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Simple Summary: Mutational signatures due to DNA mismatch repair deficiency (dMMR) is com-
mon in many cancers. However, the prognostic value of dMMR-associated mutational signatures
remains to be assessed. Here, we performed a de novo extraction of mutational signatures in a
cohort of 787 patients with gastric cancer. We detected three dMMR-related signatures, one of which
clearly discriminates tumors with MLH1 gene silencing through hypermethylation of its promoter.
We showed evidence that classification based on mutational signature exposure can be used to
identify groups of patients with common clinical, immunological, and mutational features related
directly to better prognosis.

Abstract: DNA mismatch repair deficiency (dMMR) is associated with the microsatellite instability
(MSI) phenotype and leads to increased mutation load, which in turn may impact anti-tumor immune
responses and treatment effectiveness. Various mutational signatures directly linked to dMMR have
been described for primary cancers. To investigate which mutational signatures are associated with
prognosis in gastric cancer, we performed a de novo extraction of mutational signatures in a cohort of
787 patients. We detected three dMMR-related signatures, one of which clearly discriminates tumors
with MLH1 gene silencing caused by promoter hypermethylation (area under the curve = 98%).
We then demonstrated that samples with the highest exposure of this signature share features related
to better prognosis, encompassing clinical and molecular aspects and altered immune infiltrate
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composition. Overall, the assessment of the prognostic value and of the impact of modifications
in MMR-related genes on shaping specific dMMR mutational signatures provides evidence that
classification based on mutational signature exposure enables prognosis stratification.

Keywords: mutational signature; gastric cancer; DNA mismatch repair; prognosis

1. Introduction

Cancer results from the sequential accumulation of DNA alterations, including single-
nucleotide mutations [1] that arise from various endogenous and exogenous processes [2].
Distinct DNA-damaging processes leave characteristic nucleotide base-change footprints
known as mutational signatures [3]. Researchers have extracted distinct mutational sig-
natures by examining large sets of human cancer genomes, and some of these signatures
have been registered in the COSMIC (CS) database (http://cancer.sanger.ac.uk/cosmic/
signatures) [4]. This pan-cancer analysis revealed the significant heterogeneity of opera-
tional mutational processes, which encompass mutation-triggering events as diverse as
the off-target activity of the AID/APOBEC family of cytidine deaminases, exposure to
ultraviolet light, tobacco smoking, and defective DNA mismatch repair (dMMR) [5,6].

Collectively, the understanding of the mechanistic basis and etiology of mutational
signatures may provide clues for cancer diagnosis and have prognostic value [7]. For ex-
ample, six mutational signatures have been associated with the BRAC1/2 gene dysfunction,
and most likely are predictive of the response to treatment with poly-ADP ribose poly-
merase (PARP) inhibitors [8]. Homologous recombination repair (HRR) deficiency features
based on these signatures allowed the prediction of BRCAness in patients with breast
cancer with a 98.7% sensitivity [8]. Additionally, given that nucleotide excision repair
(NER)-deficient tumors are more sensitive to certain treatments, somatic variations in the
ERCC2 gene, which encodes a key protein of the NER pathway, have also been linked to
characteristic mutational signatures [9,10]. Other mutational processes have been associ-
ated with the harboring of biallelic MUTYH germline mutations [11], which may indicate
deficient base excision repair (BER). Affected patients are eligible for genetic counseling [12]
and might benefit from immunotherapy [13].

In addition to the HRR, NER, and BER repair pathways, another mechanism un-
derlying oncogenic genomic variations occurs in tumors with impaired DNA mismatch
repair (MMR) which harbor elevated frequencies of single-nucleotide variants (SNVs) and
exceptionally high indel rates [14]. Recent studies have demonstrated that various tumors
with mismatch repair deficiency (dMMR; glioblastomas and gastrointestinal, endometrial,
and prostate tumors) are more responsive to programmed cell death protein 1 (PD1) im-
mune checkpoint inhibitors than MMR-proficient tumors are [15–17]. The microsatellite
instability (MSI) phenotype arises mainly because of the dMMR mechanism [18], and thus
serves together with the immunohistochemical detection of MMR genes (e.g., MLH1 and
MSH2) as a biomarker for the identification of patients with MSI/dMMR and a guide for
decisions about their clinical treatment.

A set of four mutational signatures (CS-6, CS-15, CS-20, and CS-26) has been associated
with the dMMR and/or MSI phenotypes, mainly in the context of colorectal cancer and
Lynch syndrome. CS-6 and CS-15 have also been described in the context of gastric
cancer [19]. Furthermore, an improved prognosis of gastric cancer has been associated with
dMMR/MSI status, without consideration of the mutational signature landscape [18,19].
It is thought that mutational signatures arise from multiple changes in pathway component
events [3,4], and thus its evaluation as a classifier may be more informative than a unique
clinical or molecular feature, which allows grouping patients with similar phenotypes
based on their mutational profiles.

In this study, we sought to identify mutational signatures associated with the prognosis
of gastric cancer and determine the significance of molecular events in MMR genes that

http://cancer.sanger.ac.uk/cosmic/signatures
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shape these signatures in MMR-deficient gastric adenocarcinomas. The prognostic value of
the presence of these signatures was evaluated in a cohort of 787 patients with gastric cancer,
including 439 patients whose data is registered in The Cancer Genome Atlas (TCGA) and a
validation cohort of 170 patients with gastric cancer [20]. We further investigated whether
local tumor immune responses and prognoses varied according to the dMMR exposure
load. The stratification of patients with gastric cancer by dMMR mutational signature
appears to be related to tumor microenvironment and molecular features predictive of
the responsiveness to immune checkpoint blockade. Further studies are recommended to
confirm this in clinical practice.

2. Results
2.1. Mutational Signatures

Using signer [21] analysis to estimate de novo mutational signatures across three
gastric cancer cohorts, we identified seven mutational signatures (S1–7; Figure 1A) which
are related to signatures described in the CS database (CSs), as reflected by cosine similarity
scores (Figure 1B). S1 (related to CS-1) is associated with endogenous mutational processes
initiated by the spontaneous deamination of 5-methylcytosine; S2, S4, and S5 (related to
CS-6 and CS-15, CS-20, and CS-21 and CS-26, respectively) are associated with dMMR
and/or MSI; S3 (related to CS-3) is associated with the failure of DNA double-strand break
repair by homologous recombination; S6 (related to CS-17) is of unknown etiology; and S7
(related to CS-10) is associated with error-prone polymerase activity in the catalytic subunit
of DNA polymerase epsilon (POLE).

CS-3 (S3; Figure 1 and Figure S1) was the predominant signature, and the observations
in this study support previous characterizations of it in gastric cancer samples as having
a very high prevalence of small indels and base substitutions due to the failure of DNA
double-strand break repair by homologous recombination [19]. This finding suggests that
7–12% of patients with gastric cancers could benefit from platinum or PARP inhibitor
therapy. Notably, however, some patients not exposed to CS-3 were found to be highly
exposed to signatures associated with dMMR (S2, S4, and S5; Figure S1). This distinct
group of patients harbors features that might have prognostic relevance; we investigated
this possibility further.

2.2. dMMR Signatures and Prognostic Features

To assess whether dMMR signature exposure had prognostic value in patients with
gastric cancer, we first evaluated the influences of each mutational signature exposure
and its main possible clinical and molecular prognostic features—such as age at diagnosis,
ethnicity, tumor pathological stage, Lauren classification, anatomic site, tumor mutational
burden (TMB), and MSI status—on overall survival (OS) by fitting a simple Cox regression
model (Figure S2). We then fitted a multiple Cox regression model to the dataset using
prognostic features with significant p values (p < 0.05) in the simple model (Figure S2).
Data from 584 patients with gastric cancer and no metastasis at diagnosis for whom vital
status information (alive/dead) was available were included in simple and multiple Cox
regression models. The median and mean follow-up durations for these patients were
28.9 months (95% confidence interval (CI), 25.8–32.1 months) and 36.2 months (95% CI,
32.9–39.5 months), respectively.

Relative to other dMMR signatures, S4 exposure burden was associated with an
improved OS (hazard ratio (HR) = 0.59; 95% CI, 0.37–0.96; Figure 2A and Figure S3).
Thus, we focused on S4, which has the potential to offer important, clinically actionable
information for prognosis.
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Figure 1. De novo mutational signatures (Ss) in gastric cancer samples. (A) Mutational signatures in gastric cancer samples
from 787 patients, extracted from The Cancer Genome Atlas, International Cancer Genome Consortium, and cbioPortal
cohorts. (B) Heatmap of cosine similarities between de novo mutational signatures and COSMIC signatures (CSs).
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Figure 2. Forest plots of hazard ratios for overall survival (multiple Cox regression models) for (A) mutational signature
S4, (B) the tumor mutational burden (TMB), and (C) microsatellite instability (MSI) status and (D) MSI molecular subtype.
CI, confidence interval. * p < 0.05, ** p < 0.01.

Our analysis also revealed that higher TMBs were associated with improved OS
(HR = 0.66; 95% CI, 0.46–0.93; Figure 2B), consistent with previous findings [22]. OS was
not associated with high microsatellite instability (MSI-H) status or MSI molecular subtype
(Figure 2C,D). The calibration curves for 2-year OS indicated that all the models were
adequate (Figure S4).

We used the “maxstat” function in R to define groups according to S4 exposure. The
optimal cut-point was in the highest quartile (Q3); thus, patients with S4 exposure ≥ the Q3
level were allocated to the S4high status, and all other patients (<Q3 level) were allocated
to the S4low group. Survival curves differed significantly between these groups (p = 0.03,
Log-rank test); median OS durations were 72 months (95% CI, 48.0 months–∞) in the S4high

group and 37 months (95% CI, 28.0–68.0 months) in the S4low group considering the whole
follow-up (Figure S5, throughout 5-years overall survival). Next, we used an independent
gastric cancer cohort to validate that S4high conferred a survival benefit. In the Kaplan–Meier
analysis, the median OS duration had not been reached at 5 years (95% CI, 38.2 months–
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∞) in the S4high group and was 48 months (95% CI, 21.3 months–∞) in the S4low group,
supporting the presence of a trend toward a survival benefit for S4high (Figure S6).

2.3. Clinical and Molecular Features in the S4 dMMR Groups

We next further examined the clinical and molecular features of the S4high and S4low

groups. We first determined whether S4 exposure was represented equally in the three
cohorts. To avoid performing statistical tests with different numbers of samples, a sub-
sampling procedure was applied; 24 samples were selected randomly from each cohort
and the Kruskal–Wallis test was applied to this sub cohort. The procedure was repeated
1000 times, and all the p values were >0.05, indicating that the S4 exposure was similar in
all cohorts. These results reinforce the prognostic value of S4 signature independent of
ethnic background.

The clinical features associated previously with the improved prognosis of gastric
cancer, such as distal anatomic site and intestinal histology [23], were also enriched in
the S4high group (Table 1). This group also showed a significantly greater occurrence of
clinical variables known to be associated with worse gastric cancer prognosis, such as car-
dia/proximal anatomic site, diffuse histology, positive lymph-node metastasis (stage N+),
and advanced pathological stage (III and IV) [23] (Table 1). In addition, the predicted MSI-
H status, MSI, and POLE molecular subtypes were enriched in the S4high group, whereas
the genomically stable (GS) and chromosomal instability (CIN) molecular subtypes were
enriched in the S4low group (Table 1). Most (n = 119/160 (74%)) of the MSI-H cases were in
the S4high group, but the S4low group unexpectedly contained a small proportion of such
cases and the S4high group contained non-MSI-H cases (Table 1). Survival curves revealed
a trend for worse prognosis for MSI-H cases in the S4low group (median OS duration,
9.07 months; 95% CI, 9.0 months–∞) than non-MSI-H cases in the S4high group (median
OS, 53 months; 95% CI, 20.0 months–∞; Figure 3A). The prognosis seems to be better for
cases with the diffuse histological subtype in the S4high group (median OS not reached;
95% CI, 24.0 months–∞) than the intestinal histological subtype in the S4low group (median
OS 43.1 months; 95% CI, 28.0 months–∞; Figure 3B). These results indicate that classifica-
tion according to mutational signatures improved the stratification of patients within the
prognostic groups, independent of their previous clinical or molecular classification.

We also examined the tumor heterogeneity, TMB, and neoantigen count. Tumor
heterogeneity was evaluated quantitatively by the examination of the distribution of allele
frequencies and the calculation of mutant-allele tumor heterogeneity (MATH) scores [24].
We then performed a correlation analysis that incorporated the MATH score, S4 exposure,
and TMB (Figure 4). Correlations of the MATH score with TMB and S4 exposure were
negative in the S4high group and positive in the S4low group. In addition, the MATH scores
were higher in the S4low group than in the S4high group (p = 3.711 × 10−12, Mann–Whitney
U test). The TMB and neoantigen load correlated positively with S4 exposure in both
groups (Figure 4).

These findings suggest that tumors with high S4 exposure were more homogeneous
in the S4high group, and that reduced tumor heterogeneity together with a high TMB and
high neoantigen load is determinant of a good prognosis.
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Table 1. Clinicopathological features of gastric cancer samples according to mutational signature 4
DNA mismatch repair deficiency groups.

Variable
All (n = 787) S4low (n = 590) S4high (n = 197)

p Value
N % N % N %

Age (mean ± SD) 64.17 ± 11.73 64.17 ± 11.73 66.25 ± 10.68 0.0024

Gender 767 97 571 91 196 99

Female 274 0.36 192 0.34 82 0.42 0.0473Male 493 0.64 379 0.66 114 0.58
Race 726 92 546 93 180 91
White 275 0.38 203 0.37 72 0.40

0.7427Black 13 0.02 11 0.02 2 0.01
Asian 437 0.60 331 0.61 106 0.59
Other 1 0.00 1 0.00 0 0.00

Anatomic Site 627 80 495 84 132 67

Cardia/Proximal 168 0.27 148 0.30 20 0.15

0.0015Fundus/Body 212 0.34 166 0.34 46 0.35
Antrum/Distal 242 0.39 178 0.36 64 0.48

Other 5 0.01 3 0.01 2 0.02

Histology Lauren 467 59 383 65 84 43

Diffuse 150 0.32 132 0.34 18 0.21
0.0041Intestinal 301 0.64 235 0.61 66 0.79

Mixed 16 0.03 16 0.04 0 0.00

Stage T 712 90 526 89 186 94

T1-T2 181 0.25 132 0.25 49 0.26 0.8116T3-T4 531 0.75 394 0.75 137 0.74

Stage N 712 90 526 59 186 94

N0 173 0.24 115 0.22 58 0.31 0.0144N+ 539 0.76 411 0.78 128 0.69

Stage M 707 90 524 89 183 93

M0 623 0.88 461 0.88 162 0.89
0.9422M1 62 0.01 47 0.09 15 0.08

MX 22 0.03 16 0.03 6 0.03

Pathological Stage 715 91 546 93 169 86

I 85 0.12 58 0.11 27 0.16

0.0386II 220 0.31 160 0.29 60 0.36
III 289 0.40 228 0.42 61 0.36
IV 121 0.15 100 0.18 21 0.12

Molecular Subtype 403 51 289 49 114 58

CIN 223 0.55 206 0.71 17 0.15

<0.0001
GS 50 0.12 47 0.16 3 0.03

EBV 38 0.09 33 0.11 5 0.04
MSI 85 0.21 0 0.00 85 0.75

POLE 7 0.02 3 0.01 4 0.04

MSIseq Status 787 100 590 100 197 100

MSI-H 160 0.20 41 0.07 119 0.60 <0.0001Non MSI-H 627 0.80 549 0.93 78 0.40

Immune Subtypes 388 49 285 48 103 52

C1 128 0.33 101 0.35 27 0.26

<0.0001
C2 209 0.54 135 0.47 74 0.72
C3 35 0.09 34 0.12 1 0.01
C4 9 0.02 8 0.03 1 0.01
C6 7 0.02 7 0.02 0 0.00
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Figure 3. Five-year overall survival for subgroups of the mutational signature S4high and S4low

groups in the public cohort. (A) Comparison of cases with high microsatellite instability (MSI-H) and
in the S4low group with non-MSI-H cases in the S4high group. (B) Comparison of cases with diffuse
histology in the S4high group with those with intestinal histology in the S4low group. Log rank test
was used to compare the survival distributions of two groups.

2.4. S4 is Associated with Epigenetic Changes and Mutational Background in MMR Genes

To investigate the mechanisms underlying S4, we evaluated the epigenetic context and
mutational landscape of MMR genes in the S4high and S4low groups. Although the genes
associated with dMMR have been identified, the underlying main genetic modifications
that lead to each dMMR signature remain poorly characterized.

To improve our understanding of the determinant changes that influence the dMMR
signatures detected in this study, we first searched for epigenetic changes in the MMR
genes. In line with previous findings [25,26], we observed the down-regulation of MLH1
expression, driven by the hypermethylation of its promoter (Figure S7, rho = −0.81,
p-value < 0.001). To further assess the manner in which mutational exposure is asso-
ciated with epigenetic changes in the MLH1 gene, simple and multiple logistic regression
models were fitted to the dataset (Table 2). S4 exposure burden was associated with an
increased chance of MLH1 promoter methylation (hMLH1; odds ratio (OR) = 22.561; 95% CI,
7.909–64.353) and S5 exposure burden was associated with a decreased chance of such
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methylation (OR = 0.107; 95% CI, 0.048–0.238); no such association was found for the S2
exposure burden. This model showed adequate to good performance (Hosmer–Lemeshow
goodness-of-fit test: χ2(8) = 10.257, p = 0.247; Brier score = 0.0364; Figure 5A) and excellent
discrimination power (area under the receiver operating characteristic curve (AUC) = 0.982;
95% CI, 0.971–0.994; Figure 5B). Using the Youden index, we determined that the best cutoff
value was 0.125, which yielded a 95.45% sensitivity and a 95.82% specificity (Figure 5B).

Figure 4. Scatter plots of Spearman correlation between molecular features. S4, mutational signature 4. TMB, tumor
mutational burden; MATH, mutant-allele tumor heterogeneity.

Table 2. Simple and multiple logistic regression results for MLH1 methylation and DNA mismatch
repair deficiency mutational signatures.

Variable Coefficient Standard
Error

CI (95%) for
Coefficient p-Value OR

CI (95%) for
Coefficient

Lower Upper Lower Upper

Simple logistic regression model

ExpS2 4.772 0.5226 3.748 5.796 <0.0001 118.155 42.424 329.078
ExpS4 3.2424 0.3469 2.562 3.922 <0.0001 25.595 12.968 50.518
ExpS5 0.2725 0.1674 −0.056 0.601 0.104 1.313 0.946 1.823

Multiple logistic regression model

Intercept −2.640 0.300 −3.227 −2.052 <0.0001
ExpS2 1.304 0.730 −0.126 2.733 0.074 3.682 0.881 15.386
ExpS4 3.1162 0.5348 2.068 4.164 <0.0001 22.561 7.909 64.353
ExpS5 −2.231 0.4067 −3.028 −1.434 <0.0001 0.107 0.048 0.238
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Figure 5. Performance and power discrimination of the logistic model. (A) Q–Q plot showing that the propensity score
model was adequately calibrated, according to the Hosmer–Lemeshow test. (B) Summary of the receiver operating
characteristic (ROC) curve showing the power of discrimination for MLH1 methylation in mutational signature S4. AUC,
area under the receiver operating characteristic curve; CI, confidence interval.

We next looked for somatic and germline SNVs and indels in MMR genes (LIG1, POLE,
EXO1, MLH1, MLH3, MSH2, MSH3, MSH5, MSH6, PCNA, PMS1, PMS2, PMS2L3, PMS2L4,
POLD1, POLD2, POLD3, POLD4, and SSBP1). Six percent (n = 12/197) of patients harbored
somatic variations in the MLH1 gene; these patients were allocated to the S2high and S4high

groups, and no such mutation was observed among patients in the respective Slow groups.
Nine percent (n = 17/197) of patients in the S2high group harbored somatic variations in
the MLH3 gene. We also found that only 8% of patients in the S5high group (n = 8/100
considering TCGA cohort) harbored MSH5 germline mutations. Overall, we observed few
cases of mutated MMR genes in the Shigh groups.

These observations suggest that germline SNVs, somatic SNVs, and indels are not
the major modifications affecting MMR gene expression levels. hMLH1 was observed
in almost 60% of individuals in the S4 group (β ≥ 0.3), considering the TCGA dataset.
To validate this mechanism as a causative factor for S4, we examined genomic sequencing
data from three HAP1 cell samples (two MLH1 knockout and one MLH1 wild type). We
observed greater S4 exposure in the MLH1 knockout cell lines and greater S5 exposure in
the parental cell line (Figure S8), which identifies the absence of MLH1 as a strong cause of
the S4 mutational signature.

2.5. Somatic Changes Associated with S4

We further evaluated significantly mutated genes other than those related to MMR in
the S4high and S4low groups. We observed increased numbers of SNVs and indels in the
S4high group; most mutations in the S4low group were SNVs. These findings were expected,
considering that MSI/dMMR harbors a mutator phenotype [14].

The significantly mutated [27] gene set in the S4high group consisted of 102 genes. The
most commonly mutated genes in this group were ARID1A (42%), KMT2D (35%), and
TP53 (31%), in accordance with previous findings [28]; 56 other genes presented mutations
in at least 10% of patients (Table S1a). Somatic mutations in chromatin-regulating genes,
such as KMT2D (also known as MLL2) and ARID1A, may be associated with improved
survival [26]. Of the 24 significantly mutated genes identified in the S4low group, 12
were oncogenes associated with tumor progression or tumor suppressor genes (PIK3CA,
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KRAS, RHOA, CDH1, CTNNB1, ITGAV, SMAD4, TP53, CDKN2A, APC, PTEN, and PIK3R1;
Table S1c). These findings support previous reports of the occurrence of APC, CTNNB1,
SMAD4, and SMAD2 mutations among 215 non-hypermutated tumors from the TCGA
cohort, with somatic mutations in CDH1 and RHOA enriched in the GS and/or diffuse
histologic subtypes [28], as seen in our S4low group.

To assess other mechanisms underlying the remaining ~40% of mutations in the S4high

samples, we divided this group into hypermethylated and hypomethylated subgroups
according to the MLH1-based methylation levels. The TP53 gene was associated with
hypomethylation in the S4high group (OR = 0.314; 95% CI, 0.131–0.736; p = 0.006). However,
in a comparison of all significantly mutated genes (MutSigCV analysis, p < 0.05) between
the S4high and S4low groups, TP53 was the only mutated gene associated with the S4low

group (OR = 0.428; 95% CI, 0.293–0.622; p = 3.542 × 10−6). An additional analysis of the
somatic interactions (“somaticInteractions” function in the “maftools” package, available
in R) revealed exclusive interactions of TP53 in both groups, indicating different pathways
underlying tumorigenesis for each group [29]. Additional studies are necessary to indicate
a biomarker that encompasses both hyper and hypomethylated S4high patients.

2.6. Tumor Microenvironment in S4 Groups

To investigate the association of the tumor microenvironment with the improved
clinical outcomes seen in the S4high group relative to the S4low group, we determined
the immune cell infiltrate and stromal cell compositions in the groups using biomarker
gene expression methodologies. We found significantly greater proportions of infiltrating
cytotoxic and pro-inflammatory immune cells, such as CD8+ central and effector memory
T cells, CD4+ memory T cells, T helper 1 cells, gamma/delta T cells, natural killer (NK)
cells, M1 macrophages, and plasmacytoid dendritic cells, in the S4high group than in the
S4low group (Figure 6A and Figure S9). In contrast, immature and immune regulatory
dendritic cells were more common in the S4low group (Figure 6A and Figure S9).

Figure 6. Cont.
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Figure 6. The main immunological features associated with the mutational signature (S)4high and S4low groups. (A) Boxplots
showing the absolute quantification of immune infiltrate cells estimated by CIBERSORT. * p < 0.05, ** p < 0.01, *** p < 0.001,
Mann–Whitney U test. (B) Heatmap of immune effector gene (cytotoxic and immune checkpoints) expression. Normalized
gene expression levels for each marker gene were classified in quartiles. Q1, 0–25%; Q2, 25–50% (median); Q3, 50–75%; Q4,
75–100%. P values to the left of the heatmap for S4high vs. S4low expression were obtained using the Mann–Whitney U test.
These comparisons are also shown as boxplots in Figure S9.

To further characterize the immune regulatory environment associated with clinical
outcomes, we compared the expression levels of key genes coding for immunoregula-
tory and effector molecules that have proven to be important for the control of many
cancers [30,31]. Genes encoding the CD8+ T-cell–related cytolytic molecules granzyme
A/B and perforin-1 (GZMA and GZMB and PRF1, respectively), the inflammatory T-cell
response-related cytokine interferon (IFN)-γ (IFNG), other proinflammatory cytokines
(IL1B, IL6, and IL8), and the NK cell killer-cell immunoglobulin-like receptor family, as
well as T-cell activation marker genes (IL2RA and ICOS), showed greater expression
in the S4high than in the S4low group (Figure 6B and Figure S10). No difference in the
immunosuppression-related genes TGFB1, IL-10, and FOXP3 was observed between
groups, whereas the expression of ENTPD1 (encoding CD39, a protein associated with T
regulatory cell (Treg) immunosuppression activity) [32] was greater in the S4low than in the
S4high group (Figure 6B and Figure S10). Importantly, the expression of immune checkpoint
inhibitor genes (PDCD1 for the PD1 receptor; CD274 for programmed death ligand (PDL)-1;
PDCD1LG2 for PD-L2; HAVCR2 for TIM3, LAG3, and CTLA4) was also greater in the S4high

group (Figure 6B and Figure S10), suggesting a relationship with a more immunologically
activated tumor microenvironment [33]. The expression of HLA, antigen-processing, and
presentation-related genes (e.g., CD86, B2M, HLA class II genes, HLA-E, HLA-C, TAP1, and
TAP2) was also greater in the S4high group (Figure S10). The observation of previously char-
acterized immune subtypes [34] reinforces the finding that the tumor microenvironment
in the S4high group is more immunologically active, composed predominantly of the C2
(IFN-γ) immune subtype, with a significantly greater proportion of this subtype than that
observed in the S4low (Table 1, Figure 6B). This subtype has been associated with highly
mutated tumors [34]. On the other hand, the S4low group displayed greater proportions of
the C3 (inflammatory) and C1 (wound healing) immune subtypes [34] (Table 1, Figure 6B).
The C2 immune subtype appeared to be less activated in the S4low group than in the S4high

group, with a reduced relative gene expression of immune effector molecules (Figure 6B).
Together, these findings indicate that the immune microenvironment in the S4high group is
strongly activated relative to that in the S4low group.
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In the evaluation of stromal cells by xCell analysis, scores for myocytes, chondrocytes,
hematopoietic stem cells, endothelial cells (microvascular and lymphatic), and fibroblasts
(pericytes and mesangial cells) were higher in S4low group (Figure S9). Pericytes and
endothelial cells are important cellular components of the tumor microenvironment that
have been associated with the worst prognosis, considering the high risks of angiogenic
events and metastasis [35–37]. Overall, the stromal score in the S4low group was higher than
that in the S4high group, demonstrating an association with the worst prognosis (Figure S9).

3. Discussion

In this study, we conducted a comprehensive and integrated analysis of the impacts
of MMR-related gene alterations on specific mutational signatures associated with gastric
cancer. We present evidence that the identification of dMMR can be used not only for MSI
phenotype classification, but also as a potential indicator of prognosis besides assembling
potential patients with a peculiar tumor microenvironment that would respond to immune
checkpoint inhibitors.

We performed a de novo extraction of mutational signatures based on somatic SNVs
across four whole-exome sequencing cohorts, encompassing 787 gastric cancer samples
derived mainly from populations of European and Asian descent. We found seven mu-
tational signatures, three of which were related to dMMR. S4, related to the previously
described CS-20, was the only dMMR signature with significant prognostic value; this
value was validated in a local cohort of patients with gastric cancer, which was distinct
in terms of molecular ancestry and some clinical and molecular features (e.g., Lauren’s
histology and tumor heterogeneity). Diffuse/mixed histology was predominant in this
cohort, whereas the public cohorts were enriched in the intestinal subtype. Furthermore,
the S4low group in this independent cohort was less heterogeneous than the S4low group
from the public cohorts and the S4high groups from both cohorts. Nevertheless, patients in
the S4high groups, including that of this cohort, had a better prognosis.

The main mechanism associated with MMR impairment in samples with S4 exposure
seemed to be hMLH1. The disruption of MLH1 in vitro using a CRISPR/Cas9 assay
reproduced CS-20 [38], which resembles S4. In this study, we identified an endogenous
epigenetic mechanism for this signature in patients with gastric cancer. We also reproduced
S4 in an isogenic cell model in which MLH1 knockout cells had a high S4 exposure. Thus,
we conclude that the loss of MLH1 gene expression due to promoter hypermethylation and
mutagenesis loss of function result in the same mutational signature.

The CpG island methylator phenotype is a well-documented early event in tumori-
genesis, preceding hMLH1 in solid tumors, which in turn drives the MSI-H pheno-
type [25,26,28]. In contrast, the low MSI and microsatellite stability gastric carcinoma
subtypes have unmethylated MLH1 promoters and regular MLH1 activity [25]. In this
study, we observed that most MSI-H cases were in the S4high group, but that a small
fraction of these cases were in the S4low group. This observation is in line with previous
reporting that about one fourth of MSI-H cases have distinct molecular features and poor
prognoses [39]. In addition, the presence of non–MSI-H cases in our S4high group shows
that mutational signature exposure can be used to cluster samples independently of their
MSI status. Furthermore, we identified a few cases (4%) in the S4high group that did not
present hMLH1, but carried somatic mutations in the MLH1 gene that apparently lead to a
loss of function of the encoded protein. Thus, we demonstrated that hMLH1 is the main
mechanism driving S4 (CS-20) in gastric cancer. Furthermore, we observed that patients
without hMLH1 harbor TP53 mutations, suggesting another mechanism associated with
dMMR signatures in this subset of patients.

We also demonstrated a strong correlation between S4 exposure and the TMB, which
showed significant prognostic value for survival. Hypermutated tumors have been shown
to have a better prognoses and good responses to immunotherapy, apparently due to
neoantigen enrichment and intrinsic antitumor immune responses [40,41]. However,
most thresholds for the identification of samples with high TMBs vary with tumor type,
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and some do not necessarily predict a better treatment response due to intratumoral
heterogeneity [41–43]. Here, we observed that most mutations associated with the S4high

signature are clonal, which is important for the prediction of better treatment.
High degrees of intratumoral heterogeneity have been associated with incomplete

responses to therapy, higher relapse rates, and poor clinical outcomes [44,45]. The increased
genomic instability observed in MSI/dMMR and CIN tumors is the major driver of such
heterogeneity [44,46]. However, the most unstable tumors (those with the greatest somatic
SNV or copy number alteration burdens) are not the most intrinsically heterogeneous [46].
The greatest degree of intratumoral heterogeneity was found in tumors with relatively large
numbers of somatic mutations and copy number alterations, which can be associated with
exogenous mutagens, including those induced by viral infections and tobacco smoking.
These tumors have large numbers of subclonal mutations related to late events and exhibit
frequent chromosomal instability associated with the CIN subtype, TP53 mutations, and
APOBEC-related mutational signatures (previously related to the Epstein–Barr virus (EBV)
gastric cancer subtype) [6,46]. Similarly, we observed greater tumor homogeneity in the
S4high than in the S4low group. Thus, antitumor immune responses may be more effective
in the S4high group due to the intermediate to high TMBs and MSI and CIN molecular
phenotypes, associated with lesser tumor heterogeneity. A recent meta-analysis revealed
the importance of the MSI status to the treatment response in patients with gastric cancer, as
its findings suggested that patients with MSI-H status may not benefit from perioperative
or adjuvant therapy and could undergo surgery without these treatments [47].

Several studies have shown that the tumor microenvironment at diagnosis can be
used to predict treatment response and clinical outcome [48,49]. The balance of inflamma-
tory/cytotoxic immune cells with elements of an effective antitumor response, including
regulatory cells and suppressor signals, may indicate which patients will intrinsically have
such responses and thus a better prognosis.

The EBV and MSI subtypes of gastric cancer have been associated with greater immune
infiltration and responsiveness to immunotherapy, as well as better prognoses [49]. In
this study, we observed many elements indicating that the tumor microenvironment in
the S4high group was more active than that in the S4low group, aggregating both cases
of MSI and EBV molecular subtypes. In general, the absolute quantification of immune
cell subtypes and differential gene expression using CIBERSORT [50] and the calculation
of gene set enrichment analysis (GSEA) scores in xCell [51] revealed a greater activity of
proinflammatory and cytotoxic cells, as well as more antigen processing and presentation,
in the S4high group. In contrast, although the S4low group contained some immunogenic
tumors, the predominant environment in this group was enriched in Treg lymphocytes and
M2 macrophages, related to worse prognosis [48,49]. In addition, the S4low group harbored
stroma-enriched tumor microenvironments associated with poor prognosis [36].

4. Materials and Methods
4.1. Clinical and Genomic Data from Public Cohorts

Clinical and molecular data for 787 gastric adenocarcinoma samples were extracted
from the following non-redundant public cohorts: (i) TCGA (STAD-US cohort, n = 439)
(ii) cBioPortal (n = 226; composed by UHK (n = 19) [52], UHK/UHK_Pfizer (n = 100) [52],
TMUCIH (n = 17) [53] and GACA-JP (n = 30) [54] cohorts), and (iii) the International
Cancer Genome Consortium (ICGC, GACA-CN cohort, n = 122; Table S2 (available at
https://dcc.icgc.org/projects/GACA-CN)). TCGA data were accessed on 4 October 2018
and correspond to the MC3 variant calling project, which is a comprehensive effort to
detect consensus mutations and forms the basis of the Pan-Cancer Atlas initiative [55].
Data from the cBioPortal and ICGC cohorts, composed of patients of Asian descent, were
last assessed on 9 January 2019.

Raw reads from matched non-tumor exomes including MMR genes were downloaded
from the TCGA dataset and used to detect germline SNVs following the Genome Analysis
Tool Kit’s (GATK’s) best practices for germline alteration calling. We also used filters to

https://dcc.icgc.org/projects/GACA-CN
https://dcc.icgc.org/projects/GACA-CN
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select mutations with a variant allele frequency ≥0.3 and a minimum depth coverage of 10
reads. The “dbNSFP_MetaLR_rankscore” annotation was used to filter out synonymous
mutations (dbNSFP_MetaLR_rankscore ≤0.6). Fragment per kilobase million values from
380 TCGA stomach adenocarcinoma (STAD) samples were used to normalize the gene
expression profiles. Methylation, quantified using β values (range, 0–1), was available for
the TCGA cohort. We then used CpG sites to detect hypermethylated and hypomethylated
MMR gene promoters (threshold, β ≥ 0.3). The baseline clinical features of the cases from
each cohort are summarized in Table S3.

4.2. Clinical and Genomic Data from the Validation Cohort

Patients in the validation cohort were enrolled prospectively in an institutional study
of the epidemiology and genomics of gastric adenocarcinomas in Brazil [20]. This study
was approved by the local ethics committee, and all the participants provided written
informed consent [20]. The clinical and molecular characteristics of the 170 patients in the
validation cohort are provided in Table S4.

Genomic DNA was extracted from frozen tissues (n = 165) using the AllPrep DNA/RNA
Mini Kit (Qiagen), QIASymphony THC 400 device (Qiagen), or phenol/chloroform/isoamyl
alcohol precipitation. Genomic DNA was extracted from formalin-fixed paraffin-embedded
tissues (n = 4) using the RecoverAll Total Nucleic Acid Isolation Kit (Thermo Fisher).
One sample was from a gastric wash. Exome libraries were prepared using the Agilent
SureSelect V6 kit and sequenced using Illumina platforms (HiSeq4000, 100 bp, n = 33;
Novaseq, 150 bp, n = 137; paired-end reads for both). Somatic SNVs were called using
an in-house pipeline following the GATK’s best practice guidelines [56], as described
previously [6]. Briefly, the raw reads were aligned using the Burrows–Wheeler aligner
with default settings to assemble GRCh38. Next, the alignment files were converted to
a binary alignment map (BAM) files, sorted, and filtered to exclude reads with mapping
quality scores <15. The retained reads were processed using SAMtools (v1.9) and Picard
(v3.8; https://broadinstitute.github.io/picard/), which exclude low-quality reads and
polymerase chain reaction duplicates, respectively. Finally, somatic SNV calling was per-
formed for the whole-exome data from analysis-ready BAM files using Mutect2 (v3.8) for
tumor samples, followed by filtering with a panel of 16 unmatched non-tumor leukocyte
samples. Extensive filtering was applied to remove samples with a low mapping quality,
as well as strand and position biases and oxoguanine oxidative artifacts. Residual germline
mutations from the Genome Aggregation Database (https://gnomad.broadinstitute.org/)
and Online Archive of Brazilian Mutations (http://abraom.ib.usp.br/) were removed.
The raw sequencing data (fastq files) were deposited in the Sequence Read Archive
(http://www.ncbi.nlm.nih.gov/sra; accession no. PRJNA505810).

4.3. Statistical Analyses

Data on baseline patient characteristics are expressed as absolute and relative frequen-
cies for qualitative variables and as means ± standard deviations for quantitative variables.
Mutational signature exposure and the TMB were considered to be continuous variables.
Associations between qualitative variables were evaluated using the chi-squared test or
Fisher’s exact test, as appropriate. Comparisons of the means of quantitative variables and
groups were evaluated using the t-test or Mann–Whitney U test, as appropriate.

Overall survival functions were generated using the Kaplan–Meier estimator and
compared between Shigh and Slow groups using the log-rank test. A semiparametric Cox
proportional-hazards model was fitted to the dataset to describe relationships between
OS and the main clinical features. HRs and 95% CIs were calculated for all variables.
A backward stepwise selection algorithm was applied, with different significance levels
required to enter (p = 0.10) and remain in (p = 0.05) the model. Variables that acted
as confounders (>20% change in coefficient) were also removed from the model. The
proportional-hazards assumption was assessed based on the Schoenfeld residuals [57]. The
analysis provided evidence that all the covariates had constant effects over time.

https://broadinstitute.github.io/picard/
https://gnomad.broadinstitute.org/
http://abraom.ib.usp.br/
http://www.ncbi.nlm.nih.gov/sra
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Multivariate analyses were performed to examine the main clinical features associated
previously with OS (e.g., age, pathological stage, Lauren tumor subtype, and ethnicity),
mutational signature exposures associated with dMMR, and molecular features (TMB
and MSI status). Forest plots were created based on the results of the final multiple Cox
regression model. Patients with metastasis were excluded from these analyses. In addition,
we fitted simple and multiple logistic regression models to assess the effects of S2, S4, and S5
exposure on MLH1 methylation. The overall performance, calibration, and discriminatory
power of the final multiple logistic regression model were assessed using the Brier score, the
Hosmer–Lemeshow goodness-of-fit test, and the AUC, respectively [58]. We also assessed
the goodness of fit using a Q–Q plot. The significance level was fixed at 5% for all the tests
(two-sided). Statistical analyses were performed using the R software (v3.5).

4.4. Mutational Signatures in Cell Lines

CRISPR-Cas9 knockout clones for MLH1 were generated in human HAP1 cells using
the guide RNA sequence 5′-AAGACAATGGCACCGGGATC-3′. Clonal populations with
MLH1 frameshift mutations were cultured for 3 months to allow for the accumulation of
mutations during cellular division [59]. To identify mutations, genomic DNA was submit-
ted to whole-genome sequencing. De novo somatic mutations, including substitutions,
indels, and rearrangements, in subclones were identified by removing all mutations seen
in parental clones. Next, SNVs were mapped onto trinucleotide sequences by including
the 5′ and 3′ neighboring base contexts, followed by the estimation of the degree of sample
exposure to previously detected mutational signatures [21].

4.5. Mutational Signature Estimation

All six classes of SNV (C > A, C > G, C > T, T > A, T > C, and T > G) from the public
cohorts were mapped onto trinucleotide sequences by including the 5′ and 3′ neighboring
base contexts. Next, the SNV spectrum with 96 trinucleotide mutation types for all samples
from the public cohorts was loaded into signer [21] for the estimation of the optimal number
of mutational signatures based on the median Bayesian information criterion. We next
used cosine similarity (>0.7) to compare the de novo extracted mutational signatures with
those described in the CS database (v2).

The SNV spectrum with 96 trinucleotide mutation types for samples from the valida-
tion cohort was loaded into signeR to estimate the degree of sample exposure to previously
identified mutational signatures from the public cohorts. Samples exhibiting greater expo-
sure (≥the third quartile level) to a given signature were assigned to the Shigh groups and
those with lesser exposure (<the third quartile level) were assigned to the Slow groups.

4.6. Molecular Features

We used the MSIseq [21] software for MSI status (MSI-H and non–MSI-H) predic-
tion from whole-exome data. Briefly, this software is based on four machine-learning
frameworks, and requires a catalog of sample somatic SNVs and microindels, a file con-
taining the exact locations of mononucleotides (length ≥5 bases), and microsatellites
consisting of di-, tri-, and tetranucleotide repeats, as annotated in the “simpleRepeats”
track (http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database). Consistent with the
method proposed by Chalmers et al. [60], the TMB was calculated by dividing the total
number of mutations by the length of the target region in megabases. Tumor heterogene-
ity was estimated using the “math.score” function in the “maftools” package (v3.8) [61].
Higher MATH scores indicate a greater heterogeneity. Available data on neoantigens for 77
TCGA-STAD samples were extracted (https://tcia.at/neoantigens) [62].

4.7. Identification of Significantly Mutated Genes

To assess the somatic mutation profiles of genes throughout the genome, we searched
for genes that were mutated more frequently than expected by chance [27]. Pre-processed
Mutation Annotation Format files (generated using the “prepareMutSig” function in

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database
https://tcia.at/neoantigens
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“maftools” (v8) [27]) were loaded into the online MutSigCV server (v1.3.4; https://cloud.
genepattern.org/gp/pages/index.jsf) [27]. Significantly mutated genes associated with S4
were evaluated to determine their associations with S4high, S4low, and subgroups defined
by MLH1 methylation status using the “compareMaf” function (“maftools” R package).
The “somaticInteractions” function (“maftools” R package) was used to identify sets of
genes that were mutually mutated in exclusive and co-occurring manner [29,61].

4.8. Evaluation of Tumor Microenvironment Composition and Immunological Aspects

We estimated cellular compositions from the TCGA bulk expression datasets using two
complementary approaches. First, the CIBERSORT software, based on the deconvolution
method for the characterization of cell composition in complex tissues from their gene
expression profiles, was used [50]. CIBESORT takes advantage of a validated leukocyte
gene signature matrix, termed LM22. This matrix contains 547 genes that distinguish 22
human hematopoietic cell phenotypes, including seven T cell types, naïve and memory B
cells, plasma cells, NK cells, and myeloid subsets. Simultaneously, a recently introduced
GSEA-based technique termed xCell [51] was used to infer 64 immune and stroma cell types.
We used this approach to confirm the CIBERSORT findings and evaluate the stromal content.

A CIBERSORT analysis was performed online using a public server (http://cibersort.
stanford.edu/) for the characterization of absolute and relative immune cell composition,
with 1000 permutations and disabled quantile normalization as set parameters. Of the
380 TCGA-STAD tumor samples, 215 (56%) samples yielded data on infiltrating immune
cells (CIBERSORT analysis, p < 0.05) and were included in further analysis (S4high, n = 50;
S4low, n = 165). We also used xCell to confirm the results of the S4high and S4low sample
comparison. xCell analysis was performed using the R package with default parameters
(https://github.com/dviraran/xCell). To verify the immune effector responses in S4high

and S4low samples, the differential expression of key immunoregulatory/inflammatory and
cytotoxic markers was found. Group comparisons described in this section were performed
using the Mann–Whitney U test with the significance level set to p < 0.05. We also used
the pre-processed immune subtypes described by Thorsson et al. [34] for TCGA samples
(available for 103 S4high samples and 285 S4low samples; Table S2).

5. Conclusions

In conclusion, whereas previous studies have aimed to classify patients using molecu-
lar and clinical features, such as the MSI status, TMB, and MLH1 gene expression levels,
this study provides evidence that classification based on mutational signature exposure
can be used to identify groups of patients with common clinical, immunological, and
mutational features related directly to better prognosis.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072
-6694/13/3/490/s1, Figure S1. Heatmap clustering of gastric cancer sample signature exposure.
Mutational signatures called by signeR are arranged in rows, and samples are arranged in columns,
Figure S2. Forest plot of hazard ratios for overall survival from univariate Cox model analysis. TMB,
tumor mutational burden; MSI, microsatellite instability, Figure S3. Forest plot of hazard ratios for
overall survival from the multivariate Cox model for (a) mutational signature S2 and (b) S5, Figure
S4. Calibrated plots of 2-year survival (multiple Cox regression models) for (a) mutational signature
S2, (b) S4, (c) S5, (d) high microsatellite instability, and (e) tumor mutational burden, Figure S5.
Five-year overall survival for S4high and S4low groups in the public cohort, Figure S6. Five-year
overall survival for S4high and S4low groups in the validation cohort, Figure S7. Scatter plots of
Sperman’s correlation between MMR gene expression levels (FPKM) and methylation loads. Gene
expression levels were plotted against average β values for the promoter-related CpG islands of
MMR genes, Figure S8. Barplot showing the burdens of previously identified mutational signatures
in the public gastric cancer cohort; isogenic wild-type cells are compared with two subclones with
mutations in the MLH1 gene induced by CRISP-Cas9 assay, Figure S9. Boxplots of immune and
stroma cells scores, estimated by xCell (Aran et al., 2017), in the mutational signature S4high and S4low

groups. * p < 0.05, ** p < 0.01, t test, Figure S10. Boxplots showing the normalized gene expression

https://cloud.genepattern.org/gp/pages/index.jsf
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of immune-related genes. Immune gene markers were grouped as (a) inflammatory/cytotoxic,
(b) suppressor/exhausted, (c) costimulatory/antigen presentation, and (d) other (natural killer cell
receptors and monocyte/macrophage markers). Outlying values were removed. * p < 0.05, ** p < 0.01,
*** p < 0.001, **** p < 0.0001, Mann–Whitney U test, Table S1. Significantly mutated genes in the
mutational signature (S)4high and S4low groups and associated pathways. (a) Significantly mutated
genes, related pathways, and frequency in the S4high group. (b) Description of pathways found for
the S4high gene set. (c) Significantly mutated genes, related pathways and frequency in the S4low

group. (d) Description of pathways found for the S4low gene set, Table S1 SignificantlyMutatedGenes-
Pathways.xlsx, Table S2. Metadata on sample clinical, molecular, and immune features, Table S2
Clinical-Molecular-features.xlsx, Table S3. Clinicopathological features of gastric cancer samples
by cohort, Table S4. Clinicopathological features of gastric cancer samples according to mutational
signature 4 DNA mismatch repair deficiency in the validation cohort.
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