mol Cell Proteomics (2021) 20 100080 5
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FIG. 2. Application of sample-specific spectral libraries for matching immunopeptidomics DIA data. HLA-I peptides purified from RA957 cells
were measured by DIA in duplicates as normal and 3× and 5× diluted samples andmatched against a library constructed from three DDA replicates, all
measured sequentially (A). The number of peptides identified in each of theDDAmeasurements included in theRA957-specific library and the number of
peptides identified in each of the DIA measurements following matching to this library are reported. The orange bar refers to the number of peptides
identified in three DDA runs, and the blue bar refers to the total number of peptides included in the DIA library. Length distribution of peptides identified in
RA957 DIA samples (B). Representative correlation between measured RT in the DIA data and the predicted RT calculated by Spectronaut (C).
Deconvolutionof theconsensusbindingmotifs ofRA957DIA immunopeptidomicssamples (D). Thenumberof peptidesand theHLA restrictionassigned
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domics samples (L). DDA, data-dependent MS/MS acquisition; DIA, data-independent acquisition; HLA, human leukocyte antigen; RT, retention time.
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instrument, acquisition parameters, and liquid chromatog-
raphy conditions, however, this time with peptides eluted from
biological replicates of the OD5P melanoma cells. We created
a OD5P -specific spectral library containing 6610 peptide
sequences identified in four independent biological replicates
of peptides eluted from the OD5P cells treated or not with
decitabine (two replicates each) (20) (supplemental Table S1).
We generated a new HLA-I peptidomic sample from the OD5P
melanoma cell line and measured three replicates with the DIA
method. We matched these data against the OD5P-specific
library and identified on average 6060 peptides in the DIA
replicates, compared with 3503 to 3859 peptides in the four
DDA measurements (Fig. 2I and supplemental Table S4). 98%
of the peptides were predicted to bind the HLA allotypes
expressed in OD5P, and the peptides similarly revealed the
expected length distribution (an average length of 9.6 amino
acids) and binding motifs and RTs were well correlated (Fig. 2,
J–L). Here, as the binding motifs of HLA-A*23:01 and HLA-
C*14:02 are highly similar (supplemental Fig. S1), only one
motif was defined to capture this specificity. We conclude
from these initial analyses that as expected, using sample-
specific libraries, the DIA approach outperforms the DDA
approach in terms of peptide coverage and reproducibility,
and because only relevant peptides are included in such
sample-specific libraries, the identifications are as accurate as
in the DDA approach.
Specificity and Sensitivity of DIA Immunopeptidomics
Using Combined Spectral Libraries From Two or More
Samples With Shared HLA Allotypes and Binding Motifs

Often, the low quantity of eluted HLA-I peptides from a
given sample limits the number of MS measurements that can
be performed, and hence, sample-specific libraries could have
a limited coverage. However, common peptides may be
detected in the immunopeptidome of different biological
samples that share one or more HLA-I alleles or that express
HLA-I alleles with similar binding motifs. We envisioned that a
DIA immunopeptidomics approach would benefit from spec-
tral libraries generated across samples; however, there could
be a risk of false matches. To test the specificity of such an
approach, we created different spectral libraries with growing
complexity and systematically assessed peptide coverage
and the fraction of predicted binders. First, we generated three
different combined libraries: JY+OD5P (10,367 peptides),
RA957+JY (15,456 peptides), and OD5P+RA957 (21,328
peptides) (supplemental Table S1). The DIA measurements of
HLA-I peptides from JY and from OD5P samples were
matched against the combined JY+OD5P library. JY and
OD5P cells share the HLA-B*07:02 allele, and we observed a
small increase of around 300 to 500 identified peptides in JY
and OD5P samples, respectively (supplemental Fig. S3A and
supplemental Table S5). The average peptide length of 10.07
and 9.67 amino acids were observed for JY and OD5P
samples, respectively. Importantly, although the binding mo-
tifs of the remaining HLA allotypes expressed in these cells are
different and hence most of the peptides included in the
JY+OD5P library are unique to one of the samples, we
confirmed that no apparent noise was introduced when
applying this combined library. The fraction of predicted
binders remained high for JY and OD5P samples, 95% and
98%, respectively, and the binding motifs remained similar to
those obtained when using the sample-specific libraries
(supplemental Fig. S3, B and C).
JY and RA957 cells share the HLA-C*07:02 allele, and the

motifs of HLA-B*07:02 and HLA-B*35:03 and of HLA-A*02:02
and HLA-A*02:20 are highly similar. We similarly found an in-
crease of about 400 peptides in the JY DIA samples when
matched against the JY+RA957 library and the clustering of all
the 9-mer peptides revealed a third motif corresponding to the
HLA-C*07:02 allotype, comprising 5.5% of the peptides
(supplemental Fig. S3, D and E and supplemental Table S5).
Importantly, although the JY+RA957 library contained more
than 3-fold the number of peptides originating from the RA957
DDA samples, no distinct motifs matching the RA957-specific
allotypes (HLA-A*68:01, HLA-B*39:01, or HLA-C*C:04:01)
were observed in the unbiased clustering of the peptides
identified in JY DIA samples (Fig. 3E), suggesting aminimal rate
of false matching with the combined library. Overall, the per-
centage of binders was as high as with the analysis done with
JY-specific library, with 94% of the peptides predicted as
binders (an average length of 9.98). No significant increase in
the number of identified peptides in RA957 DIA data was found
by matching to the JY+RA957 library (supplemental Fig. S3D).
However, we confirmed that the binding motifs remained the
same and still 96% of the peptides were predicted as binders
(an average length of 9.97) (supplemental Fig. S3F).
Interestingly, by matching DIA data of OD5P against the

OD5P+RA957 library, we observed a decrease in detection of
around 500 peptides, and again no difference in the number of
identified peptides in the RA957 DIA data (supplemental
Fig. S3G and supplemental Table S5). The fact that no com-
mon HLA alleles are expressed in these 2 cell lines, and that the
only commonality stems from the similar motifs of HLA-B*07:02
and HLA-B*35:03, could potentially explain this outcome. In
addition, FDR calculations applied to different combinations of
samples could slightly alter the peptide yields and the repertoire.
Nevertheless, the high accuracy of this analysis is demonstrated
by the high percentage of peptides predicted as binders in both
cell lines, 97% in both OD5P andRA957, the consistent average
peptide length of 9.62 and 9.97, in OD5P and RA957, respec-
tively, and by the resulting binding motifs that are identical to
those obtained with sample-specific libraries (supplemental
Fig. S3, H and I). We conclude that a DIA immunopeptidomics
approach can indeed benefit from spectral libraries generated
from two different samples when HLA allotypes characterized
with similar binding motifs are expressed; yet, there is a risk of
lower detection level when there is little overlap.
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FIG. 3. Application of mixed and BigLib multi-HLA spectral libraries for matching immunopeptidomics DIA data. DIA data of JY, OD5P,
and RA957 samples were matched against the mixed library comprising immunopeptidomics data from six different biological samples (A). The
number of peptides identified in each of the DIA measurements and the number of peptides included in the mixed library are reported.
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Enhanced Sensitivity of DIA Immunopeptidomics in a Multi-
HLA Library Improves the Identification of Tumor Antigens

To further explore the specificity and sensitivity of
matching DIA immunopeptidomics data against a complex
library, we generated a mixed library by including in total 12
DDA measurements of HLA-I peptides eluted from six
samples, JY, RA957, OD5P, the melanoma cell lines ME290
and ME275, and the T cells sample TIL1 (supplemental
Table S1). Each of these samples share from one to three
HLA-I alleles or binding motifs (supplemental Table S2). The
DIA measurements of RA957, JY, and OD5P were matched
against the 30,094 peptide sequences included in this mixed
8 Mol Cell Proteomics (2021) 20 100080
library. Overall, the number of peptides identified in JY and
OD5P samples further increased, reaching on average 6302
and 6824 peptides (equivalent to 6740 and 7430 in total,
respectively) (Fig. 3A and supplemental Table S6). Only a
modest increase in RA957 samples was observed, where on
average 14,448 peptides (14,820 peptides in total) were
identified (Fig. 3A). We found that the specificity remained
high, as 96%, 94%, and 96% of the peptides were pre-
dicted as binders and the calculated average peptide length
was 9.98, 9.93, and 9.67 amino acids in the RA957, JY, and
OD5P samples, respectively. The binding motifs were similar
to those obtained with sample-specific libraries, with the
exception again of the detection of a third motif
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corresponding to the HLA-C*07:02 in the JY peptidome
comprising 5.8% of the 9 mer peptides (Fig. 3, B–D).
Finally, wematched the DIA against a larger multi-HLA library,

called BigLib, comprising 136,458 peptide sequences identified
in 190 publicly available measurements of eluted HLA-binding
peptides in 40 samples from multiple and diverse biological
sources, including B cells (not including JY cells), T cells, colon
cancer organoids, meningioma tissues, andmelanoma cell lines
treated or not with interferon gamma or decitabine, covering 23
HLA-A, 27 HLA-B, and 21 HLA-C alleles. The samples were
measured in our laboratory in the last 4 years, using similar LC-
MS settings (supplemental Table S1). Interestingly, even when
we matched JY DIA data against the BigLib library that lacks
DDA data of JY cells, 8529 peptides in total were identified
(Fig. 3E and supplemental Table S7). JY cells express HLA al-
lotypes that are among the most highly frequent in humans and
therefore are highly represented in the BigLib library
(supplemental Table S2). In addition to obtaining clear motifs of
the HLA-A*02:01 andHLA-B*07:02 alleles, we found an increase
in the number of peptides fitting the HLA-C*07:02 motif (10.2%
of the 9 mer peptides) (Fig. 3F). We also observed a substantial
increase in peptide identification in both OD5P and RA957
samples, where in total 12,722 and 22,532 unique peptideswere
identified, respectively (Fig. 3E and supplemental Table S7),
which clustered to reveal the expected binding motifs (Fig. 3, G
andH). Applying the multi-HLA BigLib library resulted in 1.5-fold
(RA957) and 2-fold (JY and OD5P) increase in peptide
coverage, comparedwith that obtainedwith the sample-specific
libraries and a 2.1-, 3.2-, and 3.4-fold increase (RA957, JY,
andOD5P, respectively) comparedwith the DDAmeasurements
(Fig. 4A). The additional peptides fitted the binding motifs of
each of the expressed HLA allotypes expressed in JY, OD5P,
and RA957 samples, and the specificity remained high, with
92%, 95.7%, and 94% of peptides predicted as binders with
average peptide lengths of 9.78, 9.58, and 9.93 amino acids,
respectively.
To better assess the level of error that could potentially

result from matching DIA immunopeptidomics data against a
complex multi-HLA library, we matched the RA957 DIA data
against the BigLib, applying higher precursor q-value thresh-
olds, including q-values of 0.01, 0.05, 0.1, 0.15, and 0.2. We
compared peptide yields and the fraction of peptides that are
predicted as binders also with the results obtained above with
RA957-specific, combined RA957+JY, combined
OD5P+RA957, and the mixed libraries. Overall, and as ex-
pected, with the application of higher q-values, the coverage
of peptide identification increased and the accuracy
decreased, considering EG.Cscore distributions and delta RT
values (Fig. 4B and supplemental Fig. S4). A drop in the
fraction of peptides predicted as binders with q-values equal
to 0.1 was found, where less than 87.9% of the peptides were
predicted as binders. In addition, with q-values of 0.01, the
fraction of binders obtained with the BigLib library was similar
to the fraction obtained with the RA957-specific, combined
RA957+JY, combined OD5P+RA957, and mixed libraries, in
the range of 94.4 to 97.7%. Overall, with the BigLib and pre-
cursor q-value threshold of 0.01, we improved the detection
rate of HLA peptides in all three investigated samples without
negatively affecting the accuracy.

Identification of Clinically Relevant Antigens by Analyzing
DIA Immunopeptidomics Data With Predicted MS/MS

Spectra

Recent developments in the application of deep learning
algorithms for prediction of MS/MS spectra for a given
sequence, collision energy, and charge, offer new possibilities
for neoantigen discovery through interrogation of DIA data.
Here, we assessed if Prosit (54), a publicly available software
based on recent advances in deep learning approaches
applied for in silico prediction of MS/MS spectra, can be
combined with DIA analysis for HLA peptide detection. We
generated a library by predicting with Prosit all the HLA pep-
tides included in the BigLib (DDA-to-Prosit-to-DIA). We inter-
rogated the DIA data of RA957, OD5P, and JY samples with
this predicted BigLib and compared the results to those ob-
tained initially with the BigLib (DDA-to-DIA) (Fig. 5A). First, we
inspected the correlations between measured RT and the
predicted RT calculated by Spectronaut (RT = f(iRT)) of pep-
tides identified by the two approaches (Fig. 5, B and C and
supplemental Fig. S4). The difference between the predicted
RT and the mean measured RT calculated for peptides iden-
tified in the DDA-to-DIA analyses was smaller than in the DDA-
to-Prosit-to-DIA in all the 3 cell lines (Fig. 5, D and E and
supplemental Fig. S5). In addition, we consistently found a
drop of 7 to 10% in the number of peptides identified in the
DDA-to-Prosit-to-DIA approach (Fig. 5F and supplemental
Fig. S5). Nevertheless, the two approaches resulted in simi-
larly accurate identifications, in total 95.7%, 94.4%, and
92.8% of the peptides were predicted as binders in the DDA-
to-DIA compared with 96.1%, 95.5%, and 94.7% in the DDA-
to-Prosit-to-DIA in OD5P, RA957, and JY cells, respectively.
88.3%, 91.5%, and 89.4% of the peptides identified in the
DDA-to-Prosit-to-DIA were also identified in the DDA-to-DIA
approach in OD5P, RA957, and JY cells, respectively. In this
common set of peptides, 98.3%, 96.8%, and 96.6% were
predicted as HLA binders. Among the peptides uniquely
detected in each of the approaches, about 75.6% to 82.7% of
the peptides were predicted as binders. Clustering the pep-
tides in each of the groups revealed the expected binding
motifs (Fig. 5F and supplemental Fig. S5). Importantly, among
the common peptides, the delta apex of 90% of the PSMs,
which is the difference in the DIA-measured peptide apex
between DDA-to-DIA and the DDA-to-Prosit-to-DIA ap-
proaches, was within 18 s, indicating that both approaches
identified the same elution profiles (Fig. 5G and supplemental
Fig. S5). From this comparison, we concluded that with the
current settings, the Prosit-to-DIA approach is as accurate as
Mol Cell Proteomics (2021) 20 100080 9
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the DDA-to-DIA; however, more peptides can be identified
with the later approach.
Next, as a proof of concept, we assessed if clinically rele-

vant antigens could be identified in DIA immunopeptidomics
data (Fig. 6A) by applying Prosit-based MS/MS prediction.
First, we focused on 39 HLA-I peptides derived from TAAs
that we have previously identified by Chong et al. (20) in the
OD5P HLA-I immunopeptidome. We focused on these refer-
ence peptides because they have been confirmed by PRM
where isotopically heavy-labeled synthetic peptide
10 Mol Cell Proteomics (2021) 20 100080
counterparts were spiked into the OD5P peptidomics sample.
All the 39 TAA peptides could be reidentified in the OD5P-DIA
samples with the BigLib (DDA-to-DIA) as well as with the
Prosit-predicted BigLib (DDA-to-Prosit-to-DIA approaches),
with mean EG.Cscores of 0.93 and 0.86, respectively (Welch's
two-sample t test p-value = 1.073e-14), which followed the
trend of all identified peptides (Fig. 6B, supplemental
Tables S7 and S8). For example, the immunogenic HLA-I
peptide RYNADISTF from the tyrosinase-related protein 1
was among these TAAs (Fig. 6, C and D) (20).



FIG. 5. Overview of the performance of Prosit-predicted MS/MS spectral library. A schematic overview of our approach to estimate the
performance of Prosit-predicted MS/MS spectral library of all HLA peptides included in the BigLib that were used to match DIA data of RA957
samples (A). Correlations between measured RT and the predicted RT calculated by Spectronaut (RT = f(iRT)) of peptides identified in RA957
applying the BigLib library in the DDA-to-DIA approach (B) and with the Prosit-predicted BigLib library in the DDA-to-Prosit-to-DIA approach (C).
The difference between the predicted (RT =f(iRT)) and the mean measured RT in the DIA data calculated for peptides identified in the DDA-to-DIA
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Next, we tested if Prosit prediction combined with DIA
analysis would allow detection of peptides that failed to be
detected by DDA and for which no experimental MS/MS is
available. Here, we focused on the detection of noncanonical
peptides derived from a novel ORF in the ABCB5 melanoma
marker, from which we recently identified one peptide in the
OD5P DDA immunopeptidome that was confirmed to be
immunogenic (20). We suspected that additional peptides
could potentially be presented and detected in the acquired
OD5P DIA data. First, we confirmed that also in the DIA data,
the immunogenic peptide KYKDRTNILF was detected as a
doubly charged ion in two of the three replicates (DDA-to-DIA)
(Fig. 6, E and F and supplemental Table S9). Manual extraction
of the ion chromatogram in the third replicate confirmed its
detection, yet this PSM did not pass the applied FDR. Then,
we created a generic library of predicted MS/MS spectra
(Prosit-to-DIA) of 17 9- and 10-mer HLA-I peptides from the
ABCB5 translation product predicted to bind frequent HLA
allotypes with the PRIME algorithm (55) (supplemental
Table S10). With this library, we identified again the
KYKDRTNILF peptide, this time as doubly and triply charged
ions and in all three replicates (Fig. 6, G and H). In addition,
two new peptides, KDRTNILFI and DRTNILFIF, partially
overlapping with the KYKDRTNILF peptide, were identified in
all three replicates (Fig. 6, I and J and supplemental
Table S11). We could not reproducibly detect any peptides
derived from the ABCB5 novel ORF in the negative controls,
JY and RA957 samples (supplemental Table S11). For trans-
lational research, and if sufficient amount of sample is avail-
able, PRM analyses would provide definite validation for such
identifications. We concluded that the integration of Prosit-
based prediction of MS/MS spectra with DIA-based immu-
nopeptidomics has great potential in detecting clinically rele-
vant antigens at a higher sensitivity.

DISCUSSION

In DDA–MS, the stochastic nature of the precursor ion se-
lection in the survey scan before fragmentation leads to low
reproducibility across replicates, and often, low abundant ions
are not selected for fragmentation. In immunopeptidomics,
this lack of consistency results in a large number of missing
values in experiments involving multiple samples which
significantly impacts the level of reproducibility necessary for
assessing differential HLA presentation. In addition, the
repertoire of HLA peptides can vary significantly after pertur-
bation in expression of proteins involved in antigen processing
and presentation; also, the peptide purification protocol may
bias the detectable peptide repertoire. Furthermore, a large
(D) and in the DDA-to-Prosit-to-DIA (E). The overlap between peptides ide
fraction of peptides predicted as HLA binders are provided for unique an
clustered to reveal the binding motifs. Frequency plot of the delta apex, w
the DDA-to-DIA and the DDA-to-Prosit-to-DIA (G). DDA, data-dependen
leukocyte antigen; MS/MS, tandem MS; RT, retention time.
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fraction of peptides in the immunopeptidome samples are
either not selected for fragmentation, they may be masked by
other abundant ions, or their identification cannot pass the
strict FDR threshold of 1% because of poor fragmentation.
However, these peptides might be identified accurately in
other samples. On the other hand, a major strength of DIA–MS
is the exceptional reproducibility of peptide identification and
quantification across multiple experiments. It relies on the
availability of peptide MS/MS spectrum libraries, and gener-
ating large spectral libraries of HLA-I peptides accurately
identified across many samples could be advantageous for
sensitive DIA immunopeptidomics. DIA–MS also generates
permanent quantitative digital maps and enables highly
reproducible retrospective analysis and mining of HLA data.
In proteomics, false identifications in DIA analyses are often

tested by mixing up samples of similar complexity but of
different origin, such as yeast and human, and by matching
them against a library comprising only one of the sources (51).
In immunopeptidomics, to some extent, the samples are
mixed by nature, as they comprise different HLA allotypes and
binding motifs. Therefore, in this study, newly generated
immunopeptidomics DIA data of three different samples were
independently matched against spectral libraries of growing
complexity, and we monitored the fraction of peptides that are
predicted to bind the respective HLA allotypes and clustered
the identified peptides to reveal the binding specificities to
systematically assess its accuracy. A high level of false
identifications would have been visible as interfering motifs
that are not authentic to the HLA allotypes expressed in the
investigated sample and by a drop in the percentage of pep-
tides predicted as binders. Our results obtained from the
application of sample-specific libraries confirmed the antici-
pated enhanced sensitivity. The specificity was comparable
with the DDA approach. Furthermore, results from the com-
bined, mixed, and the BigLib multi-HLA libraries suggested
no, or minimal, propagation of false identifications. As each
HLA allotype is characterized by a slightly different peptide
length preference (47), small variations are expected between
DDA and DIA data, when matched against multi-HLA library,
as the coverage of peptide identifications is not equally
distributed among the expressed allotypes and is dependent
on the breadth of peptides available in the library. We
concluded that the fraction of predicted binders is an infor-
mative and unique feature of HLA peptides that performed
well for assessing accuracy of DIA immunopeptidomics in the
context of a multi-HLA library such as the BigLib.
Several limitations are anticipated for this approach. Here,

we tested the feasibility of matching DIA immunopeptidomics
ntified in the two approaches is represented in a Venn diagram (F). The
d common peptide groups. Nine mer peptides from each group were
hich is the difference between the measured peptide apex obtained in
t MS/MS acquisition; DIA, data-independent acquisition; HLA, human



FIG. 6. Prosit-predicted MS/MS spectra for the identification of canonical and noncanonical peptides. A schematic overview of the
application of sample-specific or multi-HLA library for DIA immunopeptidomics in combination with libraries generated from Prosit-predicted
MS/MS spectra of canonical and noncanonical peptides (A). EG.Cscore distribution of all OD5P peptides and of the 39 TAAs detected in
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measurements against libraries constructed from DDA mea-
surements that were acquired from the exact same biological
sample, different biological replicates that were measured
sequentially, or DDA measurements of variety of samples
measured several months apart, yet, with comparable LC-MS/
MS settings. Therefore, no iRT internal standards were
included. Our results indicate that research groups may use
their internal archive of DDA immunopeptidomics measure-
ments, which were prepared and measured with same LC-
MS/MS protocols, for the creation of multiallelic libraries for
their internal use. In the future, a larger study would be
required to overcome interlab variability when different LC
gradients are applied. Inclusion of iRT internal standards
would be vital to enable inclusion of historical data from
different laboratories and data generated from newer or
upgraded LC-MS/MS instrumentations (57). In addition, other
endogenous peptides that are typically well detected in a
given sample could be used to calibrate RT (58).
In addition, when permissive FDR is set for the DDA data

analysis used for the construction of the library, errors would
be propagated to the identifications of the DIA-derived pep-
tides. As such wrong identifications are rather random, it
would be challenging to monitor their prevalence. Hence, it is
recommended to apply stringent FDR thresholds at the library
construction step. Additional errors can be introduced at the
level of DIA spectral matching. If the library contains only
peptide sequences of the expected HLA-binding specificities
according to the expressed HLA allotypes in the investigated
sample, as reported previously (39), monitoring the level of
error would again be challenging. However, if the library
contains an excess of competing peptides of unrelated HLA-
binding specificities, the level of false matching and identifi-
cations could be estimated by the elevated level of peptides
that are unlikely to bind the expressed HLA alleles.
From this study, we concluded that a comprehensive multi-

HLA library for the DIA approach would be highly advanta-
geous in clinical settings where often only a low amount of
biological sample is available for immunopeptidomics. We
mimicked this scenario by generating minimal sample-specific
libraries from a few DDA measurements that were, as ex-
pected, not comprehensive enough to yield high identification
rates. When samples express frequent HLA alleles that are
covered in the multi-HLA library, or HLA alleles with degen-
erate motifs, a large number of peptides can be identified even
when no sample-specific DDA data are included in the library.
Furthermore, we showed that samples diluted 5-fold reached
DIA analyzed with the BigLib library (DDA-to-DIA) and the predicted Big
grams for the peptide RYNADISTF detected in the DDA-to-DIA (C) and
HLA-I peptides form the novel ORF of the ABCB5 gene (E). Extracted io
detected with the DDA-to-DIA (F) and with the Prosit-to-DIA approach as
the ABCB5+ KDRTNILFI (I) and DRTNILFIF (J). Extracted ion chromatog
peptide and are shown across the technical replicates. The asterisk indi
threshold. DDA, data-dependent MS/MS acquisition; DIA, data-independ
TAAs, tumor-associated antigens.
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a high sensitivity that is comparable with the undiluted sam-
ples. Hence, with a comprehensive multi-HLA library, the
breadth of the immunopeptidome could be captured by DIA
also in case of sparse clinical samples that express HLA al-
lotypes characterized with common binding motifs. Of note,
we observed a decrease in detection of around 500 peptides
matching DIA data of OD5P against the OD5P+RA957 library,
compared with the coverage obtained with the OD5P-specific
library. FDR calculations applied to different combinations of
samples could slightly alter the peptide yields and the reper-
toire, for example, at the MaxQuant level. However, we
consistently found an increase in coverage using the larger
mixed and BigLib libraries. Very rarely, all six motifs of HLA
class I molecules expressed in a given sample are rare or
exceptional; therefore, we anticipate that almost every sample
will benefit from this approach, yet to a different extent. When
samples express HLA allotypes that are not yet sufficiently
covered in the library, additional sample-specific DDA data
would provide adequate depth and would increase the
coverage of the library for future applications. If the sample
amount is not the limiting factor, multiple DDA immunopepti-
domics measurements of samples extracted with different
affinity purification protocols and with extensive peptide
fractionation, combined with sample-specific optimization of
the DIA parameters (e.g., precursor mass range, width of the
isolation windows, and the collision energy), are expected to
increase the sensitivity of the DIA analysis (40, 59, 60).
Currently, the development of DDA-independent ap-

proaches for DIA data analysis is rapidly advancing (54). We
have shown here, as a proof of concept, that the integration
of Prosit-based prediction of MS/MS spectra with DIA-
based immunopeptidomics has a great potential for sensi-
tive detection of mutated neoantigens and other canonical
and noncanonical HLA ligands that could be clinically
relevant. Shortlisting targets, such as mutated neoantigens,
based on evidence of detection at the immunopeptidome,
has been shown to be effective in enriching the target list
with peptides capable of rejecting tumors in vaccination
studies in mouse models (61) or that can be immunogenic
in humans (15). Therefore, for the development of explor-
atory neoantigen-based therapies, when no archived sam-
ples are available for comprehensive targeted-MS analyses
or when the time allocated for target identification is limited,
it is reasonable to prioritize the high-confidence hits based
on the collective evidences of expression and HLA pre-
sentation. Our data suggest that Prosit-like MS/MS
Lib (DDA-to-Prosit-to-DIA) (B). Examples of extracted ion chromato-
the DDA-to-Prosit-to-DIA (D) approaches. Summary of the identified
n chromatograms of the ABCB5 KYKDRTNILF peptide that have been
doubly (G) and triply (H) charged ions. Extracted ion chromatograms of
rams for precursors (MS1) and fragments (MS2) are aligned for each
cates a manual extraction of transitions that did not pass the q value
ent acquisition; HLA, human leukocyte antigen; MS/MS, tandem MS;
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spectrum predictors could pave the way for massive and
effortless assessment of presentation-predicted HLA li-
gands. Yet, some parameters should be adapted specif-
ically for immunopeptidomics, such as the flexibility of
carbamidomethylation on cysteine, which is frequent in
proteomics, but only a few peptides are detected with this
modification in immunopeptidomics. Alternatively, adding an
alkylation step to the protocol of HLA peptide purification
could potentially overcome this limitation. Training such
predictors with large-scale datasets of purified HLA pep-
tides or similar synthetic counterparts will help improve the
accuracy and the performance of this approach.
In recent years, DDA-independent approaches for DIA data

analyses have been greatly improved (62, 63) and are ex-
pected to be more straightforward than a DDA-dependent DIA
approach; however, these have not yet been tested or opti-
mized for nontryptic immunopeptidomics data, and the FDR
calculation due to the large space search should be carefully
assessed. Nevertheless, large-scale immunopeptidomics
datasets are publicly available (64, 65), and many immuno-
peptidomics laboratories have immense archived data, each
typically measured with similar LC-MS settings. These may be
suitable for the construction of comprehensive multi-HLA
spectral libraries that could facilitate highly sensitive DIA
immunopeptidomics. This approach is expected to advance
the implementation of immunopeptidomics in basic and
translational research domains where samples with limited
amounts of biological material are to be interrogated.
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