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A B S T R A C T

Background: Cancer of unknown primary (CUP), representing approximately 3-5% of all malignancies, is
defined as metastatic cancer where a primary site of origin cannot be found despite a standard diagnostic
workup. Because knowledge of a patient’s primary cancer remains fundamental to their treatment, CUP
patients are significantly disadvantaged andmost have a poor survival outcome. Developing robust and acces-
sible diagnostic methods for resolving cancer tissue of origin, therefore, has significant value for CUP patients.
Methods: We developed an RNA-based classifier called CUP-AI-Dx that utilizes a 1D Inception convolutional
neural network (1D-Inception) model to infer a tumor’s primary tissue of origin. CUP-AI-Dx was trained
using the transcriptional profiles of 18,217 primary tumours representing 32 cancer types from The Cancer
Genome Atlas project (TCGA) and International Cancer Genome Consortium (ICGC). Gene expression data
was ordered by gene chromosomal coordinates as input to the 1D-CNN model, and the model utilizes multi-
ple convolutional kernels with different configurations simultaneously to improve generality. The model was
optimized through extensive hyperparameter tuning, including different max-pooling layers and dropout
settings. For 11 tumour types, we also developed a random forest model that can classify the tumour’s molec-
ular subtype according to prior TCGA studies. The optimised CUP-AI-Dx tissue of origin classifier was tested
on 394 metastatic samples from 11 tumour types from TCGA and 92 formalin-fixed paraffin-embedded
(FFPE) samples representing 18 cancer types from two clinical laboratories. The CUP-AI-Dx molecular sub-
type was also independently tested on independent ovarian and breast cancer microarray datasets
Findings: CUP-AI-Dx identifies the primary site with an overall top-1-accuracy of 98.54% in cross-validation
and 96.70% on a test dataset. When applied to two independent clinical-grade RNA-seq datasets generated
from two different institutes from the US and Australia, our model predicted the primary site with a top-1-
accuracy of 86.96% and 72.46% respectively.
Interpretation: The CUP-AI-Dx predicts tumour primary site and molecular subtype with high accuracy and
therefore can be used to assist the diagnostic work-up of cancers of unknown primary or uncertain origin
using a common and accessible genomics platform.
Funding: NIH R35 GM133562, NCI P30 CA034196, Victorian Cancer Agency Australia.
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Research in context
Evidence before this study

Cancer of unknown primary (CUP) is defined by the presence of
metastatic disease with no identified primary tumour despite
extensive clinical and histopathological investigations [1]. Typi-
cally, immunohistochemical tests are performed to identify the
tumour lineage targeting cytokeratins and a limited number of
available cell type-specific antigens. More contemporary tests
employing gene-expression, DNA methylation, and mutational
profiling for the tissue of origin diagnostics have also been
described, showing high performance for metastatic cancers
including latent primary CUP, where a primary tumour
becomes known in time. However, these tests can lack repre-
sentation of important tumour types in classification and are
reliant on access to specialized platforms not routinely used in
diagnostic labs. Furthermore, they do not recognize the molec-
ular subtyping of tumours that have become recognized by
recent pan-cancer genomic studies that are of potential prog-
nostic and therapeutic importance.

Added value of this study

In this study, we designed a deep neural network model to
identify a tumour’s primary site of origin using RNA-seq gene
expression across 32 cancer types available data from the two
largest pan-cancer genome consortia, The Cancer Genome Atlas
(TCGA) and International Cancer Genome Consortium (ICGC). A
machine learning classifier was also developed to discriminate
the molecular subtypes of 11 cancer types once the primary
site of origin is predicted. The classifier can be applied to clinical
samples using widely accessible RNA-seq protocols.

Implications of all the available evidence

Metastatic tumours retain the gene expression profile of the
primary tissue of origin enabling the development of machine
learning methods for predicting tissue of origin. The develop-
ment of a gene-expression tissue of origin test using the widely
available RNA-seq method enables democratization of this
method to other diagnostic labs. The tissue of origin classifica-
tion concept can also be extended to incorporate molecular
subtyping of cancer into a single test, which provides additional
information to the workup of cancer patients.
1. Introduction

The vast majority of contemporary cancer treatments, including
targeted therapies, are still applied with knowledge of the patient’s
primary tumour. However, 3-5% of all cancer patients have metastatic
tumours where routine testing cannot locate the primary site result-
ing in a diagnosis of cancer of unknown primary (CUP) [2]. By defini-
tion, CUP’s are advanced metastatic cancers and most CUP patients
have a dismal prognosis with a median overall survival of 8-11
months and one-year survival of only 25% [3]. Historically, CUP
patients have been treated empirically with chemotherapy which
has limited benefit in most patients [4]. The paradigm of precision
oncology involving detection of therapeutically actionable mutations
may be of benefit for some CUP patients [5�8]; however, access to
these drugs can be limited, especially outside of clinical trials or
through compassionate access, as with few exceptions such treat-
ments are approved for specific tumour type indications [9,10]. The
lack of knowledge of the true cancer type also puts CUP patients
under severe psychological distress that may lead to clinically
significant depressive symptoms [11]. Improved diagnostic methods
are therefore required to improve the accuracy and speed of the diag-
nostic work-up of CUP tumours.

It is known that most metastatic tumours harbour a cellular phe-
notype that resembles their original tissue of origin. Immunohis-
tochemistry (IHC) is commonly used in the diagnostic workup of
metastatic cancers by using antibodies targeting protein antigens
that have restricted cell type staining patterns. However, the utility
of IHC-based classification is limited to small antibody panels and
these are not standardized between laboratories. Furthermore, the
application of multiple immunostains can rapidly consume often lim-
ited amounts of tumour tissue that are increasingly also required to
perform other analyses, including DNA and RNA sequencing. Several
studies have used molecular profiling including gene-expression
(mRNA or miRNA) and DNA methylation profiling to predict CUP tis-
sue of origin, and some of these tests have been commercialized
(Table 1). Like for the detection of protein antigens by IHC, the global
transcriptional or epigenetic program is retained in metastatic cancer
and can, therefore, be matched to a reference of tumours of known
origin using computational methods. Importantly, these molecular
tests have been proven to be superior to IHC panels [12�14].

RNA and DNA-based tissue of origin classifier methods previously
reported have shown high and comparable performance. The most
extensively validated RNA-based tissue of origin test is a commercial
92-gene real-time PCR based test (CancerTypeID), which reports a
classification accuracy of 87% for primary and 82% in for metastatic
tumours using a large validation series [15]. More recently, tests like
SCOPE have leveraged TCGA RNA-seq data reporting accuracy of 89%
using a neural network [16]. Another recently developed test called
EPICUP uses microarray DNA methylation profiling [10]. The EPICUP
study reports a classification accuracy of 94% in metastatic tumours.
However, despite the utility of these tests, there are barriers to wide-
spread clinical adoption. Tests like EPICUP rely upon access to DNA
methylation platforms that are not widely accessible in diagnostic
laboratories while commercial RT-PCR tests like CancerTypeID can be
cost-prohibitive, which also limits their accessibility. As previously
mentioned, tissue availability can be a limiting factor as genomic pro-
filing is adopted into mainstream care. Diagnostic methods compati-
ble with common genomics platforms such as RNA-seq can have
better functionality as the raw data can also be used for other pur-
poses, such as fusion detection.

Looking beyond tumour type prediction, molecular subtype iden-
tification—with or without the primary site identification—may also
lead to enhanced therapeutic options for CUP patients. The Cancer
Genome Atlas (TCGA) Research Network and International Cancer
Genome Consortium (ICGC) studies have shown that cancers with a
known primary site can be further classified into molecular subtypes
with distinct clinical outcomes and therapeutic options [17�24] and
that shared some molecular subtypes span multiple cancers from dif-
ferent anatomical sites [25�28]. For example, the mesenchymal and
proliferative subtypes of ovarian cancer may be susceptible to thera-
pies including bevacizumab and these subtypes can be used as clini-
cal trial entry criteria [29]. Through primary site identification and
then molecular subtype classification, some CUP patients may benefit
from these same advances [30�33]. However, despite the availability
of genomic technologies for clinical diagnostics, identification of
molecular subtypes is challenging, and due to a lack of tools and
assays for pan-cancer subtyping, clinicians are often unable to
utilize molecular subtype information to inform treatment decisions
([34, 35]).

Here we introduce the 1D-Inception model, a machine learning
framework to predict the primary site and molecular subtype of can-
cer samples based on the classification of gene expression data
(Fig. 1). The primary classifier employs a novel type of 1D



Table 1
Performance of previously published CUP classification methods.

Publication Year Input type Feature
number

Reported Accuracy (N)

Training/Cross- validation Training
tumour types

External
validation

Validation
tumour

Validation
tumour types+

[87] v2 2011 RT-PCR assay 92 87%/85% (2206) 30 83% (187)
78% (43)

P +M 28

[15] + 2012 RT-PCR assay 92 - - 87%P/82%M (790PM) P +M 28
[88] + 2012 RT-PCR assay 92 - - 82.1% (184) P +M 23
[89] v2 2011 Microarray 2,000 (2,136) 15 88.5% (462) P +M 15
[14] + 2015 Microarray 2,000 - - 89% (157) P +M 15
[90] v2 2012 microRNA array 64 87% (1,282) 42 85% (509) P +M 42
[13] 2015 Microarray 29,285 82% (450) 18 88% (94) P +M 18
[75] 2016 DNAmethylation

microarray
485,577 2,790 38 94% (534) M 21

[16] 2019 RNA-seq 17,688 97% 10,822 40 T
26 AN

86% (201) M 40

[81] 2019 Targeted DNA
sequencing

341 73.8% (7,791) 22 74.1% (11,644) P +M 22

[82] 2020 WGS - 91% (2,206) 24 88%P 83%M (2120) P +M 16
CUP-AI-Dx 2020 Gene Expression 817 98.54% (18,217) 32 86.96% (23) M 6
CUP-AI-Dx 2020 Gene Expression 817 98.54% (18,217) 32 72.46% (69) M 18

v2 version 2 of CancerTypeID GEP test
+ Validation series of commercial tests
T= Tumor
AN = Adjacent normal
P= primary tumors
M= metastatic tumours.
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convolutional neural network (CNN) that utilizes the expression of
817 genes as input and achieves primary site classification accuracy
of 96.70% when applied to an external validation set of 394 TCGA
metastatic tumour expression profiles and 86.96% accuracy and
72.46% on two clinical datasets separately. Importantly, this classifi-
cation accuracy is relatively robust to the absence of common IHC
diagnostic markers [36,37]. In parallel, we harness random forest
(RF) models to predict subtypes for the 11 TCGA cancers with estab-
lished molecular subtypes, achieving a median overall accuracy of
84.06% in cross-validation. Meanwhile, the molecular subtype classi-
fier achieved an overall accuracy of 84.18% and 79.87% in ovarian and
breast external microarray datasets, respectively. Together this
framework offers excellent classification accuracy to identify the pri-
mary site of metastatic cancer and allows for robust identification of
its molecular subtype for the clinical management of metastatic can-
cers and possibly CUPs.

2. Materials and methods

2.1. Primary tumour type classification

2.1.1. Training data set
TCGA gene expression data: TPM (transcripts per million) [38]

normalized gene expression matrices were downloaded for each of
the 33 unique cancer cohorts available from Broad Institute’s Genome
Data Analysis Centre (GDAC) Firehose (run 2016_01_28) [39]. We
combined colon adenocarcinoma (COAD) and rectum adenocarci-
noma (READ) into a single cohort (COADREAD) based on their high
molecular similarities in TCGA consortium findings ([19, 40]). The
gene expression matrix of each cancer was converted into a Biobase
ExpressionSet object [41] for standardization, and the sets combined
into a single ExpressionSet. The original expression matrix comprised
11,330 samples and 20,531 genes was reduced to 9,274 samples after
extracting data for the primary tumour samples (tumour type
code = “01”) and blood cancer samples (tumour type code = “03”).

ICGC gene expression data: TPM (transcripts per million) [38] nor-
malized gene expression matrices were obtained from the Interna-
tional Cancer Genome Consortium (ICGC). Colon adenocarcinoma
(COAD) and rectum adenocarcinoma (READ) were combined into a
single cohort (COADREAD) as we described in the previous para-
graph. The ICGC dataset contains 8,943 samples across 32 tumour
types.

After combining TCGA and ICGC datasets, we have the gene
expression data matrix with 18,217 samples spanning 32 different
tumour types and 20,531 genes as the training dataset (listed in
Table 2).

Feature gene selection on the training dataset: With the TCGA
training dataset, for 1D-Inception and 1D-CNN, we selected the 40
most differentially expressed genes (DEGs) in each class (cancer
type) as determined by the difference between the median expres-
sion of each gene in the in-class sample relative to the out-of-class
samples (p < 0.001). Median expression was used (instead of the
mean) due to its robustness to extreme values. For ResNet, we simi-
larly selected the 70 most DEGs in each class to meet the input size
requirement. DEGs may be overlapping between different classes.
The DEGs sets from each class were combined, merged, and used in
training each model, from which 791 and 1024 unique “feature
genes” common to all external validation sets were selected for the
1D-Inception/1D-CNN and ResNet, respectively. The genes were
ordered according to their chromosomal locations. In parallel, we
selected 241 genes by picking the 10 most differentially expressed
genes in each class (cancer type) to observe the performance of each
model with a small feature set size. With the combined training data-
set from TCGA and ICGC, we selected the 40 most differentially
expressed genes (DEGs) in each class (cancer type) as determined by
the difference between the median expression of each gene in the in-
class sample relative to the out-of-class samples (p < 0.001), and
combine the overlapping of different DEGs sets. Finally, 817 unique
“feature” genes were selected for the 1D-Inception model construc-
tion (See Table S6 for the 817 Entrez Gene IDs).

TCGA metastatic data: To validate the primary tumour type pre-
dictor accuracy, we utilized TCGA metastatic samples (sample type
code “06” (https://gdc.cancer.gov/resources-tcga-users/tcga-code-
tables/sample-type-codes)) for 11 cancer types as follows (using the
TCGA study abbreviations): breast invasive carcinoma (BRCA); cervi-
cal squamous cell carcinoma and endocervical adenocarcinoma

https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/sample-type-codes
https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/sample-type-codes


Fig. 1. Prediction workflow for primary tumour types and subtypes. (a) Schematic showing the learning procedure used to train the 1D-Inception model from labeled TCGA and
ICGC transcriptomes spanning 32 cancer types for primary tumour type prediction. Models were trained with 70% training data and validated with 30% test data on normalized and
standard scaled expression profiles. 817 features were selected (see Materials and methods). Primary tumour type classification performance was evaluated via cross-validation on
the learning set of TCGA and ICGC primary tumour samples and external validation utilizing primary tumour types from transcriptomes of metastatic samples and clinical samples.
(b) Illustration of 1D Inception Architecture optimized by Talos [47] scanning on TCGA and ICGC dataset. Each rectangle represents a layer in the neural network. For convolutional
layers, kernel size is shown, and the same kernel size layer is painted the same color. Max pooling layers are green rectangles with pooling window size inside. Dark grey rectangles
are dropout layers with keep probability shown. The concatenation layer has a size of 1696 hidden nodes. This is determined by the output size from the convolutional layers. The
bottom portion shows the output layer below two fully connected layers with 128 nodes individually. (c) Schematic showing the learning procedure used to train random forest
(RF) models with 11 molecular subtypes for cancer subtype prediction. Models were trained and evaluated using 10-fold cross-validation on normalized and standard scaled expres-
sion profiles. N features were selected from each class (see Methods) and pooled for each fold to construct 11 molecular subtype predictors for random forest (RF). Cancer subtype
classification performance was evaluated via cross-validation on the learning set and external validation utilizing breast and ovarian cancer datasets.
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(CESC); colon adenocarcinoma (COAD) and rectum adenocarcinoma
(READ), which we combined into a single cohort (COADREAD); esoph-
ageal carcinoma (ESCA); head and neck squamous cell carcinoma
(HNSC); pancreatic adenocarcinoma (PAAD); pheochromocytoma and
paraganglioma (PCPG); prostate adenocarcinoma (PRAD); sarcoma
(SARC); skin cutaneous melanoma (SKCM); and thyroid carcinoma
(THCA). The metastatic gene expression matrix consisted of 394 sam-
ples spanning 11 cancer types and 16,383 genes.



Table 2
32 Cancer cohorts for primary classification from TCGA and ICGC.

Cohort Abbreviation Cases Disease Name

ACC 79 Adrenocortical carcinoma
BLCA 726 Bladder urothelial carcinoma
BRCA 2,320 Breast invasive carcinoma
CESC 568 Cervical and endocervical cancers
CHOL 36 Cholangiocarcinoma
COADREAD 873 Colon adenocarcinoma & Rectum adenocarcinoma
DLBC 48 Lymphoid Neoplasm Diffuse Large B-cell Lymphoma
ESCA 184 Esophageal carcinoma
GBM 319 Glioblastoma multiforme
HNSC 1,044 Head and Neck squamous cell carcinoma
KICH 66 Kidney Chromophobe
KIRC 1,131 Kidney renal clear cell carcinoma
KIRP 544 Kidney renal papillary cell carcinoma
LAML 346 Acute Myeloid Leukemia
LGG 969 Brain Lower Grade Glioma
LIHC 716 Liver hepatocellular carcinoma
LUAD 1,058 Lung adenocarcinoma
LUSC 974 Lung squamous cell carcinoma
MESO 87 Mesothelioma
OV 679 Ovarian serous cystadenocarcinoma
PAAD 323 Pancreatic adenocarcinoma
PCPG 179 Pheochromocytoma and Paraganglioma
PRAD 1,097 Prostate adenocarcinoma
SARC 259 Sarcoma
SKCM 537 Skin Cutaneous Melanoma
STAD 865 Stomach adenocarcinoma
TGCT 150 Testicular Germ Cell Tumors
THCA 1,067 Thyroid carcinoma
THYM 120 Thymoma
UCEC 716 Uterine Corpus Endometrial Carcinoma
UCS 57 Uterine Carcinosarcoma
UVM 80 Uveal Melanoma
Summary 18,217

Table 3
JAX clinical dataset for external validation of primary tumour type predictor.

Cohort Abbreviation Cases Tumour Name

BRCA 6 Breast invasive carcinoma
COADREAD 5 Colon adenocarcinoma & Rectum

adenocarcinoma
LUAD 3 Lung adenocarcinoma
LUSC 3 Lung squamous cell carcinoma
PRAD 5 Prostate adenocarcinoma
THCA 1 Thyroid carcinoma
Summary 23

Table 4
Melbourne dataset for external validation of primary tumour type predictor.

Cohort Abbreviation Cases Tumour Name

BLCA 4 Bladder urothelial carcinoma
BRCA 4 Breast invasive carcinoma
CHOL 5 Cholangiocarcinoma
COADREAD 5 Colon adenocarcinoma & Rectum adenocarcinoma
HNSC 1 Head and Neck squamous cell carcinoma
KIRC 4 Kidney renal clear cell carcinoma
LIHC 2 Liver hepatocellular carcinoma
LUAD 5 Lung adenocarcinoma
LUSC 3 Lung squamous cell carcinoma
MESO 3 Mesothelioma
OV 3 Ovarian serous cystadenocarcinoma
PAAD 5 Pancreatic adenocarcinoma
PRAD 5 Prostate adenocarcinoma
SARC 4 Sarcoma
SKCM 5 Skin Cutaneous Melanoma
STAD 3 Stomach adenocarcinoma
TGCT 4 Testicular Germ Cell Tumors
THCA 4 Thyroid carcinoma
Summary 69
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2.2. Clinical validation data: RNA-seq data of FFPE clinical samples

Clinical validation samples included ninety-three tumours
processed at two sites in the USA and Australia. Twenty-three for-
malin-fixed paraffin-embedded (FFPE) specimens samples repre-
senting 6 cancer types were obtained from clinical testing over
4 years in the JAX CLIA lab. Seventy metastatic FFPE tumours rep-
resenting 18 cancer types were profiled at the University of Mel-
bourne (UOM). Both sample cohorts were subject to RNA-Seq
with double-blinded treatment (only tissue of origin and diagnosis
were known) for clinical validation of our 1D-Inception model. All
FFPE specimens were macro dissection-enriched for extraction
and total RNA purified using either the Qiagen AllPrep DNA/RNA
FFPE Kit or RNA FFPE Kit (Qiagen, Hilden, Germany). At JAX CLIA
lab 50 ng of RNA was subjected to sequencing using the KAPA
RNA PyperPrep Kit with RiboErase (HMR) protocol and sequencing
by synthesis on an Illumina NextSeq 500 instrument. At the Uni-
versity of Melbourne Centre for Cancer Research RNA-seq libraries
were prepared using the NEB-next NEBNext Ultra II Directional
RNA Library Prep Kit for Illumina� and libraries sequenced on the
Illumina Nova-Seq 6000. Raw BCL files generated by the sequencer
were converted to FASTQ files using CASAVA. The RNA-Seq data
was aligned under to the human transcriptome version hg38
using kallisto version 0.46.0 [42] running under bcbio-nextgen
version1.1.6a-b'2aee4b50 (https://bcbio-nextgen.readthedocs.io/).
Raw gene expression counts were obtained from length scaled
transcripts per million (TPMs) using the tximport R package ver-
sion 1.12.0 [43] running under R version 3.6.0. The Ensembl [44]
gene-wise annotation used by tximport was provided in the BCBio
output. The distribution of the clinical datasets used for validation
is shown in Table 3-4.
2.3. Normalization, filtering and preprocessing for expression data

The expression data was scaled for each patient sample indepen-
dently for data normalization, i.e. the expression data were normal-
ized by subtracting the mean and dividing by the square root of the
variance of gene expression from the same patient.

All expression data were log2-transformed. After filtering, the
genes in each dataset were scaled to zero mean expression and unit
variance for each patient. This scaling allows expression to be mea-
sured in terms of standard deviations and affords platform-indepen-
dent use of subsequently trained models.
2.4. Primary tumour type classifiers on TCGA dataset

To predict primary tumour types, we developed a 1D Inception
model and compare it with two other deep learning models: ResNet
and 1D-CNN on the TCGA dataset. Performance metrics and contin-
gency table for all primary site predictors in cross-validation on TCGA
dataset and metastasis validation are listed in Table S1-S2. The Talos
hyperparameter space for each model is listed in Supplementary
Text.
2.5. ResNet
Due to limited samples, we chose the ResNet V50 architecture

[45] implemented using Keras [46], which has the most reduced
model complexity. The network input requires at least 32£ 32 2D
images. Thus, we extracted the top 1024 DEGs genes following the
process described in the Training section. The 1024 genes selected
are ordered by chromosomal location and then reshaped to be
32£ 32 images. The output from ResNet then becomes the input into
a pooling layer. In the end, it comes with a softmax output layer.

https://bcbio-nextgen.readthedocs.io/
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2.5.1. One-dimensional convolutional neural network (1D-CNN)
1D-CNN is a good model candidate since the 1D filters learned can

detect different spatial shapes in the expression matrix. Thus, we
strictly ordered our 791 features according to the chromosomal loca-
tion. Our experiments with 1D-CNN utilized a 1D convolutional layer
followed by one max-pooling layer. Dynamic fully connected (FC)
layers with ReLu activation functions were built with Talos [47]. The
number of FC layers and the number of nodes were determined by
nested cross-validation. Dropout filters were utilized after the max-
pooling layer and the FC layers and the keep probability were
selected as a hyperparameter by Talos [47]. In the end, the 32-node
output layer with a softmax activation function was found optimal.
The number of convolutional layer filters and the length of each filter
is also selected by Talos according to the accuracy of the training vali-
dation set.

The 1D-CNN model was constructed using the Keras framework
(v2.2.4) [46]. The hyperparameters selected by Talos [47] were as fol-
lows: batch size of 32; optimal performance achieved by having no
dropout; 32 filters, each with a length of 4; four hidden layers with
64 nodes in each layer; the learning rate used for training is 0.02; the
number of epochs of 200; and weight initialization using the Xavier
normal method [48].
Fig. 2. Primary tumour type prediction performance of CNN models on the TCGA dataset. (a
processes of all three models successfully converged. (b) Overall prediction accuracy of CNNm
formance of CNN models.
2.5.2. 1D Inception network with optimized hyperparameter setting by
Talos (1D-Inception)

The 1D-Inception network is used to enhance the 1D-CNN net-
work by considering multiple 1D convolutional kernels with different
sizes at the same time. We chose this architecture because the 1D-
Inception model was found to have superior performance on image
data sets [49]. The filter size and number are also tuned as hyperpara-
meters. The advantages of combining different size kernels can be
confirmed by the optimal architecture picked by Talos [47], as shown
in Fig. 2c, where the combination of different kernel sizes gives better
performance than the other settings.

2.6. Cross and external validation procedure

The schema for predictor design for primary site classification is
depicted in Fig. 1a.

All CNN models, 1D-Inception, 1D-CNN, and ResNet were
trained using the same feature selection and cross-validation
schedule on the TCGA dataset. Each model was then trained using
a 10-fold cross-validation procedure as follows. The expression set
was partitioned into 10 random subsamples and for each partition:
[1] the selected subsample was used as the testing set and the
) Validation data cross-entropy loss of CNN models. One can observe that the training
odels in cross-validation and external metastasis validation. (c) Per-class accuracy per-



Y. Zhao et al. / EBioMedicine 61 (2020) 103030 7
remaining 9 were combined into a training set; The training com-
prised 500 epochs, using the Adam [50] optimizer with 32 as the
batch size and 0.001 as the learning rate [2] the model was trained
using the selected 791 gene features (1024 for ResNet); and [3]
predictions for the selected partition were recorded. The cross-val-
idation procedure yields an estimate of model performance using
the selected parameters.

2.7. 1D-Inception model on TCGA and ICGC dataset

The 1D-Inception architecture for TCGA and ICGC dataset is
shown in Fig. 1b. Here each convolutional module has 1, 2, or 3 layers,
respectively. The filter size and number are also tuned as hyperpara-
meters and the Talos hyperparameter space is listed in Supplemen-
tary Text.

Because this network allows the three convolutional modules to
have different max-pooling layer window sizes and dropout layer
keep-probabilities, we can utilize as few as 817 genes in the model to
achieve a high overall top-1-accuracy of 98.54% in cross-validation
and overall top-5-accuracy of 99.94%. This outperforms alternative
methods that usually consider the whole gene set. This is because the
lower-dimensional data has fewer patterns than the high dimen-
sional data, thus it requires more kernel size options to detect the
limited number of patterns. A third strength of this architecture is
that the redundant layers can be reduced through Talos performance
checking. As shown in Fig. 1b, some CNN layers have filters of size
1£ 1, indicating that projecting the output from previous layers
directly can benefit performance. Similarly, some max-pooling layer
window sizes are optimized to be 1, which means that no max-pool-
ing layer can provide better performance.

3. Molecular subtype classification

3.1. Training data set: Molecular subtype from TCGA gene expression
data

Molecular subtype information was downloaded from cBioPor-
tal [51,52] for 3,367 samples derived from TCGA dataset from the
following primary tumours: glioblastoma multiforme (GBM), stom-
ach adenocarcinoma (STAD), breast (BRCA), ovarian (OV), prostate
(PRAD), and lung squamous cell cancers (LUSC). Further annota-
tions were curated from the following supplemental data files:
lower-grade glioma (LGG) [53], head and neck squamous cell carci-
noma (HNSC) [18], uterine corpus endometrial carcinoma (UCEC)
[54], cutaneous melanoma (SKCM) [55], kidney renal papillary cell
carcinoma (KIRP) [56] and kidney clear cell carcinoma (KIRC) [57],
and lung adenocarcinoma (LUAD) [23]. R (version 3+) scripts were
written to extract relevant information (e.g. sample ID, specific
subtype) from downloaded data and supplemental files. These
scripts are available in the public project GitHub repository as
described under Code availability.

For each of the 11 primary tumour types with established molecu-
lar subtypes, a model was constructed as described above using the
scaled, log2-transformed expression of the sample corresponding to
the selected primary type as input. For each cancer type, features
were selected by computing the differential gene expression
(p<0.001) in each subtype in comparison with the other subtypes of
the same cancer type. The list of gene features is shown in Table S7.

3.2. External validation dataset: public microarray data

For the external validation of our subtype predictors, we acquired
two additional microarray datasets. The first, accession number
GSE9899, contains 215 ovarian cancer samples [58] and the second,
EGA study EGAS00000000083 (https://www.ebi.ac.uk/ega), contains
1,784 breast cancer samples [59]. Both datasets comprise four
molecular subtypes each: mesenchymal, immunoreactive, differenti-
ated, and proliferative for the ovarian set; and basal-like, HER2-
enriched, luminal A, and luminal B for the breast set.
3.3. Machine learning algorithms for subtype classification

We evaluated several popular machine learning algorithms to
develop predictors for molecular subtype identification and chose
random forest (RF) model using R-packages randomForest (version
4.6-14) for the training and testing and caret (version 6.0-79) for tool
development. Unless otherwise specified, default parameters were
chosen for model construction. Performance metrics for subtype pre-
dictor and pan-cancer predictor are listed in Table S3-S5. Comparable
results were obtained using XGBoost, another ensemble model (Sup-
plementary tables S9) but Random Forest is chosen as the default
subtyping algorithm because of the superior performance in the
external validation set.
3.3.1. Random forest
The random forest algorithm employs a collection of decision

trees constructed from bootstrapped input data and classification is
done by majority voting among the ensemble of trees [60]. As single
decision trees are prone to overfitting, we used multiple trees con-
structed from randomly sampled copies of the input data to enable
the consensus classification to be robust and extensible to new sam-
ples. Each of our random forest models constructed 1000 trees, each
constructed from randomly sampled input with replacement, and
each decision tree node used 31 randomly selected features to parti-
tion the tree.
3.4. Ethics statement

The Jackson Laboratory (JAX) Institutional Review Board (IRB) has
reviewed the

Determination of Human Subjects Research form for the project
indicated above and has determined that this project does not meet
the definition of human subjects research under Laboratory policy
and applicable Federal Regulations.

This determination is based on the fact that the genomic summary
data from RNA-seq assays is provided with no individual-level geno-
mic data shared in publication. RNA-seq analysis of patient samples
at the University of Melbourne was done under an approved protocol
by the human research ethics committee at the Peter MacCallum
Cancer Centre (Protocol: 11/117).
3.5. Statistical analysis

Each classification algorithm (predictor) was compared using
overall accuracy, per class accuracy, sensitivity, and specificity. For
datasets with class-imbalance, reporting accuracy alone is a mislead-
ing metric to gauge performance. For example, more than 50% of the
training data from the TCGA network consists of tumours from only 9
of 32 classes, with BRCA making up 12% of the training dataset, and
tumour classes are similarly imbalanced in the external validation
datasets. Instead, we report classification performance as a combina-
tion of overall and per-class performance. Per class metrics are com-
puted using a one-versus-all scheme. TP = true positive, TN= true
negative, FP = false positive, FN= false negative: Metrics of perfor-
mance are calculated as follows:

Overall accuracy ¼ total number of correct tumor type predictions by classifier
the total number of tumor samples

https://www.ebi.ac.uk/ega
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Per class:

Per class accuracy

¼ Number of tumor samples precited as type A by classifier
Tumor sample numbers in the specific type A

Precision ¼ TP
TP þ FP

Sensitivity Recallð Þ ¼ TP
TP þ FN

Specificity ¼ TN
TN þ FP

F1 ¼ 2 � precision � recall
precisionþ recall

Additional metrics such as specificity, sensitivity (recall), and F1
score are included in supplementary tables S1-S5, S8.

4. Results

4.1. Precise classification of primary tumour types across platforms

RNA-seq cancer data was sourced from the TCGA and ICGC com-
pendium datasets. To generate a classification training dataset, we
combined COAD and READ into one single cohort (COADREAD) based
on TCGA consortium findings [40] and kept only primary tumour
samples and blood cancer samples for further analysis (see Meth-
ods); it is important to note that the training data contained no meta-
static tumour samples. The filtered cancer cohorts (18,217 samples,
32 cancer types) are shown in Table 2. We harnessed the 1D-Incep-
tion architecture neural network, a novel CNN model for primary
tumour type prediction (Fig. 1a). The Inception model utilizes multi-
ple one-dimensional convolutional layers with different kernel sizes
to operate on a gene expression input vector, as presented in Fig. 1b
and described in detail in the Methods.

To gauge the performance of our 1D-Inception model, we first
compared its performance to that of two other popular CNN models,
the 1D convolutional neural network (1D-CNN) model and Residual
Net (ResNet) [61] using the TCGA dataset only. The primary tumour
type prediction performance of the three CNN models applied to the
TCGA dataset is shown in Fig. 2 and Figure S1. Fig. 2a illustrates the
training process by plotting the validation set cross-entropy loss on
model training epochs and shows that the training for all three mod-
els converged without inducing overfitting. The 1D-Inception model
achieved the best 10-fold cross-validation performance (Fig. 2b)
among the three CNN models. The overall top-1 cross-validation
accuracy was 97.20%, 96.85%, 94.43% for 1-D Inception, 1D-CNN, and
ResNet, respectively (Fig. 2b), and the overall top-5 cross-validation
accuracy was 99.85%, 99.77%, 99.06% respectively. The 1D-Inception
model mean sensitivity for cross-validation is 0.9580 while the mean
precision is 0.9607. The per-class prediction accuracy (positive pre-
dictive value) (Fig. 2c) and per-class F1 score (Figure S1c) also
revealed the 1D-Inception model’s excellent performance in cross-
validation. The cross-validation confusion matrices of the 1D-Incep-
tion model, the 1D-CNN, and ResNet model in the 10-fold cross-vali-
dation experiment with the TCGA dataset are shown in Figure S2. In
summary, our 1D-Inception model performed the best among the
three CNN models.

To further improve our 1D-Inception performance, we combine
the TCGA and ICGC datasets as a combined dataset to redo the train-
ing process and updated the architecture (Fig. 1b). The 1D-Inception
model confusion matrix on TCGA and ICGC datasets is shown in
Fig. 3a, achieving 98.54% accuracy in the 10-fold cross-validation
experiment. It is important to note that every tumour sample was
classified by our model; no samples were excluded from classifica-
tion, either by a sample quality metric or through a lack of consensus
during label assignment.

The major misclassifications observed during cross-validation
were primarily within organ systems (Fig. 3a). Of note was the mis-
classification of uterine carcinosarcoma (UCS) as uterine corpus
endometrial carcinoma (UCEC). Histologically, USC presents features
of both UCEC and sarcoma (SARC) [62] and it is now accepted
that the sarcomatous component of carcinosarcoma is derived from
the carcinoma as a result of transdifferentiation (epithe-
lial�mesenchymal transition) during tumour evolution [62-65]. Sim-
ilarly it would be expected that the distinction between esophageal
adenocarcinomas (ESCA) and stomach adenocarcinoma (STAD)
would be challenging, given that ESCAs originating near the gastro-
esophageal junction (GEJ) are STAD-like with the distinction in clini-
cal practice normally made primarily based on anatomical location of
the primary tumour rather than on any morpholgicaly, immunohisto-
chemical or biological difference [66], and gastroesophageal carci-
noma showing a progressive gradation of subtypes [67].

To understand these misclassifications, the expression profiles of
every training sample were embedded into a two-dimensional latent
space using UMAP (see Methods) and coloured by primary tumour
type from the TCGA dataset (Fig. 4). Several anatomical and histologi-
cal structures emerged from the embedding. Some cancers were
observed to form disparate, well-separated clusters by organ sys-
tems, such as the brain (GBM-LGG), liver (LIHC), gallbladder (CHOL),
and kidney (KIRC, KIRP, KIRH). Other cancers were clustered in accord
with histological features, such as melanomas (SKCM, UVM) and
squamous cell cancers (BLCA, CECS, HNSC, LUSC, and some ESCA),
consistent with recent reports that these cancers share phenotypes
and subtypes [25,26,28]). The core gastrointestinal tract cancers clus-
ter tightly, with COAD and READ embedded in one mass, reaffirming
their treatment as a single cohort, COADREAD, which is adjoined by
STAD and some ESCA samples. ESCA samples segregated into two
clusters, consistent with both esophageal adenocarcinoma (clustered
with STAD) and squamous cell carcinoma (clustered with LUSC,
HNSC, etc.) when classified under ESCA [68]. Similarly, the known
similarities between USC, UCEC, and SARC emerged clearly, with the
embedding of USC forming a bridge between UCEC and SARC clusters.
We also observed two distinct clusters of SARC samples, one most
similar to USC and the other most similar to UCEC. As this embedding
is heavily dependent on the input samples and number thereof, it
may be that some misclassifications are unavoidable without a larger
cohort of samples.

4.2. Application of CUP-AI-Dx to metastatic cancers

As stated above, the identification of the primary site from a meta-
static sample is a significant clinical challenge. We assume that
metastases, including CUPs, should be expected to retain at least a
partial transcriptional signature of the primary site. Therefore, we
used our classification model to predict the primary site of 394 meta-
static samples across 11 known primary sites from the TCGA dataset.
We first trained our model on the TCGA dataset and then compared
the performance with 1D-CNN and ResNet. Each deep-learning
model achieved overall top-1-accuracy 92.64%, 92.89%, 88.32% for
1D-Inception, 1D-CNN, and ResNet, respectively (Fig. 2b), and overall
top-5-accuracy of 97.72%, 97.72%, 96.19%, respectively. The 1D-Incep-
tion model had better external validation accuracy (91.87%)
with smaller feature sizes (241 genes) compared to 1D-CNN (87.56%)
(Fig. S3).

After combining the TCGA and ICGC datasets to train the 1D-
Inception network, performance is further improved to top-1-accu-
racy at 96.70% in TCGA metastatic samples and the confusion matrix
is shown in Fig. 3b. Notably, this performance is achieved by only
considering the expression of 817 genes. This validation of our 1D-



Fig. 3. Cross- and external validation of primary tumour type predictor. The 1D-Inception model was constructed for primary tumour type prediction. 32 primary tumour types are
grouped by the pan-organ system. (a) Inception model confusion matrix for cross-validation of 32 primary tumour types on TCGA and ICGC dataset. Accuracy for each prediction
class is shown to the right of the table. (b) 394 expression profiles of TCGA metastatic tumours from the primary site of origin spanning 11 organs were classified by the primary
tumour type predictor. (c) 23 expression profiles of clinical datasets spanning 6 cancer types were classified by primary tumour type predictor. (d) 69 expression profiles of Mel-
bourne dataset spanning 18 cancer types were classified by primary tumour type predictor. Text in contingency table cell cj,i of (b), and (c) shows the number of class i tumour sam-
ples classified as class j. The heatmap of the confusion matrix is coloured in grayscale. Colour shading along with the main diagonal shows pan-organ groups.
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Inception model using TCGA metastatic samples gives strong support
to the hypothesis that metastatic samples retain the molecular profile
of the primary tumour and can, therefore, be used to predict the pri-
mary site of the tumour.

To extend our tool into clinical application, we generated two
clinical datasets, JAX clinical dataset with 23 FFPE samples across 6
cancer types (Table 3) and Melbourne dataset with 69 FFPE samples
across 18 cancer types (Table 4), as independent datasets for external
validation. Our 1D-Inception model trained on TCGA and ICGC data-
set achieved overall accuracy at 86.96% in the JAX clinical dataset
(Fig. 3c) and 72.46% in Melbourne dataset (Fig. 3d). For this external
validation, the mean sensitivity and precision are 0.8611 and 0.8095,
respectively. The performance on the clinical dataset demonstrates
that our 1D-Inception model can be applied in a clinical setting for
single sample classification.

To show our model’s robustness, we firstly remove 23 genes from
the IHC diagnostic marker genes [36,37] in the metastatic dataset,
finding that 1D-Inception performance is not affected in the absence
of IHC marker key genes (Figure S4a). Furthermore, we randomly
remove k(= 5, 10, 20, 50, 200) feature genes and show that prediction
accuracy is only slightly affected when some of the features genes are
not present (Figure S4b). It is important to reiterate that our 1D-
Inception classifier can identify the tissue of origin with only 817 fea-
ture genes as input and is robust to the absence or presence of key
diagnostic genes used clinically. Such a model may enable a more
cost-effective and precise diagnosis of CUPs.
4.3. Subtype specific classification accurately identifies molecular and
pan-cancer subtypes

Molecular subtypes have been defined for 11 cancer types: BRCA,
HNSC, KIRC, KIRP, LGG, LUAD, LUSC, OV, PRAD, SKCM, and STAD. Each
of these primary types has two to four molecular subtypes. For exam-
ple, breast cancers are frequently subtyped into Basal-like, Her2-
enriched, Luminal A and Luminal B. Such subtyping is growing in
clinical relevance and can be used as a predictive marker for thera-
peutic approaches [69]. However, there are relatively few available
datasets with identified molecular subtypes. Our deep learning
framework requires relatively large training datasets to perform well,
so we chose to build random forest (RF) models for molecular sub-
type identification.



Fig. 4. Unsupervised embedding of expression profiles reveals relationships among primary sites. Expression profiles from all samples in the TCGA dataset were embedded into two
dimensions using uniform manifold approximation and projection (UMAP) [86] and colored by primary tumour type. For each cancer, labels are placed near the centroid of the
expression profile in the UMAP latent space. Anatomical and histological relationships are emergent and add context to the most common misclassifications in Figure S2a. The fol-
lowing groups of cancers are highlighted with green, blue, and purple ellipses, respectively: i) COADREAD, STAD; ii) BLCA, CESC, ESCA, HNSC, LUSC; iii) GBM, LGG.
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Eleven models were constructed, one model for each primary
tumour type, into its molecular subtypes, as illustrated schematically
in Fig. 1b. The accuracy (positive predictive value), specificity, and
sensitivity per subtype are shown in Fig. 5a-5c. The best performing
subtype predictors, LGG, LUAD, PRAD, had median sensitivity above
90%, with PRAD yielding nearly perfect classification.

Recent studies by The Cancer Research Network have examined
multi-omics data for several groups of related cancers and have iden-
tified shared molecular subtypes in each pan-cancer group [25�28].
For example, Liu et al. show that there are five distinct molecular sub-
types shared among hypermutated ESCA, STAD, COAD, and READ
tumours. These studies have identified 5 pan-gynecological, 6 pan-
squamous-cell, 5 pan-gastrointestinal, and 6 pan-kidney cancer
molecular subtypes, respectively.

These pan-cancer molecular subtypes provide a separate oppor-
tunity to test our methodology as these subtypes are defined
wholly or in part by multiple types of genomic information other
than gene expression data. In addition to building classifiers for
molecular subtypes of individual primary tumour types, we con-
structed subtype classifiers for each pan-cancer group above.
Cross-validation performance metrics for the four classifiers built
from these samples are listed in Table S5. Despite the definition of
many of these pan-cancer subtypes consisting of multi-omics sig-
natures, we found moderate performance among all four expres-
sion-based classifiers, with the pan-squamous-cell classifier with
the highest performance (83.5% overall accuracy and 88.2% median
sensitivity) and pan-gynecological performing the worst with
60.4% accuracy and 62.4% median sensitivity. The pan-gynecologi-
cal cluster with the worst performance, subtype C2 with only 41%
sensitivity, was almost solely differentiated from subtype C1 by
hypermutation patterns [25].
4.4. Subtype predictors are accurate on external data of different
platforms

To further validate the cancer subtype predictors, we classified
samples from two external datasets: ovarian cancer (GSE9899) [58]
and breast cancer (EGAS00000000083) [59] annotated with molecu-
lar subtypes, with 215 and 1,784 samples respectively. The breast
cancer molecular subtypes are defined by expression signatures
through the PAM50 subtype definition [70] and accurate prediction
of basal and luminal-A subtypes and recapitulation of their corre-
sponding expression signatures served as an important validation of
our classifier.

The ovarian cancer subtype predictor (Fig. 5d) attained an overall
accuracy of 84.19%(n=4) (the best performance was for mesenchy-
mal: 98.5%) while the breast cancer subtype predictor (Fig. 5e)
achieved an overall accuracy of 79.88% (n=4) (the best performance is
for basal-like: 99.2%). We also compared our result against the
PAM50 classifier [71] in breast cancer, and PAM50 classifier only
achieved 77.35% (n=4) accuracy, because PAM50 classification is
mainly based on linear correlation, while our random forest approach
can also handle the nonlinear associations. Besides, our nested cross-
validation approaches demonstrated that the accuracy obtained by
the random Forest model is robust to changes in the hyperpara-
meters used including the number of features used at each node
(data not shown here). Our model also demonstrated a higher



Fig. 5. Cross- and external validation of molecular subtype predictors. A predictor of molecular subtypes was constructed for each of 11 primary tumour types, spanning 38 molecu-
lar subtypes on the TCGA dataset. (a) Per-class accuracy, (b) specificity, and (c) sensitivity of molecular subtype classifications evaluated through cross-validation (Fig. 1c). To further
validate these subtype predictors, ovarian (d) and breast (e) subtype predictors were used to predict the respective molecular subtypes in two external datasets (GSE9899 and
EGAS00000000083, respectively).
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accuracy for identifying the basal-like subtype of breast cancer for
which a diabetes drug was shown to be a potential therapy [72].

5. Discussion

It is widely appreciated that cancer is a disease at the scale of the
entire genome, but it remains difficult to effectively translate this
complexity into clinical utility, especially in CUP. An important piece
of information that is relevant for clinical care in all cancer settings is
knowledge of primary tissue of origin. It can, therefore, be presumed
that identifying tissue of origin and perhaps even the molecular sub-
type of a CUP tumour is required to guide optimal treatment [73]. We
have therefore used publically available datasets representing 32
cancer types from two large pan-cancer genome consortia datasets to
develop a tissue of origin prediction method. We also extended
beyond the tissue of origin to incorporate molecular subtyping for 11
common cancer types to provide further resolution and potential
clinically relevant information. Importantly, the classifier was vali-
dated using the widely available RNA-seq method and validated on a
series of archival FFPE samples replicating conditions widely experi-
enced in diagnostic laboratories.

The performance of our classifier was similar to that reported in
other studies achieving an accuracy of 75.7%. Importantly, in testing
CUP-AI-Dx we report the accuracy across a balanced representation
of tumour types in an independent clinical series and report the accu-
racy of all cases tested regardless of prediction confidence score.
Although CUP-AI-Dx performs well for most cancers, some tumour
types showed a drop in classification accuracy. Classification can be
challenging among tumours of the same organ system such as gastro-
intestinal tumours and also among tumours with similar histology,
such as squamous cell carcinoma. Classification inaccuracies were
noted in our clinical series among pancreatic adenocarcinoma and
cholangiocarcinomas which is not surprising given that in clinical
practice this distinction cannot be made with certainty in many cases
[74]. It is worth noting that cholangiocarcinomas were not included
in the prediction model or tested in some previous methods includ-
ing the DNA methylation-based test EPICUP [75], while pancreatic
adenocarcinomas and cholangiocarcinomas are combined as single
class pancreatobiliary for the CancerTypeID 92 gene RT-PCR test [15].
The distinction between adenocarcinomas of the ampulla, bile duct,
and pancreas as well as intrahepatic cholangiocarcinoma and meta-
static carcinoma are known diagnostic dilemmas where immunohis-
tochemistry is of limited value and separation in clinical practice my
be prone to interobserver discordance [74,76]. That is, we believe
that caution may be required for interpretation of gene-expression
classification among this group as the gold standard may be imper-
fect. Even incorporating orthogonol evidence such as mutation analy-
sis with gene-expression prediction may be only partially useful in
resolving some pancreatobiliary tumors [8]. A technical caveat in
testing metastatic samples is also the potential for contaminating
normal tissue. Such examples were evident in our clinical validation
series of known metastatic tumours (Table S10), where the top pre-
diction corresponded to biopsy site and not cancer type. In this
regard consideration of the second-highest prediction can sometimes
be informative.

Although our study performs well on identifying most solid can-
cers, it may not account for all biological differences observed among
tumours or adequately represent rare cancers. The tissue of origin
diagnostics, whether IHC-based or using molecular profiling, makes
the fundamental assumption that metastases, including CUPs, retain
features of the primary cell or tissue of origin. Although in this study
we did not test CUP tumours, previous studies have shown that latent
primary CUP, where a primary becomes known in time, can be pre-
dicted with similar accuracy to metastatic tumours of known origin
[13,37], which suggests these tools can be diagnostically useful. How-
ever, it is also apparent that some cancers can have unusual
transcriptional and epigenetic profiles. For instance, a previous study
based on unsupervised analysis of TCGA data using multiple geno-
mics platforms demonstrated tumors clustering outside of their tis-
sue of origin, either among unrelated cancer types or clustering as a
heterogeneous group independently from known tumour type clus-
ters [77]. Anecdotal evidence of CUP tumours that do not retain fea-
tures of the common tumour types in the TCGA set has also been
reported [78]. These observations put fundamental limits on accuracy
achievable by gene expression-based classification. Aside from chal-
lenging cases of apparent dedifferentiation or potential reprogram-
ming, the lack of representation of many rare cancers in training is
also a limitation, which in CUP-AI-Dx is the case for both neuroendo-
crine tumours and sarcomas. We anticipate future versions of the
test to better represent such tumour types.

The path to improving the tumour type classification accuracy
may be to consider including other potential features such as somatic
point mutations [79] and histopathology images [80] in the model.
Mutational profiling of tumours is steadily being incorporated into
mainstream work-up of cancer patients and recently several tissue of
origin classification methods have been developed based on DNA fea-
tures alone either from panel [81] whole-exome, and whole-genome
sequencing (WGS) [82]. Interestingly, the reported accuracy of these
methods especially when using WGS passenger mutational profiles
for the tissue of origin classification is similar to using gene-expres-
sion profiling and DNA methylation classification. Features from
mutation and copy-number analysis are likely to augment both accu-
racy and robustness against technological and batch variation. DNA
features will also help in resolving the molecular subtype of that
tumour type. For example, the CIN subtype in gastric cancer is known
to exhibit large structural variations that may not be captured accu-
rately by expression data [83]. Combining orthogonal datatypes from
the same patient sample is likely a rational approach to improving
tumour type and molecular subtype classification and will become
practical as analysis of both DNA and RNA becomes more routine for
cancer patients. The three-dimensional structure of the genome is
cell-type specific and therefore can add another important layer of
information to improve the classification accuracy and deep neural
networks like our 1D-inception models are capable of learning this
latent structure as previously demonstrated [84,85].

In summary, we have demonstrated the utility of our machine
learning algorithms to decode gene expression profiles and better
meet the clinical challenge of identifying the primary site and the
molecular subtype of multiple cancers. These predictors, including
the deep learning-based predictor, will be made available as open-
source software, freely available for academic non-commercial use.
To make these tools available to as wide an audience as possible, we
offer our models and results in a publicly available software package,
which can be applied to other datasets to reproduce the results pre-
sented here.
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