
RESEARCH ARTICLE Open Access

Learning sparse models for a dynamic Bayesian
network classifier of protein secondary structure
Zafer Aydin1, Ajit Singh2, Jeff Bilmes2 and William S Noble1,3*

Abstract

Background: Protein secondary structure prediction provides insight into protein function and is a valuable
preliminary step for predicting the 3D structure of a protein. Dynamic Bayesian networks (DBNs) and support
vector machines (SVMs) have been shown to provide state-of-the-art performance in secondary structure
prediction. As the size of the protein database grows, it becomes feasible to use a richer model in an effort to
capture subtle correlations among the amino acids and the predicted labels. In this context, it is beneficial to
derive sparse models that discourage over-fitting and provide biological insight.

Results: In this paper, we first show that we are able to obtain accurate secondary structure predictions. Our per-
residue accuracy on a well established and difficult benchmark (CB513) is 80.3%, which is comparable to the state-
of-the-art evaluated on this dataset. We then introduce an algorithm for sparsifying the parameters of a DBN. Using
this algorithm, we can automatically remove up to 70-95% of the parameters of a DBN while maintaining the same
level of predictive accuracy on the SD576 set. At 90% sparsity, we are able to compute predictions three times
faster than a fully dense model evaluated on the SD576 set. We also demonstrate, using simulated data, that the
algorithm is able to recover true sparse structures with high accuracy, and using real data, that the sparse model
identifies known correlation structure (local and non-local) related to different classes of secondary structure
elements.

Conclusions: We present a secondary structure prediction method that employs dynamic Bayesian networks and
support vector machines. We also introduce an algorithm for sparsifying the parameters of the dynamic Bayesian
network. The sparsification approach yields a significant speed-up in generating predictions, and we demonstrate
that the amino acid correlations identified by the algorithm correspond to several known features of protein
secondary structure. Datasets and source code used in this study are available at http://noble.gs.washington.edu/
proj/pssp.

Background
Understanding a protein’s functional role often requires
knowledge of the protein’s tertiary (3D) structure. How-
ever, experimentally obtaining an accurate 3D structure
can be labor-intensive and expensive, and methods for
computationally predicting 3D structure are far from
perfect. Therefore, protein secondary structure provides
a useful intermediate representation between the pri-
mary amino acid sequence and the full three-dimen-
sional structure. The secondary structure of a protein is
most commonly summarized via a labeling of the amino

acids according to a three-letter alphabet: H = helix, E =
strand, L = loop. Knowledge of a protein’s secondary
structure can provide insight into its structural class,
suggest boundaries between functional or structural
domains, and give clues as to the protein’s function.
Furthermore, because protein secondary structure pre-
diction is often used as a subroutine in tertiary structure
prediction algorithms, any significant improvement in
secondary structure prediction is likely to yield
improved tertiary structure predictions as well.
The earliest method for secondary structure prediction

[1] used a neural network to achieve a base-level predic-
tive accuracy of 64.3% from a dataset of 106 labeled pro-
teins. In the ensuing 22 years, dozens of methods have
been proposed for improving upon this baseline, with

* Correspondence: william-noble@u.washington.edu
1Department of Genome Sciences, University of Washington, Seattle, WA
98195, USA
Full list of author information is available at the end of the article

Aydin et al. BMC Bioinformatics 2011, 12:154
http://www.biomedcentral.com/1471-2105/12/154

© 2011 Aydin et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://noble.gs.washington.edu/proj/pssp
http://noble.gs.washington.edu/proj/pssp
mailto:william-noble@u.washington.edu
http://creativecommons.org/licenses/by/2.0

significant advances achieved by exploiting homologs of
the query sequence [2] and by employing methods, such
as hidden Markov models, which exploit patterns in the
protein sequence [3]. State-of-the-art methods now
achieve accuracies in the range of 77-80% on a variety
of published benchmark datasets [4].
Our secondary structure prediction method combines

a dynamic Bayesian network (DBN) and a support vec-
tor machine (SVM). DBNs and SVMs have already been
used successfully to predict protein secondary structure
[5,6]. A DBN is a type of graphical model, which is an
intuitive, visual representation of a factorization of the
joint probability distribution of a set of random vari-
ables. DBNs are Bayesian networks that can be extended
in one dimension to arbitrary lengths. This type of
model is therefore ideally suited to handling variable
length data such as protein sequences. Indeed, the hid-
den Markov model, which has been used extensively to
model protein sequences [7-11], is a very simple exam-
ple of a DBN. Generative models such as DBNs and
HMMs are also used in modeling torsion angles and in
predicting the three-dimensional structure of proteins
[12-14]. An SVM is a non-parametric statistical method
for discriminating between two classes of data [15,16].
SVMs have been applied widely in bioinformatics [17].
The SVM operates by projecting the data into a vector
space and finding a hyperplane that separates the
classes in that space. SVMs are motivated by statistical
learning theory, which suggests an optimal method for
identifying this separating hyperplane. SVMs are thus
functionally similar to neural networks, but can be
mathematically represented as a convex optimization
problem, meaning that the cost function has a single
minimum, making it possible to identify a globally opti-
mal solution in an efficient fashion. In this work, we
first extend a previously described DBN [5], combine it
with an SVM, and introduce several improvements that
yield performance comparable to the state-of-the-art on
an established benchmark.
In addition to improving the predictive performance

of DBNs, we introduce an algorithm for learning a
sparse DBN for protein secondary structure prediction.
In this context, sparse refers to a model in which a large
percentage of the model parameters are zero. Methods
for encouraging sparsity have been the subject of much
recent work in the statistical machine learning commu-
nity [18-20] because these methods have the potential to
learn the trade-off between over- and under-fitting a
given data set. In general, a model with many para-
meters will tend to overfit the training set and therefore
fail to generalize to the test set. Conversely, a model
with too few parameters will underfit the training data
and hence achieve poor predictive power on both the
training data and the test set. Ideally, a sparse learning

algorithm will be allowed to fit a large number of para-
meters but, depending on properties of the training set,
will choose to set some percentage of those parameters
to zero. The sparse learner thus, analogous to a non-
parametric model, balances model complexity against
training set size, with the goal of balancing between
under- and over-fitting. Other technical benefits of the
resulting sparse model include improved robustness to
new test data and greater efficiency. In addition to tech-
nical advantages, sparse models enable us to discover
correlations inherent in protein structure, including
local correlations among neighboring amino acids as
well as non-local correlations among b strands or
coiled-coil regions. The algorithm we propose in this
paper interleaves iterations of the expectation maximiza-
tion (EM) algorithm [21] with a simple sparsification
operation, which is straightforward and very effective.

Results and Discussion
Comparison with the state-of-the-art
In our first experiment, we performed a seven-fold
cross-validation on CB513, which is a well-known and
difficult benchmark dataset with 513 chains and 84,119
amino acids [22]. The details of the cross-validation pro-
cedure is explained in “Model training, parameter opti-
mization and testing for cross-validation” section. To
assign the true secondary structure labels, we mapped
the eight-state representation of secondary structure
labels (the raw format available in DSSP [23]) to three
states with the following conversion rule: H, G, I to H;
E, B to E and S, T, ‘ ‘ to L. For the experiments in this
section, we did not apply the model sparsification algo-
rithm introduced in this paper.
The results of the seven-fold cross-validation are sum-

marized in Table 1, including the amino acid level accu-
racy (called Q3 [24]), the segment overlap score (SOV)
[25], and Matthew’s correlation coefficients (MCC) [26].
In this table, a variety of secondary structure prediction

Table 1 Comparison of secondary structure prediction
methods on the CB513 benchmark dataset

Method Q3(%) SOV(%) MCCH MCCE MCCL

SVMpsi 76.6 73.5 0.68 0.60 0.56

JNET 76.9 N/A N/A N/A N/A

YASSPP 77.8 75.1 0.58 0.64 0.71

DBNfinal 76.3 72.7 0.71 0.61 0.57

DBNpred 77.3 73.0 0.74 0.61 0.59

DBNN 78.1 74.0 0.74 0.64 0.60

PSIPRED 78.2 77.3 N/A N/A N/A

SVM_D3 78.4 N/A N/A N/A N/A

DESTRUCT 79.4 77.5 N/A N/A N/A

DISSPred 80.0 N/A 0.77 0.68 0.62

DSPRED 80.3 77.7 0.78 0.68 0.63

Aydin et al. BMC Bioinformatics 2011, 12:154
http://www.biomedcentral.com/1471-2105/12/154

Page 2 of 21

methods–SVMpsi [27], JNET [28], YASSSP [29],
DBNfinal [5], DBNpred (our method), DBNN [5],
PSIPRED [30], SVM_D3 [31], DESTRUCT [32],
DISSPred [6], and DSPRED (our method)–are evaluated
with respect to the CB513 benchmark. We evaluated the
statistical significance of the differences between the
accuracies (i.e., Q3 measure) reported in Table 1 using a
one-tailed Z-test, which attempts to determine if one
proportion is greater (or lower) than another. When we
compare our method to DISSPred [6], a 0.3% difference
in accuracy yields a p-value of 0.062 from a one-tailed
Z-test. This difference is not significant when we set the
confidence level to 95% or 99%. When we compare our
method to DESTRUCT [32], which is 1.0% less accurate
than our method, we get a very small p-value (truncated
to zero) in a one-tailed Z-test.
Therefore, the 1.0% accuracy difference between our

method and DESTRUCT is statistically significant.
Furthermore, in our experiments with the SD576 bench-
mark dataset [5] (see below), we have observed that a
one-tailed Z-test when applied to variants of our DBN
yields p-values < 0.006 for differences in Q3 on the
order of 0.5%, which indicates statistical significance.
Therefore among the methods that we tested, our
method achieves performance comparable to the state-
of-the-art in secondary structure prediction.
In the same benchmark, we also analyzed the contri-

bution of the SVM classifier to the predictive accuracy.
To analyze this, we implemented DBNpred, which com-
putes predictions by taking the average of the marginal
a posteriori distributions from the four DBNs as
described in “Combining multiple DBNs.” The DBNs in
DBNpred are trained on the subset of proteins allocated
for DBNs (see “Model training, parameter optimization
and testing for cross-validation”). The results in Table 1
show that combining the position specific scoring
matrix (PSSM) profiles and the four DBNs using an
SVM classifier (DSPRED) performs 3% better according
to the Q3(%) measure and 4% better according to the
SOV(%) measure than simple averaging of the a poster-
iori distributions from the DBNs (DBNpred). This dif-
ference is statistically significant from a one-tailed Z-test
(p < 10-10) and is mainly due to the following factors.
First, the SVM classifier uses the PSSM profiles (PSI-
BLAST and HHMAKE) as well as the a posteriori distri-
butions generated by DBNs, whereas the DBNpred only
combines the a posteriori distributions to reach a final
decision. Therefore, the SVM is learning the relation-
ships among the PSSMs and the a posteriori distribu-
tions jointly. Second, DBNpred takes a simple averaging
of the distributions, but the SVM classifier is able to
assign more flexible weights to these features.
In our second experiment, we performed seven-fold

cross-validation on SD576, which contains 576 chains

and 89,384 amino acids [5], and we compared the per-
formance of our method to DBNfinal and the DBNN
methods of Yao et al. [5]. Table 2 shows that our
method outperforms DBNfinal by 3.4% and DBNN by
1.6% according to the Q3(%) measure. In SOV (%), we
outperform DBNfinal by 3.6% and DBNN by 2.3%. This
result and the 2.2% increase in Q3(%) evaluated on the
CB513 set (see Table 1) are statistically significant as
measured by a one-tailed Z-test (p < 10-10); hence, our
method outperforms the DBN methods of Yao et al. [5].

Sparsifying the model while maintaining accuracy
A sparse model enables us to control the model com-
plexity and balance between under- and over-fitting
against training data. It also brings improved robustness
to new test data and greater efficiency. Not all sparsity
levels are practically useful mainly because an over-spar-
sified model will typically have reduced generalization
ability and will perform poorly on new test data. There-
fore, the primary goal of our study is to develop sparse
models that maintain predictive accuracy while reducing
the effective number of parameters in the learned
model. Accordingly, we measured the extent to which
Algorithm 1 (see the “Learning a Sparse Model for a
DBN” section) could successfully sparsify a given model.
For this experiment, we considered the following three
methods: (1) the two DBN classifiers that use PSI-
BLAST PSSMs as the input observations (DBNpred-PSI-
BLAST) (2) the two DBN classifiers that use HHMAKE
PSSMs (DBNpred-HHMAKE), and (3) the DSPRED
method with the four DBNs and the SVM. For methods
(1) and (2), we performed a seven-fold cross-validation
experiment on the SD576 dataset [5], fixing the hyper-
parameters of the DBNs as LAA = 5, LSS = 3, ω = 0.4
and a = 0.035, where LAA is the number of positions in
the sequence window excluding the current position, LSS
is the length of the secondary structure label window
excluding the current label, ω is the sequence profile
weight, and a is the weight of the covariance regularizer
(see the “Methods” section for details). For the DSPRED
method, we performed a seven-fold cross-validation
experiment as described in “Model training, parameter
optimization and testing for cross-validation” section,
and we used the optimized values for the hyperpara-
meters of the DBN and SVM. Therefore, in this method,
the training set allocated for the DBNs is half the

Table 2 Comparison of our method and the methods in
Yao et al. on the SD576 benchmark dataset

Method Q3(%) SOV(%) MCCH MCCE MCCL

DBNfinal 78.2 76.8 0.74 0.65 0.60

DBNN 80.0 78.1 0.77 0.68 0.63

DSPRED 81.6 80.4 0.79 0.71 0.65

Aydin et al. BMC Bioinformatics 2011, 12:154
http://www.biomedcentral.com/1471-2105/12/154

Page 3 of 21

training set allocated for the first two methods. For each
training set, we first eliminated a specified percentage of
the parameters from the DBNs by applying Algorithm 1
and then used the sparse DBN models to compute the a
posteriori distributions of secondary structure labels. For
methods (1) and (2) we computed the final secondary
structure prediction by taking the average of the mar-
ginal a posteriori distributions from the DBNs and for
(3) we computed the final prediction by the SVM (see
the “Combining multiple DBNs” section). For this
experiment, we set k = 1%, which corresponds to
removing 1% of the edges at the end of each EM itera-
tion, and we considered a range of sparsity values (ℓ =
0, 5, 10, . . . , 100). The results of this experiment are
summarized in Figure 1(A), which suggests that we can
eliminate 70% of the edge parameters of the DBNs (see
the “Graphical model representation” section) when we
use PSI-BLAST PSSMs, 80% of the edge parameters
when we use HHMAKE PSSMs and 95% of the edge
parameters when we use the DSPRED method without
significantly decreasing the accuracy of our predictions.
To validate this result, we performed a one-tailed Z-test.
For method (1), we compared the performance of the
fully dense model with the models obtained after remov-
ing 70%, 75% and 80% of the edge parameters. Using a
significance threshold of 0.01, the performance after
removing 70% of the edge parameters–corresponding to

a decrease in predictive accuracy of only 0.40%–is not
statistically significant (a p-value of 0.021). For 75%
removal, the accuracy drops by 0.5% (a p-value of 0.006)
and for 80% removal, it drops by 0.63%, (a p-value of
0.001). However, even when removing 80% of the edge
parameters, the loss in predictive accuracy is not large.
When we remove all the edge parameters (100% spar-
sity) the accuracy plummets to around 66%. This shows
that the sparsification algorithm is removing redundant
parameters first, which is a desired behavior for a sparsi-
fier. Once we start removing essential parameters, the
accuracy falls quickly. Note that removing all the edge
parameters does not correspond to eliminating all the
parameters in the DBN model, which explains why the
accuracy is not zero (see the “Methods” section). The
statistical analysis performed for method (1) can also be
performed for methods (2) and (3) but is omitted here
for simplicity. When we use HHMAKE PSSMs the per-
formance loss was 0.3% at 80% sparsity and when we
use the DSPRED method it was 0.21% at 95% sparsity.
Note that the DBN model that uses HHMAKE profiles
(method (2)) can generate more accurate predictions (a
Q3(%) of 79.70%) and sparser models than the DBN
model that uses PSI-BLAST PSSMs only. Combining
both PSSMs by an SVM classifier (the DSPRED method)
yields even more accurate predictions (a Q3(%) of 81.6%)
and is more robust to even sparser DBN models as

0 20 40 60 80 100
66

68

70

72

74

76

78

80

82

Percentage of Edges Removed

A
cc

ur
ac

y
(%

)

DBNpred−PSI−BLAST
DBNpred−HHMAKE
DSPRED

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

Percentage of Edges Removed

P
er

ce
nt

ag
e

of
 E

dg
es

 R
em

ai
ni

ng

Auto−Regressive
Current
All Positions

(A) (B)
Figure 1 The effects of sparsification. (A) The figure plots accuracy as a function of the percentage of dlinks eliminated. Dlinks are the weight
parameters that are assigned to the edges in the graphical model representation of the DBN. In an auto-regressive model, the majority of the
model parameters become dlink coefficients. It is possible to remove significant proportion of the dlinks while maintaining the overall predictive
accuracy such that 70% of the dlink parameters can be removed for the DBN model that uses PSI-BLAST PSSMs only, 80% of the dlink
parameters can be removed for the DBN model that uses HHMAKE PSSMs only and the 95% of the dlink parameters can be removed for the
DSPRED method (DBN combined with SVM) that uses PSI-BLAST PSSMs, HHMAKE PSSMs and posterior distributions of secondary structure labels.
(B) The figure plots the percentage of dlinks that are retained as a function of the sparsity of the model. The three series correspond to all dlinks,
only the current dlinks and only the auto-regressive dlinks. In the auto-regressive and the current series, the percentages are computed with
respect to the total number of dlinks within each of these series separately. For both panels, results are computed via seven-fold cross-validation
on SD576. The hyperparameters of the DBN are LAA = 5, LSS = 3, a = 0.035, ω = 0.4.

Aydin et al. BMC Bioinformatics 2011, 12:154
http://www.biomedcentral.com/1471-2105/12/154

Page 4 of 21

shown in Figure 1(A). Note that even if we eliminate all
the edge parameters for the DBNs, the DSPRED method
still performs considerably well (a Q3(%) of 80.50%)
because this only causes the a posteriori distributions to
be less accurate, which is highly compensated by the
availability of PSI-BLAST and HHMAKE PSSMs in the
SVM’s feature set.

The auto-regressive section of the model contributes to
accuracy
The sparsification experiment presented in the previous
section also allows us to test the hypothesis that the
auto-regressive portion of the model is an important
contributor to its accuracy. This hypothesis is most
directly supported by the fact that a model with LAA =
0, LSS = 0 achieves only 67% accuracy [5]. To investigate
more directly the value of the auto-regressive portion of
the model, we subdivided the edge parameters into two
groups: current edges, which connect pairs of amino
acids at the current position, and auto-regressive edge
parameters that connect an element of the PSSM vector
at the current position to another PSSM element in a
neighboring position. Figure 1(B) plots the percentage of
current edge parameters and the percentage of auto-
regressive edges that are retained as a function of the
sparsity of the DBN model that uses PSI-BLAST PSSMs
only (method (1) in the previous section). Not surpris-
ingly, for every sparsity level, the current edges are pre-
ferentially retained by the model; on the other hand,
even when we eliminate 90% of the edges, the model
still contains 7.11% of the auto-regressive edges.
Furthermore, when carrying out this analysis, we

observed that, even in extremely sparse models with 80-
90% of the edges eliminated, the model still includes
edges from all positions within the dependency window.
For instance, if the LAA parameter is chosen as 5, then
at 80% sparsity level, edges that remain in the resulting
graph stem from all five amino acids that are neighbors
of the current amino acid. This observation suggests
that even if there is a strong correlation between the
current amino acid and those that are three or four resi-
dues apart (see the “Local correlations” section), other
positions also contain useful correlations that contribute
to the predictive accuracy.

Recovery of true sparse model structures
We have demonstrated that the sparse learning proce-
dure proposed in the “Learning a sparse model for a
DBN” section yields a model that provides highly accu-
rate predictions. Next, we would like to verify that the
parameters learned by the model are accurate. To
address this question, we use simulated data, because
the true parameters associated with real data are not
known.

Our experiment consists of four steps. First, we learn
the parameters of a DBN–state transitions, length distri-
butions and multivariate conditional Gaussians–from
real data at different sparsity levels (from 0% up to 20%)
using the algorithm described in the “Learning a sparse
model for a DBN” section. For this step, we use the
SD576 benchmark [5], and we set the model hyperpara-
meters to LAA = 5, LSS = 0, ω = 1.0 and a = 0.0. Second,
we use each trained model to generate a series of syn-
thetic data sets of various sizes (100, 250, 500, 1000,
5000, 15000, and 30000 proteins) by sampling from the
parameters of DBN. Third, we use the synthetic proteins
to learn sparse models, again employing the algorithm
in the “Learning a sparse model for a DBN” section. As
in step one, we consider a range of sparsity levels (0% to
20%), and we also train from different numbers of syn-
thetic proteins. Finally, in step four, we compare, for
each model, the true underlying parameters and the
inferred parameters. In this experiment, we only consid-
ered the past dependency DBN in the “Combining mul-
tiple DBNs” section and we utilized PSSMs derived
from PSI-BLAST [33].
Figure 2(A) shows the difference betweeen the true

and learned parameters for one particular DBN. These
values are associated with the edges of a graph, as illu-
strated in Figure 3. Because we set LSS = 0, we have a
total of three such graphs to learn, one for each second-
ary structure type. The matrix in Figure 2(A) corre-
sponds to the helix graph structure learned from 30,000
proteins with 20% sparsity. In the figure, rows represent
the elements of the PSSM vector at position i and col-
umns represent elements of the PSSM vectors at posi-
tions i - 5 to i with column indices increasing from left
to right. From this figure, we can see that most of the
edge differences are close to zero, implying that the
learned parameters are close in value to the true values.
To provide a more quantitative estimate of the differ-

ence between the learned and the true edge parameters,
we repeated the synthetic data generation experiment ten
times. We then averaged the absolute values of the edge
parameter differences across all of the parameters in the
model, which is called the mean absolute difference
(MAD) metric. Figure 2(B) plots the mean and standard
deviation of the MAD metric across the ten replicate
experiments. The figure shows that, as the sample size
increases, the MAD metric decreases. For the largest data-
set, the average difference between the true and inferred
parameters is very small (0.00183 for helix, 0.00234 for
strand and 0.00183 for loop). Figure 4 provides an alterna-
tive way of comparing the true and the inferred edge para-
meter values, based on comparing the inferred graph
structures. Both sets of results demonstrate that, given suf-
ficient training data, the sparsification algorithm can suc-
cessfully infer the correct graph structure.

Aydin et al. BMC Bioinformatics 2011, 12:154
http://www.biomedcentral.com/1471-2105/12/154

Page 5 of 21

Sparse DBNs identify significant correlations among
amino acids
One motivation for employing sparse models is the
improved interpretability of a model with fewer para-
meters. Therefore, to complement the simulation
experiment described in the previous section, we analyze
the graphs of DBNs (past and future dependency models
with PSI-BLAST PSSMs) learned from real protein
sequences, searching for evidence of various correlations
that occur in different types of secondary structure.
Therefore, in this section, we are not generating any
secondary structure predictions but training a DBN only
and sparsifying the graphical model of the PSSM pro-
files. In this type of analysis, the edges that remain in
the sparsified model will represent the particular pairs
of PSSM elements that are strongly correlated.
Local correlations
It is well known that, in helices, there is a hydrogen
bond between every three or four amino acids, depend-
ing on the type of helix (excluding the rare type that
has bonds every five residues). This bonding pattern
causes pairs of helix amino acids that are three and four
residues apart to be statistically correlated. Similarly, in
b strands, amino acid pairs that are adjacent and those
that are separated by one amino acid are strongly

correlated due to hydrogen bonds and chemical interac-
tions. In contrast, the correlations in loops are more
irregular, with the highest correlation occurring between
the adjacent amino acids.
To assess the relation between the learned graph and

these known statistical correlations, we first set LSS = 0,
so that we have one Gaussian for each type of secondary
structure element. We chose the input observation win-
dow LAA = 10 so that we cover a wide range of local
correlations. Other parameters of the DBN are selected
as ω = 1.0 and a = 0.0 for simplicity. Then we learned
the parameters of the model on the SD576 benchmark
and sorted the edges with respect to the edge coeffi-
cients. The results, summarized in Figure 5, show good
agreement with the expected correlation structure. It
can be observed that in helices, edges with separation
distances of 1, 2, 3, 4 and 7 have high edge coefficients
as compared to the other offset values. A similar pattern
is obtained for the mean values of the edge coefficients.
Furthermore, most of the remaining edge coefficients in
the resulting sparse model fall into one of these five off-
set bins. For b strands and loops, edges whose vertices
come from adjacent positions as well as positions that
are separated by one amino acid had high coefficient
values. These results show that the sparse models can

(A)

(B)
104 105 106 107
0

0.01

0.02

0.03

0.04

0.05

Number of Amino Acids

M
ea

n
of

 M
A

D
s

Helix
Strand
Loop

Figure 2 Comparison of learned and true dlink values. (A) The figure depicts the difference between the dlink values learned from real data
and synthetic data with 30,000 proteins for helices at 20% sparsity level (see Figure 4(A) for a more detailed representation of this result). (B) The
figure plots, as a function of training set size, the mean of the MAD metric (see text) computed across ten replicate experiments with 20%
sparsity. The three series correspond to the helix, strand, and loop graphs. Error bars correspond to standard deviations. Both figures
demonstrate that the model parameters learned from synthetic data are close to the parameters learned from real data. This shows that when
the data is generated from a sparse model (i.e., the true model we are trying to recover is sparse) the sparsity algorithm proposed in this paper
is able to learn these parameters correctly.

Aydin et al. BMC Bioinformatics 2011, 12:154
http://www.biomedcentral.com/1471-2105/12/154

Page 6 of 21

be used to capture the biological and statistical correla-
tions that are characteristic of local secondary structure.
Non-local correlations in b strands
The chemical interactions in b strands differ from those
in helices and loops. Specifically, in helices and loops,
interactions are primarily local with respect to the
amino acid backbone, whereas b strand interactions are
both local and non-local. The non-local interactions in
b strands arise mainly due to hydrogen bonds between
amino acid pairs positioned in interacting b strand seg-
ments. We hypothesize that some of the remaining
error in our secondary structure predictions–the differ-
ence between 80% accuracy and 100% accuracy–results
from the failure of our model to capture these non-local
interactions. To assess the extent to which such

interactions occur and could in principal be captured by
our model, we carried out an experiment in which we
provided the DBN with additional information about the
location of b strand interactions. We then measured the
extent to which these non-local interactions yield corre-
lation structure in the model. For training, we collected
a set of 3,824 protein chains. This dataset, called PDB-
PC15, was obtained using the PISCES server [34] (see
the “PDB-PC15 dataset” section for details). To analyze
the non-local correlations in b strands we modified the
probability density that is normally used in DBN to
model the generation of PSSMs from each secondary
structure segment. Details of this updated version of the
model can be found in the “Model for analyzing correla-
tions in b strands” section. Having designed the model

Figure 3 Schematic of the dlink structure, used to represent correlations in the DBN. Each node represent a PSSM element and edges
represent the dlink coefficients of the DBN. The rightmost column corresponds to the ith vector of the PSSM Xi (i.e., the vector for the ith

position along the amino acid sequence). The remaining columns represent the columns of the PSSM that come before the ith position if we
traverse the sequence from the N-terminal to the C-terminal of the protein. Rows represent the 20 amino acids in the PSSM. For simplicity only
edges for the child node xi(1) is shown, which is the first element of the observation vector at the ith position. The child nodes are in the
rightmost column and the parent nodes are in positions i - LAA, ..., i.

Aydin et al. BMC Bioinformatics 2011, 12:154
http://www.biomedcentral.com/1471-2105/12/154

Page 7 of 21

and the dataset, we set LSS = 0 and applied the sparsity
algorithm, eliminating 80% of the edges from the gra-
phical model. Because our dataset contains no helices or
loops, the algorithm sparsifies the graph for b strands
only. In this experiment, we used PSI-BLAST’s PSSM
profiles only as the observation data (see the “Generat-
ing position-specific scoring matrices” section), and set
the other hyperparameters to LAA = 5, ω = 1.0 and a =
0.0. We obtained the non-local base pairing information
from the DSSP database [35]. For simplicity, we only
considered the non-local residue pairs in the BP1 col-
umn of the database files.
After eliminating 80% of the edges from the graphical

model, we observed that ~ 61% of the remaining edges
are from local positions and ~ 39% are from non-local
positions on the interacting b strand. Thus, a significant
percentage of edges are retained from positions that are
related to non-local interactions. The percentage of cor-
relations that remain in the resulting model is shown in
Figure 6 in a position specific manner. Figure 6(A) illus-
trates the degree of correlation between a b strand resi-
due at position i and residues at flanking positions (i - 5

to i + 5) as well as residues flanking the paired amino
acid at position j. As a control, we repeated the experi-
ment using randomly selected, non-local residues (posi-
tions denoted by k) rather than the true pairing
locations. The resulting flat correlation structure is
shown as bars labeled “k” in Figure 6(B). This control
experiment shows that the correlation structure on the
interacting b strand is much stronger than would be
expected by chance. Note that the distribution we get
for the local positions in Figure 6(A) is slightly different
from the distribution in Figure 6(B) because in each of
these experiments, we combined the set of model para-
meters from local positions and those that come from
distal positions into a single model and sparsified this
set instead of sparsifying the two sets separately. The
explicit inclusion of non-local strand interactions into
our model suggests that future work on improving sec-
ondary structure prediction should perform these pre-
dictions in the context of a strand interaction prediction
procedure. In addition, our modified model allows us to
discover significant correlations among the individual
elements of the PSSMs. Figure 7(A) shows the learned

(A)

(B)
104 105 106 107

65

70

75

80

85

90

95

100

Number of Amino Acids

M
ea

n
of

 In
fe

re
nc

e
A

cc
ur

ac
ie

s

Helix
Strand
Loop

Figure 4 Comparison of learned dlink structure and true dlink structure. (A) This is a discretized version of Figure 2(A). For a given pair of
matrices, we can characterize each edge as a true positive if it occurs in both the true and inferred dlink matrix, a true negative if it occurs in
neither, or a false positive or false negative if it occurs only in the inferred or only in the true matrix, respectively. In the resulting sparse model,
an edge (i.e., dlink) is counted as occurring when the absolute value of its dlink coefficient is greater than zero. Otherwise, it is counted as non-
occurring. In the figure, each dlink is colored according to whether it is a true positive, false positive, true negative or false negative. Overall, this
particular inference procedure yields 4 false positives, and 9 false negatives from a total of 2190 possible edges, for an accuracy of 2177/2190 =
99.4%. (B) The figure plots inference accuracy ((TP + FP)/(TP + FP + TN + FN)) as a function of training set size, for a fixed sparsity level of 20%.
As the size of the training set grows, the algorithm is able to converge to the true sparse model.

Aydin et al. BMC Bioinformatics 2011, 12:154
http://www.biomedcentral.com/1471-2105/12/154

Page 8 of 21

(A)
0 1 2 3 4 5 6 7 8 9 10

−0.1

−0.05

0

0.05

0.1

0.15

Position Offset

D
lin

k
C

oe
ffi

ci
en

t

(B)
0 1 2 3 4 5 6 7 8 9 10

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Position Offset

D
lin

k
C

oe
ffi

ci
en

t

(C)
0 1 2 3 4 5 6 7 8 9 10

−0.1

−0.05

0

0.05

0.1

0.15

Position Offset

D
lin

k
C

oe
ffi

ci
en

t

Figure 5 The relationship between model parameters and secondary structure element types. (A) The figure plots, for helices, the learned
non-zero dlink parameters at the 90% sparsity level as a function of the offset from the current amino acid. The mean of positive (red squares)
and negative values (black squares) are displayed separately. (B)-(C) The figures show similar plots for b strands and loops, respectively. Certain
positions retain more dlink parameters than the others demonstrating the correlation behavior between a given position and its local neighbors.

Aydin et al. BMC Bioinformatics 2011, 12:154
http://www.biomedcentral.com/1471-2105/12/154

Page 9 of 21

edge parameters that represent local correlations, and
Figure 7(B) depicts the corresponding edge parameters
for the non-local correlations (between a residue and
the residues surrounding its paired neighbor). This type
of analysis may allow us to discover subtle relations
among interacting amino acids and provide a deeper
insight into protein structure. Furthermore, the edge
parameters values shown in Figure 7(B) represent the
propensity of possible amino acid pairs to make contacts
(or interactions) and can be used as a priori information
in a contact map prediction or b strand pairing predic-
tion algorithm, which relies on the prediction or residue
contacts of a given protein.

Conclusions
Our primary goal in this work was to develop and vali-
date methods for predicting secondary structure and for
training sparse DBN models. Our method outperforms
the DBNN method introduced by Yao et al [5], which is
a DBN cascaded by a neural network. This performance
improvement results from several factors: we use PSSMs
derived from HMM-profiles in addition to PSI-BLAST
PSSMs, and we optimize the four hyperparameters: the
amino acid profile window parameter LAA, the second-
ary structure label window parameter LSS, the diagonal
covariance regularizer a, and the parameter ω that bal-
ances the contributions from discrete and continuous
functions. Furthermore, we have demonstrated the uti-
lity of our proposed sparse model learning algorithm in
three ways: (1) we can successfully eliminate 70-95% of
the edge parameters in a DBN without significantly
affecting the predictive accuracy of the model; (2) the

learned graph structure successfully recapitulates the
true underlying structure, and (3) the sparsity algorithm
is able to capture local as well as non-local correlations
among amino acids that are characteristic of structure
formation.
The ability to reveal correlations among the elements

of the observation vectors can be useful in a wide
range of other problems in bioinformatics. For
instance, a correlation analysis based on sparse models
could be used for feature selection in other types of
structure prediction algorithms such as contact map or
solvent accessibility prediction. By sparsifying the fea-
ture set used by a classifier, it may be possible to
jointly use additional feature representations such as
PSI-BLAST and HMM-derived PSSMs to obtain even
higher accuracy. Another application could be drug
design simulations, where a short segment of amino
acids that bind to a particular region in a target pro-
tein is designed by searching the space of possible
amino acid combinations. Instead of considering all
possible combinations, the procedure might be signifi-
cantly simplified by concentrating on the structurally
and biologically meaningful alternatives. A similar cor-
relation analysis can also be performed to discover
other types of non-local correlations, such as disulfide
bonds or interactions in coiled-coil regions. Many
coiled-coil type proteins are involved in important bio-
logical functions such as the regulation of gene expres-
sion and transcription factors. Moreover, the gp41
hexamer unit contains coiled-coil regions initiating the
entry of HIV virus into its target cell and therefore is
closely related to HIV infection [36].

0

2

4

6

8

10

12

Spatial Neighbors of a Beta−Strand Residue

P
er

ce
nt

ag
e

of
 D

lin
ks

 in
 th

e
S

pa
rs

e
D

B
N

i−
5

i−
4

i−
3

i−
2

i−
1 i

i+
1

i+
2

i+
3

i+
4

i+
5

j−
5

j−
4

j−
3

j−
2

j−
1 j

j+
1

j+
2

j+
3

j+
4

j+
5

Local
Paired

0

2

4

6

8

10

12

Local Neighbors and Randomly Selected Residues

P
er

ce
nt

ag
e

of
 D

lin
ks

 in
 th

e
S

pa
rs

e
D

B
N

i−
5

i−
4

i−
3

i−
2

i−
1 i

i+
1

i+
2

i+
3

i+
4

i+
5

k−
5

k−
4

k−
3

k−
2

k−
1 k

k+
1

k+
2

k+
3

k+
4

k+
5

Local
Random

(A) (B)
Figure 6 Comparison of the local and non-local correlations in b strands. (A) The figure plots the percentage of dlinks for the local and
paired neighbors of a b strand residue at position i. (B) Similar to (A), except that paired neighbors are seleted randomly, rather than according
to the true pattern of b strand pairing. The figures suggest a strong correlation between a b strand residue and its local neighbors as well as
non-local partners (i.e., those that make hydrogen bridge interaction) as compared to the remaining positions.

Aydin et al. BMC Bioinformatics 2011, 12:154
http://www.biomedcentral.com/1471-2105/12/154

Page 10 of 21

(A)

(B)

Figure 7 The learned dlink values for local and non-local positions in b strands. (A)The figure shows the dlink values learned from the real
data for local correlations in b strands. The first plot illustrates the dlink values for the correlations between the ith position and the positions at i
- LAA, ..., i - 1. The second plot depicts the dlink values for the correlations within the ith position. The third plot shows the dlink values for the
correlations between the ith position and the positions at i + 1, ..., i + LAA. In each plot, rows represent the 20 amino acids for the observation
vector at position i.(B) The figure depicts the dlink values learned from the real data for non-local correlations in b strands such that the b strand
residues at positions i and j are known to make a bridge interaction. The first plot illustrates the dlink values for the correlations between the ith

position and the positions at j - LAA, ..., j - 1. The second plot depicts the dlink values for the correlations between the ith position and the jth

position. The third plot shows the dlink values for the correlations between the ith position and the positions at j + 1, ..., j + LAA. In each plot,
rows represent the 20 amino acids for the observation vector at position i. In this experiment, LAA is chosen as 5 corresponding to a window of
11 residues. In both figures, gray colored bins represent dlinks that are not present in the resulting sparse model.

Aydin et al. BMC Bioinformatics 2011, 12:154
http://www.biomedcentral.com/1471-2105/12/154

Page 11 of 21

Many methods exist for achieving sparse models. In
comparison to methods such as ℓ1 regularization, our
algorithm, which involves a simple truncation operation
interleaved inside the standard EM algorithm [21], is
quite simple. The EM algorithm is computationally effi-
cient on the proposed model. An EM iteration for a sin-
gle DBN with LAA = 9 and LSS = 6 on PDB-PC15 set of
3,824 proteins takes approximately 22 min 16 sec on a
single Intel(R) Xeon(R) 2.33 GHz CPU. Furthermore, for
computing predictions on test proteins, a sparse model
will be much faster than the corresponding dense model,
simply because the model contains fewer parameters. For
example, on the SD576 benchmark, a DBN with LAA = 5
and LSS = 3 at 90% sparsity level is 3.28 times faster than
the fully dense model when evaluated on a single CPU.
In future, we plan to further exploit the sparse model-

ing paradigm by extending our model to include addi-
tional types of observations and to identify even longer-
range correlations among amino acids and secondary
structure labels. As a second direction, we also plan to
utilize sparse models to improve the feature set repre-
sentation for other types of prediction tasks such as
contact map prediction. In addition, the sparse non-
local interaction patterns obtained in Figure 7(B) charac-
terize the propensity of residue pairs to interact and can
be used as features directly in a contact map prediction
or b strand pairing prediction algorithm. Finally, the
subsequent use of the secondary structure prediction
method in a 3D structure prediction algorithm is also
another future extension. For this purpose, it is possible
to provide the posterior distribution generated from the
DBNs directly as input features to a structure prediction
algorithm or convert the output of the SVM to a prob-
ability [37,38].

Methods
In the simplest variant of the secondary structure pre-
diction problem, we are given a query protein as a series
of amino acid symbols from a 20-letter alphabet. Our
goal is to assign to each amino acid a structural label
from a three-letter alphabet (H = helix, E = strand, L =
loop). Here, we consider a variant of this problem, in
which the query sequence is replaced with a position
specific scoring matrix (PSSM). Transforming the amino
acid sequence to a PSSM has been shown to signifi-
cantly improve the predictive accuracy of secondary
structure prediction [30,39,40].

Generating position-specific scoring matrices
We use PSSMs generated by the PSI-BLAST [33] and
HHMAKE [41] algorithms as input features. Each PSSM
contains a smoothed statistical summary of the amino
acid composition of database proteins that are closely
related to the query protein. In a PSI-BLAST PSSM, the

entry in row i and column j is related to the frequency
of the ith amino acid at position j in the alignment and
is computed as

PSSM1(i, j) =
1
λu

log
(

Qij

Pi

)

=
1
λu

log
(

afij + bgi

a + b
× 1

Pi

)
,

(1)

Where Qij is the estimated probability for the amino
acid i to be at j, Pi is the background probability (also
called the background frequency) of observing amino
acid i,fij is the weighted frequency of amino acid i at
position j, gi is the expected frequency of amino acid i,
which is also called the “pseudocount” frequency and
enables a non-zero value in the numerator when fij is
zero, a and b are scaling factors, and lu is a constant
parameter for ungapped alignments (see [42] for a more
detailed description of pseudocounts).
In this work we used BLAST versions 2.2.24 and

2.2.20 and the NCBI’s non-redundant (NR) database to
generate PSI-BLAST PSSMs. We used BLAST version
2.2.24 and the NR database dated November, 2010, to
generate the PSSM profiles for proteins in the CB513
dataset (see the “Comparison with the state-of-the-art”
section). For 4 out of 513 proteins, there were no hits
from the NR database and version 2.2.24 did not report
any profile tables. For these proteins, we used version
2.2.20, which reports PSSMs (based on the sequence
and the BLOSUM matrix) even in the absence of hits.
For the SD576 dataset, we used BLAST version 2.2.24
and the NR database dated November, 2010, to generate
the PSI-BLAST PSSMs used in the sections “Compari-
son with the state-of-the-art”, “Sparsifying the model
while maintaining accuracy”, and “The auto-regressive
section of the model contributes to accuracy”. Note that
the SD576 dataset contained no proteins with zero hits.
In “Recovery of true sparse model structures” section,
we derived the PSI-BLAST PSSMs of the SD576 dataset
using BLAST version 2.2.20 and an NR database from
2009 because we performed this experiment earlier.
Finally, for the PDB-PC15 dataset, we obtained the PSI-
BLAST PSSMs using BLAST version 2.2.20 and the NR
database dated May, 2010. The command line we used
to derive the profiles from version 2.2.24 was: ./psi-
blast -query protein.fasta -out protein.
align -out_ascii_pssm protein.pssm
-num_iterations 3 -evalue 0.001 -inclusio-
n_ethresh 1e-10 -db nr.filtered and for ver-
sion 2.2.20: ./blastpgp -i protein.fasta -o
protein.align -Q protein.pssm -j 3 -e
0.001 -h 1e-10 -d nr.filtered. To generate the
alignments, we used the filtered NR database, which is
obtained by removing the low-complexity regions,

Aydin et al. BMC Bioinformatics 2011, 12:154
http://www.biomedcentral.com/1471-2105/12/154

Page 12 of 21

transmembrane regions, and coiled-coil segments. For
this purpose, we used the “pfilt” binary of PSIPRED
[43]. The PSI-BLAST and the NR database can be
obtained from the help section of [44]. We derive
HHMAKE PSSMs from HMM-profiles created using the
HHMAKE algorithm, which is the first step of the
HHsearch method [41]. Specifically, we convert the
HMM-profile representation produced by HHMAKE to
a PSSM by applying the following transformation:

PSSM2(i, j) = log

(
Pe

ij

Pb
i

)
, (2)

where Pe
ij is the emission probability for a match state

of amino acid i at position j, and Pb
i is the background

probability for amino acid i both of which are computed
by HHMAKE. Here we assume that there are N match
states, where N is the number of amino acids in the
query protein. This condition was satisfied for all the
proteins in the benchmarks evaluated in this paper. To
obtain the HMM-profiles with HHMAKE, we used the
following pair of command lines: ./buildali.pl
protein.fasta followed by ./hhmake pro-
tein.a3m and the HMM-profile is saved in pro-
tein.hhm. In this work, we used the HHsearch version
1.5.1 to generate profiles. The recommended database
for HHMAKE is the NRE database, which is a combina-
tion of the NR and the ENV databases. The ENV data-
base contains proteins derived from environmental
sequencing projects such as “Sargasso Sea” [45] and
“Mine Drainage” [46]. In addition to the type of the
database used by HHMAKE, buildali.pl (the program for
computing the alignments) prefers to generate the align-
ments first on NRE90 and then on NRE70. For this rea-
son, we first downloaded the NR90 and ENV90
databases dated November, 2010, from [47], which are
the filtered versions of NR and ENV databases at 90%
and 70% identity thresholds, respectively. Then we con-
catenated NR90 and ENV90 to obtain NRE90. We
obtained the NRE70 database similarly. The binaries
used for generating the HMM-profiles can be obtained
from [48].
Previous work suggests the utility of scaling the PSSM

values by applying a transforming function [5,30,49]. In
this work, we employ the following sigmoidal transfor-
mation to scale the PSI-BLAST and HHMAKE PSSM’s:

fsigmoid(x) =
1

1 + exp(−x)
. (3)

The sigmoid transforms the PSSM values into the
range [0,1]. Presumably, one of the benefits of the sig-
moidal transform is that it maps PSSM values in (-∞,∞)
to [0,1], which normalizes the variance. Another

approach is to scale the PSSM’s by a linear transforma-
tion, which gives similar predictive performance as the
sigmoidal transformation [5] but in this work, we did
not consider this type of transformation.

A dynamic Bayesian network for protein secondary
structure prediction
We implemented the DBN shown in Figure 8(A), which
is similar to the model proposed by [5]. A DBN models
the generation of observation data for all possible values
of hidden variables in a probabilistic framework. Thus,
each node in the model represents a random variable.
Our model contains five random variables. The state
variable models the secondary structure label of an
amino acid, which can be H, E, or L. This variable is
observed during training and hidden when the model is
employed to make predictions. The amino acid profile
variable models the observation data, which is a 20-
dimensional vector of PSSM scores (i.e., a column of the
PSSM) derived by running the PSI-BLAST or HHMAKE
algorithms against the protein database (see the “Gener-
ating position-specific scoring matrices” section). The
state class history variable keeps track of the current
and preceding secondary structure labels. This variable
is represented as a tuple with LSS + 1 elements, where
LSS + 1 is the size of the label window, including the
current label. Finally, the state count down and change
state variables model the length of a secondary structure
segment. When the length of a segment is less than or
equal to Dmax, then the value of state count down is the
number of residues from the current position to the end
of the secondary structure segment. If the length of a
segment is greater than Dmax by k residues, then state
count down is set to Dmax for the first k + 1 residues
and is set to Dmax - 1, Dmax - 2, ..., 1 for the remaining
residues in that segment. This allows us to estimate the
length distribution of the segments that are shorter than
Dmax + 1 using the frequency of occurrence counts in
the training set. For segments longer than Dmax we are
fitting an exponential distribution to model the tail of
the length distribution because we do not have enough
data to reliably estimate this part. Details of the length
distribution modeling is available in [5]. The change
state variable simply signals when a transition to a new
secondary structure segment should be made. It is set to
1 if state count down is 1 and 0 otherwise. An example
showing the values of state, state count down, and
change state is given in Figure 8(B). The variables state,
state count down, change state, and amino acid profile
are observed during training, because the true secondary
structure labels are available. During testing, only the
amino acid profile is observed, and the other variables
are hidden. Therefore the DBN used for training can be
slightly different from the one that is used during

Aydin et al. BMC Bioinformatics 2011, 12:154
http://www.biomedcentral.com/1471-2105/12/154

Page 13 of 21

testing. The relations among discrete variables in the
DBN are defined by conditional probability distributions
(CPDs), and continuous variables are modeled by prob-
ability density functions. For instance, the state transi-
tion distribution assigns probabilities to transitions from
one secondary structure state to another; distributions
related to the lengths of the segments assign probability
values for all possible lengths of secondary structure
segments, and the observation density models the gen-
eration of the observed data.
Because of the dependencies among adjacent amino

acids, the first amino acid is modeled slightly differently
than the rest of the amino acids. Therefore, in Figure 8
(A), the first column (prologue) shows the nodes for the
first amino acid, and the second column (chunk) is a
model for the rest of the amino acids. By extending the
chunk N - 1 times to the right, we obtain the full net-
work structure, where N is the number of amino acids
in the protein. Detailed formulations for the CPDs that

define the relations among discrete nodes can be found
in [5].
In the next section, we elaborate on the probability

density function that models the generation of observa-
tion data.
Graphical model representation
We model the PSSM observations using a linear condi-
tional multivariate normal density,

p(xi|zi, Qi = q) ∼ N(Wqzi + cq, �q), (4)

where xi is the d-dimensional transformed PSSM
score vector for the ith amino acid, zi is a d LAA-dimen-
sional vector, which is a concatenation of xi-1 up to
xi−LAA, Qi is the secondary structure label history defined
as a tuple Qi = (si−LSS ,, si) with si being the secondary
structure label of the ith amino acid, Wq is a matrix of
weight coefficients, cq is a shift vector, and Σq is a condi-
tional covariance matrix. In this formulation, the length
of the PSSM profile window is LAA+1, which is the sum

(A)

state count down

state

state class history

amino acid profile

change state

state count down

change state

state

state class history

amino acid profile

(B)

state:
state count down:

change state:

LLLLLEEELLHHHHHHHHHLLLLL
543213212177765432154321
000010010100000000100000

Figure 8 A dynamic Bayesian network for protein secondary structure prediction. (A) The first column shows the variables of the prologue
(models the first amino acid) and the second column shows the variables of the chunk (models the second up to the last amino acid). The
chunk is rolled (i.e.) extended to the right to get the final network. (B) An example state sequence and the values of state count down and
change state variables for Dmax = 7. state count down and change state are used to control transitions from one secondary structure segment to
the next and model the length distribution of segments.

Aydin et al. BMC Bioinformatics 2011, 12:154
http://www.biomedcentral.com/1471-2105/12/154

Page 14 of 21

of LAA neighboring positions and the current (i.e. the ith)
position. Similarly, LSS+1 is the length of the secondary
structure label window. Equation 4 describes a switching
autoregressive model–i.e., a linear dependence between
an observation xi, and past observations zi, plus white
noise, all dependent on a state, q. Note that we can con-
vert Equation 4 into a form that allows us to represent
the dependency relations among the observation vectors
as a graphical model.
Following the regression approach introduced by [50]

we can convert the normal density from full covariance
form to diagonal covariance representation by comput-

ing a Cholesky decomposition of
∑−1

q :

�−1
q = UT

q�qUq (5)

Vq = I − Uq (6)

Jq = UqWq (7)

hq = Uqcq, (8)

where Uq is an upper triangular d × d matrix with 1’s
along the diagonal, Ωq is a diagonal matrix of size d ×
d, Vq is a d × d matrix, Jq is a d × d · LAA matrix, and
hq is the new shift vector. In that case, our multivariate
normal distribution can be re-expressed as:

p(xi|yi, Qi = q) ∼ N(Bqyi + hq, �−1
q)

= Kq exp
{
−1

2
vT

i �qvi

}
,

(9)

where Kq = ((2π)d/2|�−1
q |1/2)−1, Bq = [Vq | Jq] is of size

d × d · (LAA + 1) and is the horizontal concatenation of
Vq and Jq, yi = [xi | zi] is the horizontal concatenation of
xi and zi having dimension d · (LAA + 1), vi is equal to xi -
Bqzi - hq, and Bqzi + hq is the new mean vector. Because
we have a 20-dimensional Gaussian, d is 20.
At the end of this conversion, the linear regression

relation between xi and zi can be represented as a gra-
phical model [51], as illustrated in Figure 3. In this fig-
ure, nodes represent the individual elements of the
observation vectors, i.e., xi(n) with 1 ≤ n ≤ d, and edges
represent the dependency relations among those nodes.
The figure contains 20 rows, one for each element of
the observation vector, and LAA + 1 columns represent-
ing the amino acid positions. Each edge in this graph is
called a dlink (directed time-link) and is associated with
a dlink score bmn, which is a non-zero element of the Bq

matrix defined in Equation 9. In this graph, the child
nodes are at position i, which is the current position,
and parent nodes are at positions i - LAA, ..., i such that
the left-most column corresponds to i - LAA.

Representing the dependency relations among the ele-
ments of the observation data by a graphical model
facilitates the derivation of sparse models as indeed our
algorithm (below) demonstrates. Mathematically, this
means that many of the elements of the final Bq matrix
are zero. We note that such sparse switching vector-
autoregressive models have been used in the past for
speech recognition problems [52], but finding a sparse
structure that yielded improved performance was diffi-
cult. In practice, most such structures caused dramatic
decreases in performance, and only discriminatively
derived structures were beneficial. In our current case,
however, where the observations are PSSMs, we see that
such models can be extremely useful. We implemented
the model shown in Figure 8(A) using the Graphical
Models Toolkit (GMTK) [53], a C++ package for DBNs
and other dynamic graphical models. GMTK represents
a conditional multivariate normal density by three para-
meters: a mean shift vector, diagonal covariance matrix,
and dlinks [53].
These correspond to the parameters in Equation 9,

where μnew
q is the mean shift vector, �−1

q is the diagonal
covariance matrix, and Bq is the d × d · (LAA + 1) matrix
that defines dlink coefficients, which are the parameters
that are sparsified by Algorithm 1.
Assigning a weight to the observation densities
One difference between our model and the DBN proposed
by Yao et al. concerns the relationship between discrete
and continuous variables in the model. In the “A dynamic
Bayesian network for protein secondary structure predic-
tion” section, we modeled the generation of observation
data by a multivariate normal density that is conditioned
on the PSSM scores at positions i, i - 1, ..., i - LAA as well
as the secondary structure labels at positions i, i - 1, ..., i -
LSS. Frequently, when a single DBN contains both discrete
and continuous variables, the continuous densities domi-
nate the CPDs that define the relations among the discrete
variables, preventing them from contributing significantly
to the overall model performance. Therefore, to reach a
more balanced contribution of the CPDs and the observa-
tion density, we assign a weight to the branch that con-
nects state class history and amino acid profile in Figure 8
(A). We denote this parameter by ω and optimize it by
performing an internal cross-validation procedure; i.e.,
within each training set in the cross-validation experi-
ments described in “Model training, parameter optimiza-
tion and testing for cross-validation” section, we first
perform a secondary cross-validation to select ω.
Learning the parameters of a DBN and regularization
GMTK uses the expectation maximization (EM) algo-
rithm [21] to learn the parameters of a DBN. Because
the true secondary structure labels are available during
training, EM converges to the maximum-likelihood
(closed form) solution for the mean and covariance of a

Aydin et al. BMC Bioinformatics 2011, 12:154
http://www.biomedcentral.com/1471-2105/12/154

Page 15 of 21

multivariate normal density. In this paper, we set the
maximum number of EM iterations to five to learn the
parameters of a DBN with fixed graphical model struc-
tures. When we learn the structure of graphical models
by the sparsification algorithm described in “Learning a
sparse model for a DBN” section, we perform as many
EM iterations as possible until the desired level of spar-
sity is achieved.
During training, we applied two types of parameter

regularization to better model the normal densities for
rarely observed secondary structure label histories. The
first regularizer adds a diagonal component to the cov-
ariance matrix, which acts as a prior on the parameters
of the normal density. This regularizer was employed by
[5] but is not directly implemented in the current ver-
sion of GMTK. Therefore, we first converted GMTK’s
learned parameters to the full covariance form

Uq = I − Vq (10)

�q = (UT
q �qUq)−1 (11)

and then carried out the following regularization:

�
reg
q = (1 − α)�q + αI, (12)

where
∑reg

q is the regularized covariance matrix, a is
the regularization coefficient, and I is an identity matrix.
We then converted the parameters back to the Cholesky
form representation as formulated in Eqs. 5 to 9. We
learn the a parameter by a cross-validation procedure.
This type of regularization is known as shrinkage in sta-
tistical machine learning [54]. In the case of sparse mod-
els, we first apply Algorithm 1 to sparsify model
parameters, add diagonal covariance regularizer as
described in this section, and then eliminate any dlinks
that were originally discarded by Algorithm 1 (see the
“Sparsification of model parameters with a diagonal cov-
ariance component regularizer” section).
The second type of regularization stems from the fact

that, when Qi is fixed, xi is a linear regression from yi
with coefficients [Bq | hq] as formulated in Equation 9.
As with any linear regression, we can impose an ℓ2-reg-
ularizer on the coefficients. In GMTK, the weight of the
regularizer is controlled using two parameters: ld, which
controls regularization of each element of Bq; and lh,
which controls regularization of hq. ℓ2-norm regulariza-
tion of [Bq | hq] occurs during the E-step of the EM
subroutine in Algorithm 1. Detailed description of the
ℓ2-regularizer can be found in [55]. We optimized ld
and lh, using grid search, but did not find any improve-
ment in the overall accuracy (result not shown). In our
simulations, we set lh = 1e-4 and ld = 500, which pro-
vided satisfactory results. Note that, in this work, we

regularize both Bq and hq, but sparsify only Bq. We
further note that ℓ2-regularization will not guarantee a
sparse solution for Bq, unlike our sparsification algo-
rithm, introduced below.

Learning a sparse model for a DBN
The number of edges in Figure 3 and hence the number
of dlink coefficients that need to be learned during
training increases linearly with respect to LAA and expo-
nentially with respect to LSS. The latter is mainly
because we have 3Lss+1 different models for each possible
value of Qi = q. For larger values of LAA and LSS, this
exponential increase in parameters might cause pro-
blems due to the limited amount of training data.
Therefore, it is useful to derive sparse graphical models,
which concentrate on the strongest dependencies
among the variables.
For this purpose, we developed an iterative structure

learning algorithm, which is interwoven with the EM.
Let Gq = (Vq, Eq) be a graph, such as the one in Figure
3, where Vq denotes the set of nodes and Eq represents
the set of edges in Gq. Let eq be an edge in Eq with a
dlink score of s(eq), where s(eq) is a non-zero element of
Bq in Equation 9. In our case, we have 3(LSS+1) possible
graphs, i.e, one for each normal density. For some of
those Gaussians, there is no sample of the Qi variable
(Equation 9) in our training data, mainly because not all
possible label tuples are biologically possible. For this
reason, we first scan the training set and determine the
particular label tuples that have zero-occurrence counts.
Then we eliminate the Gaussians that correspond to
such label tuples before applying the sparsity algorithm
because for those Gaussians the edge coefficients (i.e.,
the Bq matrix) will all be learned as zero. In other
words, we only concentrate on sparsifying the Gaussian
densities that correspond to those Qi with non-zero
occurrence counts in training set. The sparsification
procedure can be summarized as follows. We first do
one EM iteration and learn the parameters of the multi-
variate normal densities. Then we sort the dlink edges
in descending order with respect to their absolute values
and eliminate the bottom k% of the edges (i.e., dlinks).
Note that eliminating dlinks is equivalent to setting the
dlink coefficients to zero. In the next step, we initialize
the next EM iteration with the new graph structure, its
edge coefficients and the other learned parameters (the
mean shift vector and the diagonal covariance). We iter-
ate this procedure until the desired overall percentage of
edges are eliminated. Note that we follow a greedy
approach such that once we remove an edge from the
graph (i.e., set its edge coefficient to zero) we force that
value to be zero in subsequent EM iterations. When the
desired sparsity level is achieved, we learn the para-
meters of the final DBN by a full run of EM. At the

Aydin et al. BMC Bioinformatics 2011, 12:154
http://www.biomedcentral.com/1471-2105/12/154

Page 16 of 21

end, we obtain a sparse DBN as well as a set of learned
parameters for the multivariate normal density. A pseu-
docode description of this procedure is given in Algo-
rithm 1. The sparsification of the model parameters in
the presence of a diagonal covariance component regu-
larizer is explained in the next section.
Algorithm 1 Learning a sparse DBN. The algorithm

takes as input four parameters: the training data D, the
percentage k of edges to remove at each iteration, the
total fraction ℓ of edges to remove from the model, and
the total number m of EM iterations to carry out after
sparsification is complete. The final output is a trained,
sparse DBN. The Initialize() subroutine initializes
the 3Lss+1 graphs such that xi(n) are the child nodes, and
the edges are defined according to the regression rela-
tion given in the exponential term of Equation 9. The
subroutine also sets the edge weights to zero, randomly
initializes the mean shift vector, and sets the diagonal
covariance component parameters to a fixed value. The
EM subroutine carries out one iteration of the expecta-
tion maximization algorithm.
1: procedure LEARNSPARSEDBN(D, k, ℓ, m)
2: G ¬ Initialize(); j ¬ 0
3: while jk < ℓ do
4: G ¬ EM(G, D)
5: E ¬ ZeroLowest(SortByAbsVal(GetEdges

(G)), k)
6: G ¬ UpdateEdges(G, E)
7: j ¬ j + 1
8: end while
9: for j ¬ 1 ... m do
10: G ¬ EM(G, D)
11: end for
12: return G
13: end procedure

Sparsification of model parameters with a diagonal
covariance component regularizer
After applying Algorithm 1, we convert the model para-
meters to the full covariance representation following
Eqs. 10 and 11, add a diagonal covariance component
and then convert the covariance matrices back to the
Cholesky form (i.e., dlink) representation following Eqs
5-8. Once we add the covariance regularizer, from each
graph, we eliminate those dlinks that were originally dis-
carded by Algorithm 1. This final elimination is neces-
sary because when we add a diagonal covariance
regularizer to the full covariance representation, dlinks
that were eliminated by Algorithm 1 might have non-
zero coefficients when they are converted back to the
dlink representation.

Combining multiple DBNs
Motivated by previous work [5,56], we make our predic-
tions by combining the results from multiple DBN

models. In the first model, formulated in Equation 4, we
only allow dlinks from past positions. Conversely, in the
second model, we reverse the PSSM profile vectors as
well as the secondary structure labels and then use the
same model in Figure 8(A). Effectively, the second
model only allows dlinks from future positions. In both
models, we use PSI-BLAST’s PSSMs as the observation
data. Additionally, we implement a similar pair of DBNs
characterizing past and future dependencies for PSSM
profiles derived using HHMAKE (see the “Generating
position-specific scoring matrices” section). As a result,
we have a total of four DBNs. Each model produces a
marginal a posteriori distribution over secondary struc-
ture labels for each amino acid. The a posteriori prob-
abilities can be averaged to produce a secondary
structure prediction or used as features for an SVM
classifier. In our simulations that analyze the predictive
accuracy of sparse models (see the “Sparsifying the
model while maintaining accuracy” section), we combine
the DBNs by taking the average of the a posteriori dis-
tributions over secondary structure labels and selecting
the particular label at each position that has the maxi-
mum probability. In the cross-validation experiment
performed on the CB513 and SD576 benchmarks (see
the “Comparison with the state-of-the-art” section), we
combine the DBNs and the PSSM profiles by an SVM
classifier as explained in the next section. Combining
multiple models that characterize different profile repre-
sentations as well as different sections of the depen-
dency structure has a positive impact on predictive
accuracy.

Support vector machine classifier
The SVM used to combine the outputs from multiple
DBNs employs a radial basis function kernel, and is
trained using the LIBSVM package [57]. As the input
features, we use a symmetric window of PSSM vectors
derived from PSI-BLAST and HHMAKE, as well as a
window of marginal a posteriori probabilities that are
generated from the DBNs described in the “Combin-
ing multiple DBNs” section. For simplicity, we set the
lengths of the PSSM and the posterior probability
windows to be five, which is similar in size to the LAA
window parameter optimized for DBNs (see the
“Model training, parameter optimization and testing
for cross-validation” section). Our feature set contains
the following a posteriori distributions: (1) average of
posterior probabilities from the four DBNs, (2) aver-
age of posterior probabilities from past dependency
and future dependency DBNs that use PSI-BLAST
PSSMs, (3) average of posterior probabilities from
past dependency and future dependency DBNs that
use HHMAKE PSSMs. This gives a total of 539
features.

Aydin et al. BMC Bioinformatics 2011, 12:154
http://www.biomedcentral.com/1471-2105/12/154

Page 17 of 21

For positions at which the feature window exceeds the
boundaries of a protein (i.e., those that are close to the
N- or C-terminus), we include zeros to the feature set.
In our SVM classifier, we performed 5-fold internal
cross-validation on a randomly downsampled version of
each training set to optimize the cost parameter C and
the radial basis function kernel width parameter g. In
this procedure, the downsampling rate is set to 5 and a
grid search is performed such that C Î {2-5, 2-3, ..., 25}
and g Î {2-7, 2-13, ..., 22}. Then we use the selected para-
meters to train an SVM classifier on the training set
and generate predictions on the test set. LIBSVM uses a
one-against-one method to generate predictions for
more than two classes.

Model training, parameter optimization and testing for
cross-validation
For each train/test split of the cross-validation experi-
ment in the “Comparison with the state-of-the-art” sec-
tion, we randomly divided each training set into two
such that the first half is used to optimize and train the
DBNs and the second half the SVM. Each DBN requires
the specification of four hyperparameters: the depen-
dency parameters LAA and LSS, the diagonal covariance
regularizer a, and the discrete/continuous weighting
parameter ω. In our cross-validation experiment with
the CB513 benchmark, we performed internal cross-vali-
dation on each training set allocated for DBNs and
selected the hyperparameters of the DBNs that yielded
the highest amino acid level accuracy. To avoid an
expensive search over the full, four-dimensional search
space, we performed the optimization in a step-wise
fashion. First, we optimized the LAA and LSS parameters,
fixing a = 0.01 and ω = 1.0. In this step, we considered
a grid of values for LAA and LSS, i.e., LAA from 0 to 10
and LSS from 0 to 6. Second, we fixed LAA and LSS to
their optimum values and searched for the best a para-
meter. Third, we fixed a to its optimum value and opti-
mized the ω. For a and ω, we did a binary search,
where we started with values from {0.1, 0.2, ..., 1.0},
selected the optimum on this grid and then selected a
finer grid of values, with increments of 0.01, around that
optimum. After selecting the optimum on this finer grid,
we selected a third grid of values with increments of
0.001 around that optimum and searched for the best
values of the hyperparameters. Once we obtained the
optimum values for the hyperparameters we repeated
this optimization procedure starting with the second
round of optimization for LAA and LSS fixing a and ω to
their optimum values from the first round, followed by
the reoptimization of a and ω. For DBNs that use
PSSMs derived from PSI-BLAST, the hyperparameter
optimization for the CB513 set yielded values in the
vicinity of LAA = 4, LSS = 2 both for the past and future

DBN models. The mean and standard deviation of the a
parameter was (0.0424, 0.014) for the past DBN and
(0.0450, 0.012) for the future DBN. For the ω parameter,
these statistics were (0.567, 0.094) for the past DBN and
(0.525, 0.081) for the future DBN. Similarly, for DBNs
that use HHMAKE PSSMs, the optimum values were
approximately LAA = 3, LSS = 2 for the past DBN and
LAA = 4, LSS = 2 for the future DBN. The mean and
standard deviation of the a parameter was (0.020, 0.087)
for the past DBN and (0.012, 0.035) for the future DBN.
For the ω parameter, the mean and standard deviation
values were (0.420, 0.032) for the past DBN and (0.367,
0.031) for the future DBN. We observed that, the opti-
mized values are more consistent across different cross-
validation splits for DBNs that use PSI-BLAST based
PSSMs as compared to DBNs that use HHMAKE
PSSMs. We hypothesize that this difference arises
because PSI-BLAST PSSMs are regularized using pseu-
docounts, whereas HHMAKE PSSMs are not. Including
pseudocounts in the HHMAKE PSSMs might make the
estimated hyperparameters more consistent across dif-
ferent cross-validation splits because a pseudocount will
smooth the estimated PSSM values by assigning a back-
ground measure to the cases with zero-occurrence i.e.,
cases with no hits to a particular amino acid in a col-
umn of the multiple alignment block; however, we did
not explicitly test this hypothesis. Detailed description of
pseudocounts can be found in [42] and in [58]. Similar
values for the hyperparameters are obtained for the
SD576 set (data not shown). In our DBN model, LAA,
LSS and a control the model complexity, determining
whether the classifier will underfit or overfit to a given
training set. For instance, as we increase LAA or LSS,
after a certain point, we will start observing a decrease
in the predictive accuracy, which is known as over-fit-
ting (a detailed analysis of the performance with respect
to to LAA and LSS can be found in Yao et al [5]). On the
other hand, the covariance component regularizer a
allows us to smooth the model (high values enable more
smoothing) and reduce over-fitting. Therefore, the accu-
racy with respect to these hyperparameters will be close
to a concave function. In our simulations, we also
observed a similar concave behavior for the ω parameter
(data not shown). To optimize C and g, which are the
two hyperparameters of the SVM, we performed an
internal cross-validation on the training set allocated for
the SVM (see the “Support vector machine classifier”
section). The optimum values were around C = 1.0 and
g = 0.00781 for the CB513 and SD576 benchmarks.
After optimizing the hyperparameters, for each train/

test split, we trained the DBNs using the first half of the
training set and generated marginal a posteriori prob-
ability distributions for proteins in the second half of
the training set as well as proteins on the test set. Then

Aydin et al. BMC Bioinformatics 2011, 12:154
http://www.biomedcentral.com/1471-2105/12/154

Page 18 of 21

we trained the SVM on the second half of the training
set and predicted the secondary structure of proteins in
the test set. Pseudocode for the nested cross-validation
procedure is given in Algorithm 2. Detailed descriptions
of the hyperparameter optimization algorithms are also
available in Supplementary Algorithms 1, 2, and 3 (see
the Additional file 1).
Algorithm 2 Pseudocode for cross-validation with

hyperparameter optimization by internal cross-vali-
dation. The algorithm takes as input four parameters:
the dataset D, the number of cross-validation folds K,
the number of folds for internal cross-validation Kint,
and the set of hyperparameters Θ = (LAA, LSS, a, ω). For
each train/test split, the algorithm optimizes the hyper-
parameters of the DBNs by doing internal cross-valida-
tion on the training set. Then it trains the DBNs on the
training set with the optimized set of parameters and
computes predictions on the test set.
1: procedure NESTEDCROSSVALIDATION(D, K,

Kint, Θ)
2: Split dataset D into K (train, test) sets
3: Split each train set into two (trainDBN , trainSV M

)
4: for each (trainDBN , trainSV M , test) do
5: Split trainDBN into Kint (subtrain, subtest) sets
6: for each hyperparameter θ Î Θ do
7: for each (subtrain, subtest) do
8: Train DBNs on subtrain and predict on

subtest
9: end for
10: Compute the accuracy on trainDBN for θ
11: end for
12: Select θ* with the best accuracy for a given

trainDBN
13: Train DBNs on trainDBN with θ* and predict

on trainSV M and test
14: Train SVM on trainSV M and predict on test
15: end for
16: Return the accuracy on D
17: end procedure

PDB-PC15 dataset
To obtain the PDB-PC15 dataset, we used the following
set of criteria in PISCES server [34]: percent identity
threshold of 15%, resolution cutoff of 2.5 Å, and R-value
cutoff of 1.0. We also used PISCES to filter out non-X-
ray and Ca-only structures and to remove short (< 40
amino acids) and long (> 10000 amino acids) chains. In
the resulting set of proteins, we replaced chemically
modified residues (i.e., the ones annotated as “X” by the
DSSP algorithm [23]) with the unmodified versions
taken from the PDB. Finally, we assigned a secondary
structure label to each amino acid from the DSSP data-
base [35]. We mapped the 8-state representation of

secondary structure labels to 3-states by applying the
following conversion rule: H, G, I to H; E, B to E and S,
T, ‘ ‘ to L. The final version of our dataset contains
3,824 chains and 792,146 amino acids.
For the b strand analysis, we extracted the b strand

segments only, eliminating the particular segments that
contain amino acids with zero bridge interactions and
those that are of length one (b-bridge residues). The
final set contained 16,927 b strand segments with a
minimum segment length of 2, maximum of 18 and
average of 4.

Model for analyzing correlations in b strands
To allow the analysis of correlations among b strand
residues, we update the definition of the multivariate
normal density in Equation 4 as

p(xi|zi, Qi = E) =p(xi|xi−LAA , . . . , xi−1,

xi+1, . . . , xi+LAA ,

xj−LAA , . . . , xj+LAA , Qi = E),

(13)

where xi is the observation vector of a b strand resi-
due ri, and xj is the observation vector of the residue rj,
which makes a bridge interaction with ri. This formula-
tion allows us to fit a multivariate normal density to p(xi
| zi, Qi = q) as in Equation 4 and analyze the correlation
relations between ri and its spatial neighbors.

Additional material

Additional file 1: Cross-validation and hyperparameter optimization.
Detailed descriptions of the algorithms for cross-validation and
hyperparameter optimization by internal cross-validation.

Acknowledgements
This work was supported by NIH/NCRR award P41RR0011823.

Author details
1Department of Genome Sciences, University of Washington, Seattle, WA
98195, USA. 2Department of Electrical Engineering, University of Washington,
Seattle, WA 98195, USA. 3Department of Computer Science and Engineering,
University of Washington, Seattle, WA 98195, USA.

Authors’ contributions
WSN and JB coordinated the study. ZA implemented the algorithms and
evaluated their performance. JB introduced the sparsity algorithm for DBNs
and the representation of the PSSMs by graphical models. ZA introduced
the secondary structure prediction method and the HHMAKE PSSMs. ZA and
WSN wrote and edited the manuscript. AS and JB provided support on
technical aspects and edited the manuscript. All authors read and approved
the final manuscript.

Received: 2 August 2010 Accepted: 13 May 2011
Published: 13 May 2011

References
1. Qian N, Sejnowski TJ: Predicting the secondary structure of globular

proteins using neural network models. Journal of Molecular Biology 1988,
202(4):865-884.

Aydin et al. BMC Bioinformatics 2011, 12:154
http://www.biomedcentral.com/1471-2105/12/154

Page 19 of 21

http://www.biomedcentral.com/content/supplementary/1471-2105-12-154-S1.PDF
http://www.ncbi.nlm.nih.gov/pubmed/3172241?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3172241?dopt=Abstract

2. Zvelebil MJ, Barton GJ, Taylor WR, Sternberg MJ: Prediction of protein
secondary structure and active sites using the alignment of homologous
sequences. Journal of Molecular Biology 1987, 195:957-961.

3. Asai K, Hayamizu S, Handa KI: Prediction of protein secondary structure
by the hidden Markov model. Comp Applic Biosci 1993, 9(2):141-146.

4. Carugo O, Eisenhaber F: Data Mining Techniques for the Life Sciences, New
York: Humana Press and Springer Bussiness Media, Volume 609 of Methods in
Molecular Biology 2010, chap 19:327-348.

5. Yao XQ, Zhu H, She ZS: A dynamic Bayesian network approach to protein
secondary structure prediction. BMC Bioinformatics 2008, 9(49).

6. Kountouris P, Hirst JD: Prediction of backbone dihedral angles and
protein secondary structure using support vector machines. BMC
Bioinformatics 2009, 10(437).

7. Krogh A, Brown M, Mian I, Sjolander K, Haussler D: Hidden Markov Models
in Computational Biology: Applications to Protein Modeling. Journal of
Molecular Biology 1994, 235:1501-1531.

8. Baldi P, Chauvin Y, Hunkapiller T, McClure MA: Hidden Markov models of
biological primary sequence information. Proceedings of the National
Academy of Sciences of the United States of America 1994, 91(3):1059-1063.

9. Eddy SR: Multiple Alignment Using Hidden Markov Models. In Proceedings
of the Third International Conference on Intelligent Systems for Molecular
Biology. Edited by: Rawlings C. AAAI Press; 1995:114-120.

10. Bystroff C, Thorsson V, Baker D: HMMSTR: A hidden markov model for
local sequence-structure correlations in proteins. Journal of Molecular
Biology 2000, 301:173-190.

11. Won KJ, Hamelryck T, Prugel-Bennett A, Krogh A: An evolving method for
learning HMM Structure: prediction of protein secondary structure. BMC
Bioinformatics 2007, 8(357).

12. Hamelryck TW, Kent JT, Krogh A: Sampling realistic protein conformations
using local structural bias. PLoS Computational Biology 2006, 2(9).

13. Boomsma W, Mardia KV, Taylor CC, Ferkinghoff-Borg J, Krogh A,
Hamelryck T: A generative, probabilistic model of local protein structure.
Proceedings of the National Academy of Sciences of the United States of
America 2008, 105(26):8932-8937.

14. Lennox KP, Dahl DB, Vannucci M, Day R, Tsai JW: A Dirichlet process
mixture of hidden Markov models for protein structure prediction. Ann
Appl Stat 2010, 4(2):916-942.

15. Boser BE, Guyon IM, Vapnik VN: A Training Algorithm for Optimal Margin
Classifiers. In 5th Annual ACM Workshop on COLT. Edited by: Haussler D.
Pittsburgh, PA: ACM Press; 1992:144-152.

16. Schölkopf B, Smola A, Müller KR: Kernel Principal Component Analysis.
Proceedings ICANN97, Springer Lecture Notes in Computer Science 1997, 583.

17. Noble WS: Support vector machine applications in computational
biology. In Kernel methods in computational biology. Edited by: Schoelkopf
B, Tsuda K, Vert JP. Cambridge, MA: MIT Press; 2004:71-92.

18. Efron B, Hastie T, Johnstone I, Tibshirani R: Least angle regression. The
Annals of Statistics 2004, 32(2):407-499.

19. Ng AY: Feature selection, L1 vs. L2 regularization. ICML ‘04: Proceedings of
the twenty-first annual international conference on Machine Learning New
York, NY, USA: ACM; 2004, 78.

20. Needell D, Tropp JA: COSAMP: Iterative Signal Recovery from incomplete
and inaccurate samples. Applied and Computational Harmonic Analysis
2009, 26(3):301-321.

21. Dempster AP, Laird NM, Rubin DB: Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society. Series B
(Methodological) 1977, 39:1-22.

22. Cuff JA, Barton GJ: Evaluation and improvement of multiple sequence
methods for protein secondary structure prediction. Proteins 1999,
34:508-519.

23. Kabsch W, Sander C: Dictionary of protein secondary structure: pattern
recognition of hydrogen-bonded and geometrical features. Biopolymers
1983, 22:2577-2637.

24. Rost B, Eyrich VA: EVA: Large-scale analysis of secondary structure
prediction. Proteins: Structure, Function, and Bioinformatics 2002,
45(S5):192-199.

25. Zemla A, Venclovas C, Fidelis K, Rost B: A modified definition of Sov, a
segment-based measure for protein secondary structure prediction
assessment. Proteins 1999, 34:220-223.

26. Matthews BW: Comparison of the predicted and observed secondary
structure of T4 phage lysozyme. Biochim Biophys Acta 1975,
405(2):442-451.

27. Kim H, Park H: Protein secondary structure prediction based on an
improved support vector machines approach. Protein Eng 2003,
16(8):553-560.

28. Cuff JA, Barton GJ: Application of multiple sequence alignment profiles
to improve protein secondary structure prediction. Proteins: Structure,
Function, and Bioinformatics 2000, 40(3):502-511.

29. Karypis G: YASSP: better kernels and coding schemes lead to
improvements in protein secondary structure prediction. Proteins 2006,
64(3):575-586.

30. Jones DT: Protein secondary structure prediction based on position-
specific scoring matrices. Journal of Molecular Biology 1999, 292:195-202.

31. Wang LH, Liu J, Li YF, Zhou HB: Predicting Protein Secondary Structure by
a Support Vector Machine Based on a New Coding Scheme. Genome
Informatics 2004, 15(2):181-190.

32. Wood MJ, Hirst JD: Protein secondary structure prediction with dihedral
angles. Proteins: Structure, Function and Bioinformatics 2005, 59(3):476-481.

33. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W,
Lipman DJ: Gapped BLAST and PSI-BLAST: A new generation of protein
database search programs. Nucleic Acids Research 1997, 25:3389-3402.

34. Wang G, Dunbrack RL Jr: PISCES: a protein sequence culling server.
Bioinformatics 2003, 19:1589-1591[http://dunbrack.fccc.edu/PISCES.php].

35. The DSSP database. [http://swift.cmbi.ru.nl/gv/dssp/].
36. Chan DC, Chutkowski CT, Kim PS: Evidence that a prominent cavity in the

coiled coil of HIV type 1 gp41 is an attractive drug target. Proc Natl Acad
Sci 1998, 95:15613-15617.

37. Platt JC: Probabilities for support vector machines. In Advances in Large
Margin Classifiers. Edited by: Smola A, Bartlett P, Schölkopf B, Schuurmans D.
MIT Press; 1999:61-74.

38. Milgram J, Cheriet M, Sabourin R: Estimating accurate multi-class
probabilities with support vector machines. Proceedings of the IEEE
International Joint Conference on Neural Networks 2005, 3:1906-1911.

39. Frishman D, Argos P: Seventy-Five Percent Accuracy in Protein Secondary
Structure Prediction. Proteins 1997, 27:327-335.

40. Rost B: Rising accuracy of protein secondary structure prediction New York:
Dekker; 2003, 207-249.

41. Soding J: Protein homology detection by HMM-HMM comparison.
Bioinformatics 2005, 21:951-960.

42. Durbin R, Eddy S, Krogh A, Mitchison G: Biological Sequence Analysis.
Cambridge UP 1998.

43. The PSIPRED server. [http://bioinf.cs.ucl.ac.uk/psipred/].
44. BLAST: Blast Local Alignment Search Tool. [http://blast.ncbi.nlm.nih.gov/

Blast.cgi].
45. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA,

Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH,
Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-
Tillson H, Pfannkoch C, Rogers YH, Smith HO: Environmental Genome
Shotgun Sequencing of the Sargasso Sea. Science 2004, 304(5667):66-74.

46. Baker BJ, Banfield JF: Microbial communities in acid mine drainage. FEMS
Microbiology Ecology 2003, 44(2):139-152.

47. The NR and the ENV databases from HHsearch. [ftp://toolkit.lmb.uni-
muenchen.de/HHsearch/databases/].

48. The HHsearch software. [ftp://toolkit.lmb.uni-muenchen.de/HHsearch/].
49. Chu W, Ghahramani Z, Podtelezhnikov A, Wild DL: Bayesian Segmental

Models with Multiple Sequence Alignment Profiles for Protein
Secondary Structure and Contact Map Prediction. IEEE/ACM transactions
on computational biology and bioinformatics 2006, 3(2):98-113.

50. Bilmes J: Factored Sparse Inverse Covariance Matrices. Proceedings of the
IEEE International Conference on Acoustics, Speech, and Signal Processing
2000, 2:II1009-II1012.

51. Bilmes J: Graphical Models and Automatic Speech Recognition. In
Mathematical Foundations of Speech and Language Processing. Edited by:
Rosenfeld R, Ostendorf M, Khudanpur S, Johnson M. Springer-Verlag, New
York; 2003:.

52. Bilmes J: Dynamic Bayesian Multinets. In UAI ‘00: Proceedings of the 16th
Conference in Uncertainty in Artificial Intelligence. Edited by: Boutilier C,
Goldszmidt M. San Francisco, CA, USA: Morgan Kaufmann Publishers; 2000:.

53. Bilmes J, Zweig G: The Graphical Models Toolkit: An Open Source
Software System for Speech and Time-Series Processing. Proceedings of
the IEEE International Conference on Acoustics, Speech, and Signal Processing
2002.

Aydin et al. BMC Bioinformatics 2011, 12:154
http://www.biomedcentral.com/1471-2105/12/154

Page 20 of 21

http://www.ncbi.nlm.nih.gov/pubmed/3656439?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3656439?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3656439?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8107089?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8107089?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8302831?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8302831?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10926500?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10926500?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18579771?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21031154?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21031154?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19623491?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10081963?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10081963?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6667333?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6667333?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10022357?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10022357?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10022357?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1180967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1180967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12968073?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12968073?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16763996?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16763996?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10493868?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10493868?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15706504?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15706504?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12912846?dopt=Abstract
http://dunbrack.fccc.edu/PISCES.php
http://swift.cmbi.ru.nl/gv/dssp/
http://www.ncbi.nlm.nih.gov/pubmed/9861018?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9861018?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15531603?dopt=Abstract
http://bioinf.cs.ucl.ac.uk/psipred/
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.ncbi.nlm.nih.gov/pubmed/15001713?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15001713?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19719632?dopt=Abstract
ftp://toolkit.lmb.uni-muenchen.de/HHsearch/databases/
ftp://toolkit.lmb.uni-muenchen.de/HHsearch/databases/
ftp://toolkit.lmb.uni-muenchen.de/HHsearch/
http://www.ncbi.nlm.nih.gov/pubmed/17048397?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17048397?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17048397?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21569730?dopt=Abstract

54. Duda RO, Hart PE, Stork DG: Pattern Classification New York: John Wiley &
Sons; 2001.

55. Bilmes J: Gaussian Models in Automatic Speech Recognition. In Handbook
of Signal Processing in Acoustics. Edited by: Havelock D, Kuwano S, Vorlander
M. Springer Science+Business Media, LLC; 2008:521-556.

56. Aydin Z, Altunbasak Y, Borodovsky M: Protein secondary structure
prediction for a single-sequence using hidden semi-Markov models.
BMC Bioinformatics 2006, 7(178).

57. Chang CC, Lin CJ: LIBSVM: a library for support vector machines 2001 [http://
www.csie.ntu.edu.tw/~cjlin/libsvm].

58. Pseudocode from Wikipedia, the free encyclopedia. [http://en.wikipedia.
org/wiki/Pseudocount].

doi:10.1186/1471-2105-12-154
Cite this article as: Aydin et al.: Learning sparse models for a dynamic
Bayesian network classifier of protein secondary structure. BMC
Bioinformatics 2011 12:154.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Aydin et al. BMC Bioinformatics 2011, 12:154
http://www.biomedcentral.com/1471-2105/12/154

Page 21 of 21

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://en.wikipedia.org/wiki/Pseudocount
http://en.wikipedia.org/wiki/Pseudocount

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and Discussion
	Comparison with the state-of-the-art
	Sparsifying the model while maintaining accuracy
	The auto-regressive section of the model contributes to accuracy
	Recovery of true sparse model structures
	Sparse DBNs identify significant correlations among amino acids
	Local correlations
	Non-local correlations in β strands

	Conclusions
	Methods
	Generating position-specific scoring matrices
	A dynamic Bayesian network for protein secondary structure prediction
	Graphical model representation
	Assigning a weight to the observation densities
	Learning the parameters of a DBN and regularization

	Learning a sparse model for a DBN
	Sparsification of model parameters with a diagonal covariance component regularizer

	Combining multiple DBNs
	Support vector machine classifier
	Model training, parameter optimization and testing for cross-validation
	PDB-PC15 dataset
	Model for analyzing correlations in β strands

	Acknowledgements
	Author details
	Authors' contributions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 500
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 500
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

