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Opportunities for big data in
conservation and sustainability

Rebecca K. Runting'™, Stuart Phinn® 2, Zunyi Xie?, Oscar Venter3 &
James E. M. Watson® 24

Big data reveals new, stark pictures of the state of our environments. It also
reveals ‘bright spots’ amongst the broad pattern of decline and—crucially—the
key conditions for these cases. Big data analyses could benefit the planet if
tightly coupled with ongoing sustainability efforts.

This big data revolution, which encompasses techniques to capture, process, analyse and
visualize large datasets in a rapid timeframe, has led to an explosion in data variety over the last
five decades (Fig. 1a). Significant advances in data growth in the bio-geophysical sciences have
allowed scientists to discover, analyse and understand environmental changes at micro to global
scales, and separate out what is human-driven. As a consequence, the state and trends of the
environment is increasingly becoming a focus of big data applications (Fig. 1b). Here, we discuss
the trends emerging from these environmental analyses (including the derived data products)
and propose a way forward to harness these technologies to mitigate global environmental
declines.

Environmental changes revealed by big data

Almost invariably, the advances in big data analyses confirm planetary declines and, in most
cases, reveal that declines are worse than previously indicated (Fig. 1b). For example, a landmark
collaboration between NASA and the European Space Agency integrated the Antarctic ice sheet’s
changing volume, flow and gravitational attraction to model its surface mass balance, which
revealed Antarctica lost 2720 + 1390 Mg of ice between 1992 and 2017 (equating to a sea-level
rise of 7.6 +3.9 mm)2 Yet only a few years prior, the IPCC stated that ‘we have medium
confidence in model projections of a future Antarctic SMB [surface mass balance] increase,
implying a negative contribution to GMSL [global mean sea level] rise’ (p.115519). Similarly,
efforts to create a Red List of Ecosystems—an emerging methodology using multiple lines of
evidence to assess the threat status of ecosystems!!—has already revealed some alarming results.
For instance, in the Americas and the Caribbean, 85% of the forest area and 80% of forest types
are potentially threatened!2. While these methodical developments are impressive and urgently
needed, they reveal a stark picture for the environment.

However, analyses of big data have also revealed ‘bright spots’ amongst the broad pattern of
decline and—crucially—identify the key drivers, including deliberate policy interventions. For
instance, while Hansen et al.” revealed dramatic declines in forest extent across the globe, forest
loss in Brazil was decreasing by 1318 km? y~! through the 12 year period to 2012, primarily due
to a progressive legal framework covering forests during the study period (although the change
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b Timeline of environmental change
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Fig. 1 Timeline of selected technological and environmental changes. (a) The volume of data produced has grown exponentially and is expected to soon
reach 40 Zettabytes (40 trillion Gigabytes). Such data generation is only possible due to the concurrent growth in data storage and computing speed,
which has moved from the floppy disk (-1 calculations per second per $1000) to cloud-based storage (>10'° calculations) in last 30 years!. Despite this
exponential growth in technological capacity, and increasing environmental applications, our planet is still facing serious environmental declines (b). All
environmental declines shown are sourced from prior studies (as detailed below) and are indexed relative to their state in the first year plotted (i.e.,
dividing by the first value in each time series), with the exception of Antarctic ice sheet mass change?, which was indexed against expected (BAU) loss by
2100 (81cm sea-level rise equivalent3). Tidal flats represent the overall decline across the globe for time period, and does not show annual fluctuations.
Intact Forest Landscapes and tree cover loss does not take into account gains>®. Note the index on the y-axis is only shown for the range 0.9-1. tData from
Global fishing watch’. *Based on the global human footprint8. “For at least 1 month a year over the period 1996-2005°.

in government in 2019 has since reversed this trend). Similarly,
recent analyses of satellite data by Chen et al.13 showed that direct
human land-management has led to greening over large expanses
in China and India. Much of the gains in China were from forest
(rather than agriculture), which was driven by ambitious national
policies for afforestation and forest conservation underpinned by
payments for these ecosystem services!4. Biophysical drivers can
also produce positive trends. For instance, an analysis of derived
big data products revealed that increased precipitation in the

Tibetan Plateau over the last four decades has resulted in vege-
tation greening!®>. While this greening is good for carbon
sequestration, it is important to note that it may ultimately dis-
rupt the existing ecosystem and species. Overall, the mean human
pressure in the world’s 24 most developed countries decreased
from 1993-2009, potentially due to rural-to-urban migration and
restoration programs®. Despite these regional improvements, they
are not yet sufficient to reverse the global trend towards envir-
onmental decline.
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Coupling big data and the global sustainability agenda
Analyses of big data are clearly essential for highlighting declines
in Earth’s environment and its capacity to support humans. Yet,
these impressive advances will not benefit the planet and its
people unless we can act to achieve sustainability goals, so it is
essential that big data coalesce with ongoing efforts to achieve
sustainability. Unfortunately, this is not yet the case for many
national and international policy processes. Despite international
agreement on the Aichi Biodiversity Targets (which form the
strategic plan for the Convention for Biological Diversity), many
nations are not taking advantage of the availability of big data and
derived products to achieve these goals. Numerous spatial data
layers necessary for implementing the Aichi Targets already exist
at the national or global scale, yet 80% of the 5th round of
National Reports on these targets contained no actionable
maps'®. In most cases, a map of environmental phenomena
requires additional analysis and combination with other datasets
before it can be used to directly inform decisions, which may
require additional resources (e.g., technical, financial) that are
challenging for some less-developed countries to acquire.

It is essential that barriers to analysing big data and accessing
derived products are removed. This could take the form of
accessible outputs, such as the Global Fishing Watch, Global Forest
Watch and global inter-tidal websites (www.globalfishingwatch.
org, www.globalforestwatch.org, www.intertidalLapp), or user-
friendly analysis tools, such as REMAP - a free application that
utilises the storage and analysis capacity of Google Earth Engine to
map land cover change (www.remap-app.org). While there is a
growing trend towards open data, some authorities still maintain
barriers to access including fees, substantial delays, or incomplete
data releases. For example, in the Australian state of Queensland,
which has one of the most dramatic recent land clearing legacies,
governmental reporting on vegetation clearance is often delayed by
months despite the fact it could be monitored monthly. Ensuring
the timely availability of big data products will require a sincere
commitment to a shared vision for open data, before more pro-
cedural issues such as data management standards can be
addressed. A number of international organisations are addressing
this, with the WMO (World Meteorological Office, https://public.
wmo.int/), possibly one of the longest running and best examples
of what is possible from real global collaborations across many
countries, while the GEO (Group on Earth Observations, www.
earthobservations.org) links 108 nation’s earth observation cap-
abilities to address sustainable development goals. Further, as
international accords for conservation and sustainability are
operationalised by countries, it is vital to engage national- and
international-level decision-makers in government and industry in
the generation of global datasets to ensure they are able to be used
by all to make effective decisions.

The private sector is increasingly making influential environ-
mental decisions and some large companies are committing to
sustainability in their supply chains. Examples include ‘zero-
deforestation’ and sustainably sourced palm oil pledges from
Nestlé and McDonalds. Tracking the full supply chain for large
corporations requires the use of big data analytics, particularly to
balance the multiple objectives corporations seek from their
supply chains (such as reducing carbon emissions and increasing
profitability)!”. The use of geospatial, earth observation and many
other data will be essential for transparency and monitoring
compliance by certification bodies, environmental NGOs and the
corporations themselves. Ongoing research, particularly inte-
grating qualitative data, is likely to enable an even closer coupling
of big data analytics and sustainable supply chain management.
Ultimately, the timely use of big data will be critical to placing
commodity production and trade on a sustainable pathway.

Big data now must be harnessed for ecological forecasting to
improve decision-making, in both the public and private sectors.
Monitoring environmental change in near real-time can be
beneficial if there is capacity for action at a similar temporal scale,
which is often not the case. However, useful applications are
emerging. For instance, Chen et al.!3 investigated links between
sea surface temperatures and interannual changes in fire activity
in South America and forecasted the regional severity of the fire
season with a 3-5 month lead time. Across the Middle East, Levin
and colleagues!® integrated temporal data on night lights, wild-
fire, news databases and Flickr photos to identify World Heritage
Sites affected by conflict in near real-time. In the marine realm,
an automated vessel tracking and monitoring system (which uses
a constellation of satellites and terrestrial receivers) can be used to
inform models, which predict illegal fishing activity in real-
time20. Identifying patterns of suspicious behaviour has allowed
governments to conduct targeted investigations of particular
vessels that may be undertaking illegal activity in their waters.
Such ‘early warning systems’, should be given a platform in
relevant management agencies—and closely linked with man-
agement action—to harness vast potential of these methods to
improve outcomes for nature and people.

To ensure these close links with environmental decision-
making, the acquisition and analysis of big data must be solution
focused and address sustainability challenges while engaging with
decision-makers and those affected by such decisions. From
documenting our planet’s greenness to detecting where resources
are being illegally harvested, big data analyses can now place
detailed evidence of rapid environmental change in the hands of
entities capable of management action. Ultimately, there must be
a tight coupling of big data analyses and the sustainability agenda
to ensure we do not run out of time and space to save our
environment—and ourselves.
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