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Abstract: A series of new tertiary phenothiazine derivatives containing a quinoline and a pyri-
dine fragment was synthesized by the reaction of 1-methyl-3-benzoylthio-4-butylthioquinolinium
chloride with 3-aminopyridine derivatives bearing various substituents on the pyridine ring. The
direction and mechanism of the cyclization reaction of intermediates with the structure of 1-methyl-
4-(3-pyridyl)aminoquinolinium-3-thiolate was related to the substituents in the 2- and 4-pyridine
position. The structures of the compounds were analyzed using 1H, 13C NMR (COSY, HSQC, HMBC)
and X-ray analysis, respectively. Moreover, the antiproliferative activity against tumor cells (A549,
T47D, SNB-19) and a normal cell line (NHDF) was tested. The antibacterial screening of all the
compounds was conducted against the reference and quality control strain Staphylococcus aureus
ATCC 29213, three clinical isolates of methicillin-resistant S. aureus (MRSA). In silico computation of
the intermolecular similarity was performed using principal component analysis (PCA) and hier-
archical clustering analysis (HCA) on the pool of structure/property-related descriptors calculated
for the novel tetracyclic diazaphenothiazine derivatives. The distance-oriented property evaluation
was correlated with the experimental anticancer activities and empirical lipophilicity as well. The
quantitative shape-based comparison was conducted using the CoMSA method in order to indicate
the potentially valid steric, electronic and lipophilic properties. Finally, the numerical sampling of
similarity-related activity landscape (SALI) provided a subtle picture of the SAR trends.

Keywords: phenothiazine; azaphenothiazines; antiproliferative activity; antibacterial activity;
lipophilicity; pharmacophore mapping; similarity-activity landscape index

1. Introduction

The meaningful pathway of rational drug discovery is the search for new properties
and applications of known (marketed) drugs and/or structural modifications of their basic
fragments [1]. The introduction of new substituents, pharmacophore groups, and the
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creation of hybrid systems with other biologically active structures often leads to a change
in the strength and direction of the pharmacological (biological) interactions.

Phenothiazines are an important class of tricyclic heterocycles widely used in medici-
nal chemistry—aminoalkyl phenothiazines are known neuroleptic and antihistamines [2].
Several different structural modifications of the phenothiazine system were carried out,
mostly by introducing various types of substituents to the thiazine nitrogen atom, and
the replacement of benzene rings with nitrogen heterocycles as well [3,4]. The synthe-
sized new phenothiazine and azaphenothiazine derivatives showed diverse biological
properties including antimicrobial, antitumor, antiviral, antituberculosis, antimalarial and
anti-inflammatory ones [5–10]. Earlier works also described the synthesis of a number
of tetracyclic quinobenzothiazine derivatives that revealed their antitumor as well as
antibacterial properties [11–15]. Structural modifications of the basic fragment of quinoben-
zothiazines made it possible to generate derivatives with antiproliferative and antibacterial
activities comparable to the marketed drugs.

In recent years, the medicinal chemist’s intuition (or serendipity) at the ‘presynthe-
sis’ stage could be effectively aided by the computer-assisted molecular design (CAMD)
approaches, that became almost ‘part and parcel’ of the exhaustive transformation of the
compound topology/topography into the property-based chemical space. Strictly speaking,
the chemical composition can be structurally coded by calculated high-level descriptors
or represented by measured property data [16]. The quantitative potency modeling and
ADMET-tailored property prediction or production strategies are expected to nominate the
potent candidates in the hit→ lead→ seed→ drug discovery process [17]. Accordingly,
SAR-related mining of the descriptor-based feature/structural space seems crucial in order
to minimize the likelihood of late attrition in drugs; however, the simple transition from
complex biological relationships to straightforward quantitative-SAR models is regarded
as a ‘triumph of hope over experience’ [18]. A paradox seen in chemistry is that new
compounds are usually synthesized in the hope of finding novel properties using a ‘trial
and error’ approach. In fact, the property profiling, not the synthesis itself, should be a
merit of contemporary chemistry, as was noted by Hammond [19]. Thus, in silico mapping
of molecular descriptors to targeted functionalities can support the synthetic efforts at the
decision-making phases of the rational drug design [20].

On the whole, the computer-aided estimation of the drug-host recognition phenom-
ena can be theoretically dichotomized into on-target (receptor-dependent) and off-target
(receptor-independent) approaches, respectively [21]. Practically, the ligand-related pro-
cedures produce the hypothetical pharmacophore that is based on the straightforward
concept of substituent interchangeability and complementarity in the congeneric set of
molecules, where similar size, shape and charge distributions should impose comparable
influence on binding affinity and pharmacological profile as well [22,23]. Unarguably, the
molecular similarity is still the core of many SAR-based procedures assuming that small
changes in molecular structure induce small variations in activity and vice versa. The
similarity-driven procedures that engage fuzzy logic algorithms (e.g., comparative molec-
ular shape analysis) have been proposed to roughly estimate the complex physiological
reality [24]. Despite some drawbacks, the distance-related similarity examination of struc-
turally alike compounds still contribute considerably to the quantitative or qualitative SAR
specification [25,26]. In particular, the numerical approximation of the smooth (homoge-
nous) areas and/or the sharp (heterogeneous) activity cliffs in the form of structure-activity
landscape indexes (SALI) can provide hints that can be implemented at the synthetic
phase [27]. The smart management of SALI-driven data can help to modulate pharmaco-
logical response as well as to optimize ADMET-friendly drug properties (minimization of
unwanted side effects) [28].

The principal objective of the presented study was the design, synthesis and in vitro
characterization of the anticancer profile for a novel series of tetracyclic diazaphenothiazine
derivatives with the functionalized pyridine subunit. Following common practice, the
experimental data were investigated in silico; therefore, the intermolecular similarity-based
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examination was conducted using the principal component analysis (PCA) and hierarchical
clustering analysis (HCA) on the pool of structure/property-related descriptors calculated
for novel tetracyclic diazaphenothiazine derivatives. The distance-oriented property evalu-
ation for the congeneric series of compounds was correlated with anticancer experimental
activities and empirical lipophilicity profile, respectively. Moreover, the newly constructed
adducts were subjected to the quantitative shape comparison (CoMSA) with the generation
of an averaged pharmacophore pattern to illustrate the key 3D steric/electronic/lipophilic
features. Eventually, the quantitative sampling of the similarity-related activity landscape
(SALI) provided a subtle picture of favorable and disallowed structural modifications
that are valid for determining the activity cliffs. Obviously, we take a critical view of
the activity spectrum for a new set of tetracyclic diazaphenothiazine derivatives with the
functionalized pyridine subunit; however, the investigated series might be subsequently
structurally modified in order to optimize the drug’s anticancer activity and selectivity.

2. Results and Discussion
2.1. Chemistry—Design and Synthesis

In an earlier work we described the synthesis of 5-methyl-12H-quino[3,4-b]pyrido[5,6-
e][1,4]thiazinium chloride 3a and its derivative containing an ethyl group at the quinoline
nitrogen atom. These compounds were obtained by reactions of 5,12-(dialkyl) thioquinan-
threnediinium bis-chloride with 3-aminopyridine [15]. X-ray analysis of derivative 3a
showed that this compound has a completely flat tetracyclic pyridoquinothiazinium sys-
tem. It seemed that this could have a significant (large, decisive) effect on the biological
properties of this type of compound. The phenothiazine and azaphenothiazine derivatives
reported in the literature had a bent thiazine system. Obviously, the changes in the con-
formation of molecules can have significant effects on receptor fit, drug distribution in
the body, and metabolism as well. It has been the basis of research into synthesis of new
derivatives and the assessment of their biological properties.

In this paper we report the synthesis of a series of novel tetracyclic pyridoquinoth-
iazinium derivative 3 by reacting 1-methyl-3-benozoylthio-4-(butylthio)quinolinium chlo-
ride 1 with 3-aminopyridines bearing various types of substituents (Br, Cl, F, I, CH3, OCH3)
at different positions on the pyridine ring. The mechanism and reaction direction depend
on the presence of halogen atoms in the 2- and 4-positions of the 3-aminopyridine. The
reaction proceeds by a nucleophilic attack of the exocyclic nitrogen of the aminopyridine on
the carbon at the 4-quinoline position and on the acyl carbon. This leads to the substitution
of the thiobutyl group with a pyridylamino group, cleavage of the thioacyl bond leading to
the formation of the thiolate function in the 3-quinolinone position and the production of
1-methyl-4-(pyridylamino)quinolinio-3-thiolates 2. The quinolinio-3-thiolates 2 containing
additional halogen atoms in the pyridine ring showed very high reactivity and underwent
further transformations in the solution, which made it impossible to isolate them and deter-
mine their structure by NMR. At the second stage of the reaction, the quinoline-3-thiolates
2 were cyclized to product 3. Earlier studies indicated nucleophilic character of the reaction
at this stage [11,12]. In the case of quinoline-3-thiolane 2 having a pyridylamino group in
the 4-quinoline position, the nucleophilic attack of the thiolate sulfur atom could occur at
the 2- or 4-pyridyl position. Depending on the cyclization direction, such a reaction should
lead to two different types of derivatives, 3 or 4, containing a nitrogen atom in the 8- or
10-position of the pyridoquinothiazinium tetracyclic system (see Scheme 1).

The expected pyridoquinothiazinium chloride 3 was generated with the highest yield
when the reactions were carried out in pyridine solution at the temperature of 80 ◦C. A
further increase in temperature did not augment the yield, while the presence of additional
products was observed in the postreaction mixtures. In the case of quinolinio-3-thiolates
2a–f, when the hydrogen atom was present in the 2- and 4-position of the pyridyl moiety,
cyclization was preferred via substitution of the hydrogen atom in the 2-position of the
pyridine ring, leading to products 3a–f, that contain an endocyclic nitrogen atom in the
8-position of the pyridoquinothiazinium system. Only traces of the 4-isomers were found
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in the reaction mixtures, resulting from the substitution of the hydrogen atom in the
4-position of the pyridine ring. So far, it has not been possible to isolate them in pure
form from postreaction mixtures. Their presence has been confirmed on the basis of
TLC chromatography of postreaction mixtures and MS and 1H NMR spectra of crude
reaction products. In the case of thiolates 2g–i bearing a methyl group in the 4-pyridyl
position, the cyclization reaction only led to the corresponding pyridoquinothiazines 3g–i
by substituting a hydrogen or halogen atom in the 2-pyridyl position.
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In the case of the reactions of salt 1 with 2-chloro- and 2-bromo-3-aminopyridine, the 2j–
l quinolinio-3-thiolates formed at the first stage of the reaction contained a halogen atom in
the 2-pyridyl position, and a hydrogen atom in the 4-pyridyl position (see Scheme 2). With
this arrangement of substituents on the pyridine ring, the cyclization reaction took place
solely by substituting a halogen atom with a thiolate sulfur atom, leading to compound
3a and 3j, respectively. In the postreaction mixtures, no trace amounts of products 4 were
found, resulting from the substitution of the hydrogen atom in the 4-pyridyl position. The
course of the reaction did not depend on the presence of oxygen in the reaction medium.
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The reaction of salt 1 with 4-chloro-3-aminopyridine was different when the 2m
quinolinio-3-thiolate formed at the first stage of the reaction contained a halogen atom in
the 4-position of the pyridine ring, and a hydrogen atom in the 2-position (see Scheme 3).
It seemed interesting whether the direction of the reaction would be more influenced by
the type of leaving group or the nature of the reaction center. It turned out that, when
the reaction was carried out in the presence of atmospheric oxygen, the cyclization of
quinoline-3-thiolane 2m occurs by both the substitution of a hydrogen atom in the 2-
pyridyl position and the substitution of a chlorine atom in the 4-pyridyl position. This
resulted in the formation of two pyridoquinothiazinium salts, 3k and 4a, that contain an
endocyclic nitrogen atom in the 8- or 10-position of the pyridoquinothiazinium system as
shown in Scheme 3. 1H NMR spectra indicates a mixture composition close to equimolar.
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The mixture of 3k and 4a isomers could not be separated by chromatographic meth-
ods. Isomer 4a is a previously undescribed pyridoquinothiazinium derivative, therefore
attempts have been made to obtain it using various mechanisms of the formation of 3m
and 4a compounds:

- The cyclization to 3k takes place as a nucleophilic substitution of a hydrogen atom.
The hydride anion is a very difficult leaving group and its substitution in nucleophilic
substitution reactions requires the presence of an oxidizing agent. In this case, it is
atmospheric oxygen;

- The cyclization to 4a takes place as a nucleophilic substitution of a halogen atom by
a thiolate sulfur atom. It is a direct process and does not require the presence of an
oxidant in the reaction medium.

To block the reaction pathway to 3k formation, the reaction of salt 1 with 4-chloro-
3-aminopyridine was performed under anaerobic conditions. Atmospheric oxygen was
removed from the reaction mixture by bubbling argon purge (see Scheme 4). This reaction
was selective and gave derivative 4a with a yield of 80%.
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2.2. Spectroscopic Structural Analysis

The structures of compounds 3a–j and 4a were confirmed by ESI-HRMS spectrometry
and 1H as well as 13C NMR spectroscopy. An important diagnostic element for confirming
the reaction route and the compounds’ structure was the multiplicity and integration
of proton signals from the pyridine ring. In the case of some derivatives, a significant
broadening of the signals in the proton spectra was observed which is probably due to the
dynamic phenomena that take place in the solution consisting of the exchange of the amine
proton between the pyridine and thiazine nitrogen atom. For the selected derivatives, using
two-dimensional techniques (COSY, HSQC, HMBC), a complete assignment of signals was
made for all atoms in the proton and carbon spectra.

In the spectra generated for all the new compounds by ESI-HRMS spectrometry, the
signal corresponding to the mass of pyridoquinothiazinium cations was produced with
accuracy to three decimal places relative to the theoretically determined value, which
undoubtedly confirms their elemental composition.

2.3. X-ray Structural Analysis

X-ray analysis of the compounds not only confirmed the established NMR methods,
but also showed their solid state arrangement. By crystallization from ethanol, it was
possible to obtain single crystals of the derivatives 3g and 3j. The X-ray structure of the
derivative 3g is shown in Figure 1.

Int. J. Mol. Sci. 2021, 22, 12826 6 of 22 
 

 

To block the reaction pathway to 3k formation, the reaction of salt 1 with 
4-chloro-3-aminopyridine was performed under anaerobic conditions. Atmospheric ox-
ygen was removed from the reaction mixture by bubbling argon purge (see Scheme 4). 
This reaction was selective and gave derivative 4a with a yield of 80%. 

 
Scheme 4. Reaction of salt 1 with 4-chloro-3-aminopyridine the under anaerobic conditions. Rea-
gents and conditions: (a) pyridine, 80 °C (b) pyridine, HCl, 80 °C. 

2.2. Spectroscopic Structural Analysis 
The structures of compounds 3a–j and 4a were confirmed by ESI-HRMS spectrom-

etry and 1H as well as 13C NMR spectroscopy. An important diagnostic element for con-
firming the reaction route and the compounds’ structure was the multiplicity and inte-
gration of proton signals from the pyridine ring. In the case of some derivatives, a sig-
nificant broadening of the signals in the proton spectra was observed which is probably 
due to the dynamic phenomena that take place in the solution consisting of the exchange 
of the amine proton between the pyridine and thiazine nitrogen atom. For the selected 
derivatives, using two-dimensional techniques (COSY, HSQC, HMBC), a complete as-
signment of signals was made for all atoms in the proton and carbon spectra. 

In the spectra generated for all the new compounds by ESI-HRMS spectrometry, the 
signal corresponding to the mass of pyridoquinothiazinium cations was produced with 
accuracy to three decimal places relative to the theoretically determined value, which 
undoubtedly confirms their elemental composition. 

2.3. X-ray Structural Analysis 
X-ray analysis of the compounds not only confirmed the established NMR methods, 

but also showed their solid state arrangement. By crystallization from ethanol, it was 
possible to obtain single crystals of the derivatives 3g and 3j. The X-ray structure of the 
derivative 3g is shown in Figure 1. 

 

 

  

Figure 1. X-ray structure of 9-chloro-5,11-dimethyl-12H-quino[3,4-b]pyrido[5,6-e][1,4]thiazinium 
chloride molecule (3g). 

Figure 1. X-ray structure of 9-chloro-5,11-dimethyl-12H-quino[3,4-b]pyrido[5,6-e][1,4]thiazinium
chloride molecule (3g).

The molecule of the 9-chloro-5,11-dimethyl-12H-quino[3,4-b]pyrido[5,6-e][1,4]thiazinium
chloride 3g is bent along the axis defined by the nitrogen and sulfur atom of the ring of
thiazine at an angle of 160.56◦. The angle formed by the atoms in the C6a-S7-C7a thiazine
ring has a value of 100.2◦, while between the atoms C11a-N12-C12a α = 124.8◦. The X-ray
structure of the derivative 3j is shown in Figure 2.
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The molecule of the 9-methoxy-5-methyl-12H-quino[3,4-b]pyrido[5,6-e][1,4]thiazinium
chloride 3j is bent along the axis defined by the nitrogen and sulfur atom of the thiazine
ring at an angle of 154.34◦. The angle formed by the atoms C6a-S7-C7a in the thiazine
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ring is 100.2◦, while between the atoms C11a-N12-C12a it is 125.1◦. The values of the
thiazine ring angles in the compound 3j are almost identical to those in the compound
3g. Most of the structural parameters of 3g and 3j molecules correspond well with the
parameters produced for the previously described tetracyclic structure of 5-methyl-12H-
quino[3,4-b][1,4]benzothiazinium chloride [11]. However, the previously described 5-ethyl-
12H-pyrido[5,6-e]quino[3,4-b][1,4]thiazinium chloride with no additional substituents on
the pyridine ring, had a completely flat tetracyclic structure [15]. The molecules of the
newly synthesized isomers 3g and 3j are bent along the axis defined by the nitrogen and
sulfur atoms of the thiazine ring. It seems that the presence of additional substituents has a
significant impact on the geometry of the molecule, which may also influence the biological
activity of the compounds obtained.

2.4. In Vitro Cytotoxic Activity

The previously described tetracyclic quinobenzothiazinium derivatives showed in-
teresting anticancer properties [11–14]. Literature reports suggest that the mechanism of
their antitumor activity is based on DNA intercalation [12]. The newly synthesized pyrido-
quinothiazinium salts are structural analogs of quinobenzothiazines in which the benzene
ring has been replaced with a pyridine ring. The structure of the synthesized compounds
was additionally modified by introducing various substituents into the pyridine ring. One
of the goals of this research was to investigate how such a structural modification would
affect the cytotoxic properties. For all the derivatives obtained, tests of cytotoxic activity
against tumor cells (A549, T47D, SNB-19 lines) and the NHDF normal cell line were carried
out. The values of the IC50 parameters are presented in Table 1. In fact, the compounds
possess similar IC50 values against cancer cell lines vs. the normal cell line (NHDF). On
the other hand, a similar phenomenon is commonly observed in chemotherapy as un-
wanted side effects. The main aim of the research was the design, synthesis and in vitro
characterization of the anticancer profile for a novel series of tetracyclic diazaphenoth-
iazine derivatives with the functionalized pyridine subunit that might be subsequently
structurally modified in order to optimize the anticancer drug activity and selectivity.

Table 1. Structure of tetracyclic diazaphenothiazine derivatives 3a–j and 4a with experimentally determined logP and
in vitro activities A549, SNB-19, T47D and NHDF.

Int. J. Mol. Sci. 2021, 22, 12826 8 of 22 
 

 

might be subsequently structurally modified in order to optimize the anticancer drug 
activity and selectivity. 

Cytotoxic activity depended both on the nature of the substituents and their position 
in the molecule. The presence of additional substituents (-Br, -Cl, -F, -CH3, -OCH3) on the 
pyridine ring significantly increased the cytotoxic activity compared to the unsubstituted 
derivative 3a. The derivative 4a, containing the endocyclic nitrogen atom in the 
10-position of the tetracyclic system, showed a higher cytotoxic activity than the deriva-
tive 3a, in which the endocyclic nitrogen atom is in the 8-position. The compounds that 
showed the highest activity in relation to all tested cell lines were: 3d, 3e and 3j deriva-
tives, bearing a chlorine atom, a fluorine atom or a methoxy group in the 9-position of the 
pyridoquinothiazinium tetracyclic system, respectively. Compounds with 9- or 
10-position bromine atoms showed lower activity. The compound with the lowest cyto-
toxic activity was the 3f derivative, which has an iodine atom in the 9-position of the 
pyridoquinothiazinium system. It should be noted that many of the derivatives obtained 
showed greater cytotoxic activity for the tested tumor cell lines than cisplatinum (used as 
a reference molecule). All derivatives 3 and 4a also show cytotoxic properties against the 
normal NHDF cell line. 

The structural and empirical data of tetracyclic diazaphenothiazine derivatives 3a–j 
and 4a are reported in Table 1. 

Table 1. Structure of tetracyclic diazaphenothiazine derivatives 3a–j and 4a with experimentally 
determined logP and in vitro activities A549, SNB-19, T47D and NHDF. 

  

N
+

N
H

S

Y

X CH3
9

10

11

R

 

Comp. X Y R logP 
IC50 [μM] 

A549 (std) SNB-19 (std) T47D (std) NHDF (std) 
3a N CH H 3.53 70.3 ± 9.8 132.3 ± 11.6 46.2 ± 7.1 21.1 ± 1.5 
3b N CH 9-Br 4.80 23.8 ± 1.7 4.1 ± 0.3 5.2 ± 0.4 0.8 ± 0.05 
3c N C 10-Br 4.57 20.6 ± 1.2 3.4 ± 0.2 12.2 ± 1.7 11.0 ± 1.4 
3d N CH 9-Cl 4.62 2.0 ± 0.3 1.3 ± 0.1 2.3 ± 0.3 7.7 ± 0.5 
3e N CH 9-F 4.24 2.1 ± 0.35 0.4 ± 0.08 2.8 ± 0.35 1.1 ± 0.14 
3f N CH 9-I 5.09 115.3 ± 10.7 62.5 ± 6.6 128.4 ± 18.2 97.4 ± 6.2 
3g N CH 9-Cl, 11-CH3 5.66 20 ± 1.6 3.5 ± 0.2 26.7 ± 1.6 3.8 ± 0.3 
3h N CH 9-F, 11-CH3 5.72 15.4 ± 1.0 125.5 ± 14.8 47.7 ± 2.8 28.5 ± 4.0 
3i N CH 11-CH3 4.17 69.3 ± 5.3 22.1 ± 1.5 18.9 ± 1.4 0.4 ± 0.07 
3j N CH 9-OCH3 4.20 1.7 ± 0.1 6.1 ± 0.4 8.1 ± 1.0 2.0 ± 0.3 
4a CH N H 2.93 30.1 ± 3.4 18.7 ± 1.2 36.8 ± 2.1 7.5 ± 0.2 

cisplatinum - - - - 3.0 ± 0.2 16.7 ± 1.3 9.0 ± 0.7 29.9 ± 3.3 
A549 (human lung carcinoma); SNB-19 (human glioblastoma); T47D (human breast cancer); NHDF 
(normal human dermal fibroblasts); std (standard deviation). 

2.5. In Vitro Antimicrobial Activity 
The biological screening of the analyzed compounds was performed against the 

reference and quality control strain Staphylococcus aureus ATCC 29213, three clinical iso-
lates of methicillin-resistant S. aureus (MRSA) [29]. All data, expressed as minimum in-
hibitory concentrations (MICs), are summarized in Table 2. Based on these results, it can 
be stated that most of the compounds did not show any antistaphylococcal activity. Ex-
ceptions are compounds 3c and 3e, which have MICs in the range of 12.5–42.1 μM against 
MRSA isolates and thus show activity comparable to the used ampicillin standard. As 
MICs against MRSA isolates were, in fact, comparable with the MIC values observed 
against methicillin-susceptible S. aureus ATCC 29213, it could be assumed that the pres-
ence of mecA gene did not affect the activity of these compounds [30]. 

Comp. X Y R logP
IC50 [µM]

A549 (std) SNB-19 (std) T47D (std) NHDF (std)

3a N CH H 3.53 70.3 ± 9.8 132.3 ± 11.6 46.2 ± 7.1 21.1 ± 1.5
3b N CH 9-Br 4.80 23.8 ± 1.7 4.1 ± 0.3 5.2 ± 0.4 0.8 ± 0.05
3c N C 10-Br 4.57 20.6 ± 1.2 3.4 ± 0.2 12.2 ± 1.7 11.0 ± 1.4
3d N CH 9-Cl 4.62 2.0 ± 0.3 1.3 ± 0.1 2.3 ± 0.3 7.7 ± 0.5
3e N CH 9-F 4.24 2.1 ± 0.35 0.4 ± 0.08 2.8 ± 0.35 1.1 ± 0.14
3f N CH 9-I 5.09 115.3 ± 10.7 62.5 ± 6.6 128.4 ± 18.2 97.4 ± 6.2

3g N CH 9-Cl,
11-CH3

5.66 20 ± 1.6 3.5 ± 0.2 26.7 ± 1.6 3.8 ± 0.3

3h N CH 9-F, 11-CH3 5.72 15.4 ± 1.0 125.5 ± 14.8 47.7 ± 2.8 28.5 ± 4.0
3i N CH 11-CH3 4.17 69.3 ± 5.3 22.1 ± 1.5 18.9 ± 1.4 0.4 ± 0.07
3j N CH 9-OCH3 4.20 1.7 ± 0.1 6.1 ± 0.4 8.1 ± 1.0 2.0 ± 0.3
4a CH N H 2.93 30.1 ± 3.4 18.7 ± 1.2 36.8 ± 2.1 7.5 ± 0.2

cisplatinum - - - - 3.0 ± 0.2 16.7 ± 1.3 9.0 ± 0.7 29.9 ± 3.3

A549 (human lung carcinoma); SNB-19 (human glioblastoma); T47D (human breast cancer); NHDF (normal human dermal fibroblasts); std
(standard deviation).



Int. J. Mol. Sci. 2021, 22, 12826 8 of 21

Cytotoxic activity depended both on the nature of the substituents and their position
in the molecule. The presence of additional substituents (-Br, -Cl, -F, -CH3, -OCH3) on the
pyridine ring significantly increased the cytotoxic activity compared to the unsubstituted
derivative 3a. The derivative 4a, containing the endocyclic nitrogen atom in the 10-position
of the tetracyclic system, showed a higher cytotoxic activity than the derivative 3a, in which
the endocyclic nitrogen atom is in the 8-position. The compounds that showed the highest
activity in relation to all tested cell lines were: 3d, 3e and 3j derivatives, bearing a chlorine
atom, a fluorine atom or a methoxy group in the 9-position of the pyridoquinothiazinium
tetracyclic system, respectively. Compounds with 9- or 10-position bromine atoms showed
lower activity. The compound with the lowest cytotoxic activity was the 3f derivative,
which has an iodine atom in the 9-position of the pyridoquinothiazinium system. It should
be noted that many of the derivatives obtained showed greater cytotoxic activity for the
tested tumor cell lines than cisplatinum (used as a reference molecule). All derivatives 3
and 4a also show cytotoxic properties against the normal NHDF cell line.

The structural and empirical data of tetracyclic diazaphenothiazine derivatives 3a–j
and 4a are reported in Table 1.

2.5. In Vitro Antimicrobial Activity

The biological screening of the analyzed compounds was performed against the
reference and quality control strain Staphylococcus aureus ATCC 29213, three clinical isolates
of methicillin-resistant S. aureus (MRSA) [29]. All data, expressed as minimum inhibitory
concentrations (MICs), are summarized in Table 2. Based on these results, it can be stated
that most of the compounds did not show any antistaphylococcal activity. Exceptions
are compounds 3c and 3e, which have MICs in the range of 12.5–42.1 µM against MRSA
isolates and thus show activity comparable to the used ampicillin standard. As MICs
against MRSA isolates were, in fact, comparable with the MIC values observed against
methicillin-susceptible S. aureus ATCC 29213, it could be assumed that the presence of
mecA gene did not affect the activity of these compounds [30].

Table 2. Structure of 3a–j and 4a, in vitro anti-Staphylococcus activities MIC (µM) in comparison with
ampicillin (AMP) standard.

Comp.
MIC (µM)

SA MRSA 63718 MRSA SA 630 MRSA SA 3202

3a 212 212 106 212
3b 337 337 337 337
3c 42.1 42.1 21.1 42.1
3d 381 381 381 381
3e 50.2 25.1 12.5 25.1
3f 299 299 299 299
3g >731 >731 >731 >731
3h 383 383 383 383
3i 203 203 101 203
3j 193 193 96 193
4a 424 424 424 424

AMP 5.72 45.8 45.8 45.8
SA = Staphylococcus aureus ATCC 29213; MRSA = clinical isolates of methicillin-resistant S. aureus 63718, SA 630,
and SA 3202 (National Institute of Public Health, Prague, Czech Republic).

2.6. Similarity-Oriented Property Mapping

The distance-guided property assessment was performed using principal component
analysis (PCA) and hierarchical clustering analysis (HCA) on the ensemble of 2622 descriptors
retrieved from Dragon 6.0 software. The derived data were organized into matrix X10×2622,
where rows present molecules (objects) and columns represent numerical parameters (vari-
ables), respectively. The descriptor-based matrix was centered and standardized, because
the original variables differed considerably. The resulting number of important principal
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components (PCs) was specified, taking into account the percentage of the modeled vari-
ance. The first three PCs accounted for 74.42% of the total data variance, whereas the first
two PCs described 63.91%. The corresponding score plot with the projection of molecules
3a–j on the plane PC1 vs. PC2 color-coded according to the experimental lipophilicity
(logPTLC) is presented in Figure 3. Not surprisingly, the unsubstituted compound 3a is
located separately on the principal component plane. Interestingly, the analogues 3g–j
with a methylated and methoxylated pyridine subunit are separated from the remaining
ones on the positive area of PC1. Moreover, the most potent antiproliferative molecules
3d and 3e with chlorine and fluorine substituents are grouped together in the range of
−20 < PC1 < −10. Obviously, the lipophilicity of diazaphenothiazine derivatives is depen-
dent on the lipophilic character of pyridine substituents. Roughly speaking, more lipophilic
molecules with the experimental logPTLC > 4.5 are located in the negative area of PC2 as
shown in Figure 3.
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In order to investigate in depth, the (dis)similarities between objects (molecules) in the
multidimensional descriptor-based space, the exploratory HCA analysis was conducted
as well. The clustering tendency of HCA leads to a sub-optimal grouping of objects that
is mostly related to the procedure engaged for cluster linkage [31]. Due to the hierar-
chical nature of the HCA method, the results are presented as dendrograms generated
in the Euclidean-based distance with the Ward linkage algorithm, where the OX axis
presents the sequence of objects/parameters and the OY axis specifies the dissimilarity [32].
Unfortunately, the interpretability of the extracted data structure is not simple in the
multidimensional variable space; therefore, the dendrogram might be augmented with a
color-coded map of the experimental activity and lipophilicity data in the logarithmic scale
as presented in Figure 4.

Generally, two main clusters (A and B) can be distinguished on the dendrogram in
Figure 4 that proved our previous PCA results (see Figure 3). On the whole, the molecules
3g–j (red lines) varied noticeably from the remaining compounds (blue lines) of the dataset.
A concurrent investigation of the dendrogram objects (sorted according to the Ward linkage
method) and the color-coded map of the empirical data (activities and lipophilic profile)
indicated that there is no evident structure-activity (SAR) or structure-property (SPR)
relationship, respectively. Basically, subclusters A1 and B1 are characterized by relatively
high values of logPTLC parameter, when compared to the remaining objects.
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In order to examine the lipophilic profile of the investigated compounds, the em-
pirically determined logPTLC parameters (see Table 1) were compared with the theoret-
ically approximated lipophilicity coefficients (clogP) using an ensemble of in silico pre-
dictors, e.g., clogP, Molinspiration, Osiris, HyperChem 7.0, Sybyl-X, MarvinSketch 15,
ACD/ChemSketch 2015, Dragon 6.0, Kowwin, XlogP3, ChemDraw and ACD/Percepta
programs. Subsequently, the deduced clogP parameters were cross-compared with the
experimental logPTLC and inter-correlated with each other as presented in Figure 5. A
good correlation was obtained (r = 0.94) for the MarvinSketch-made clogP values and the
empirical logPTLC was recorded, respectively. In fact, the clogP values averaged over the
set of programs produced the value of r = 0.88, while the median resulted in r = 0.83 with
the experimental data. A quite high inter-correlation was observed among the programs
for lipophilicity specification. Obviously, some variations in clogP values resulted from
different in silico algorithms (atom/fragment- or descriptor-based) implemented in the
programs and/or training data employed in the training step [33].
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Moreover, the recursive variable elimination PLS-based algorithm (IVE-PLS) as well
as stepwise Matlab procedure applied on the integrated clogP matrix (X10×10) and experi-
mental logPTLC indicated MarvinSketch estimator to be a valid contributor to the linear
QSPR model.

The examination of similarity-based SAR trends (the continuity areas and/or activity
cliffs) using the planar image of the structure-activity landscape indexes (SALI) is depen-
dent largely on the availability of the structurally-related molecules (chemotypes) with
discernible activity variations [34]. Hence, the distribution of Tanimoto coefficients (TC)
was analyzed for the triangular T10×10 matrix (see Figure 6) indicating that the majority of
molecules have relatively high similarity values (TC ≥ 0.70). On the whole, molecules 3g,
3h and 3j are characterized by lower TC values as compared to the remaining compounds,
which confirms our previous PCA and HCA findings (see Figures 3 and 4). On the other
hand, the most potent antiproliferative molecules 3d and 3e are marked as fairly similar to
the remaining compounds in the database.
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The symmetrical grayscale heatmap of SALI numerical values for the structurally-
related compounds 3a–j is presented in Figure 7a, where the axes correspond to molecules
sorted according to the increasing pA549 activity potential. Bright spots represent the high
values of SALI parameters, whereas black spots specify the minimal values of SALI, where
small structural modifications induce pretty small changes of molecular activity [35]. The
structural relatedness between pairs of compounds in the function of the activity variations
is illustrated by the color-coded neighborhood plot in Figure 7b. Based on the simultane-
ous interpretation of Figure 7a,b one can conclude that the most potent antiproliferative
molecules 3d, 3e and 3j are characterized by the highest SALI values with unsubstituted
analogue 3a. Interestingly, two additional pairs of pretty similar chlorine/fluorine-based
molecules (3d vs. 3g and 3e vs. 3h) are accompanied by dark-brown spots in Figure 7b,
that can potentially form the activity cliff—the introduction of a methyl group in the pyri-
dine subunit is manifested by the demolition of activity (magic methyl phenomenon) [36].
Consequently, further profound samplings of the indicated SAR-variations (T > 0.85 and
∆pA549 > 1) seem advisable.
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2.7. Probability-Driven Pharmacophore Probing

The spatial distributions of the ligand electronic/steric/lipophilic properties that
might be valid for the guest–host composition can be determined by the systematic probing
of the functional group changes and the corresponding activity variations, respectively [37].
Unfortunately, the structural relatedness with the biological response can be specified
basically for the homogeneous set of molecules that usually share the common substructure
(chemotype) [38]. In other words, the introduction of the pharmacophore concept in
QSAR studies for a non-congeneric series of structures is a rather elusive and enigmatic
operation. Additionally, the prediction/validation of the modeled property/activity is
firmly dependent on the molecule training/test separation. In fact, there are no universal
principles for splitting the ensemble of molecules into training/test subsets so as to keep
robust and predictive SAR models. Thus, the repetitive and interchangeable training/test
subset division was proposed for the probability-driven pharmacophore probing based
on the stochastic model validation (SMV) algorithm [39]. The systematically generated
training/test subset population with the ratio 7:3 was examined using the comparative
molecular surface analysis (CoMSA) for pA549 potency. The distribution of the molecular
frequency in the test subset for the preferable statistic parameters (q2

cv > 0.5) indicted that
the most potent antiproliferative compounds 3d and 3e were noticeably overrepresented
in the training population, whereas molecules 3h and 3g were frequently distributed in
the test set. Not surprisingly, the preferential elimination of the most active molecules
from the test subset resulted in the production of the potentially robust SAR models.
Eventually, the selection-driven pharmacophore pattern was produced using the robust
models according to the IVE-PLS-based algorithm that was described elsewhere [40]. The
graphical illustration of the descriptor-selected areas with the preselected cut-off value of
0.6 that potentially (un)favorably contribute to CoMSA models is presented in Figure 8.
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Noticeably, a densely populated set of steric/electrostatic features was indicated on
the averaged molecular surface for the set of the analyzed compounds; therefore, the direct
mapping of the spatial pharmacophore-based areas into the corresponding pseudoreceptor
model that potentially harbors putative ligands is rather a tricky task. Interestingly, the
mostly favorable contributions of the 3D pattern (marked by the bright colors) that embrace
mainly a methyl group of the quinolone’s skeleton, as well as the sulfur and nitrogen
linkers are indicated, respectively. The positively charged areas of hydrogen atoms directly
attached to nitrogen atoms were depicted as the beneficial contributors that can potentially
form hydrogen bonds with the hypothetical amino acid residue in the receptor/enzyme
pocket. It seems that α-halogenated pyridine ring contributes favorably to the observed
activity profile according to the general tendency, where substituents can be ranked as
follows: F > Cl > Br > I. Obviously, the steric and electronic features of the halogen-based
substituents can be related to the increasing atomic F
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radius) and electronegativity (Pauling scale), respectively. The generated pharmacophore
pattern shed only some light on the recorded variations in the activities of tetracyclic
diazaphenothiazine derivatives due to the limited number of compounds; therefore, new
analogues need to be synthesized and analyzed.

3. Materials and Methods
3.1. Chemistry

Melting points are uncorrected. NMR spectra were recorded using a Bruker Ascend
600 spectrometer (Bruker, Billerica, MA, USA). To assign the structures, the following

2D experiments were employed: 1H-13C gradient selected HSQC and HMBC sequences.
Standard experimental conditions and standard Bruker programs were used. The 1H NMR
and 13C NMR spectral data are given relative to the TMS signal at 0.0 ppm. HR mass
spectra were recorded with Bruker Impact II (Bruker, Billerica, MA, USA).

3.1.1. Synthesis of 5-Methyl-12H-quino [3,4-b]pyrido[5,6-e][1,4]thiazinium Chloride 3a–j

To a suspension of 1 mmol (0.448 g) of 1-methyl-3-benzoylthio-4-(butylthio) quinolin-
ium chloride in 6 mL of anhydrous pyridine, 2.5 mmol of the corresponding 3-aminopyridine
was added. The suspension was heated at T = 80 ◦C with constant stirring, allowing atmo-
spheric oxygen to enter the reaction mixture. After the reactants had reacted completely,
the mixture was cooled to room temperature and the resulting precipitate was filtered off
under reduced pressure and washed 5 times (5 mL each) with ether. The crude product
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was purified by alumina chromatography column using chloroform: ethanol (10:1, v/v)
as eluent.

5-methyl-12H-quino[3,4-b]pyrido[5,6-e][1,4]thiazinium chloride (3a): Yield: 80%; 1H NMR
(CD3OD, 600 MHz) δ (ppm): 4.10 (s, 3H, NCH3), 7.00–6.99 (d.d, 3J = 4.8 Hz, 3J = 7.8 Hz,
1H, H10), 7.33–7.34 (d.d, 3J = 7.8 Hz, 4J = 1.2 Hz, 1H, H11), 7.74–7.75 (m, 1H, H2), 7.91–7.92
(d.d, 3J = 4.8 Hz, 4J = 1.2 Hz, 1H, H9), 7.96–7.98 (m, 2H, H3, H4), 8.36 (s, 1H, H6), 8.40–8.41
(m, 1H, H1); 13C NMR (CD3OD, 150.9 MHz) δ (ppm): 42.29 (NCH3), 108.46 (C4a), 115.86
(C12b), 118.33 (C4), 122.79 (C1), 123.14 (C10), 124.26 (C11), 128.35 (C2), 133.44 (C11a), 134.77
(C3), 139.24 (C12a), 141.41 (C7a), 143.04 (C6), 146.42 (C9), 150.96 (C6a); ESI-HRMS Calcd
for C15H12N3S ([M]+): 266.0746, Found: 266.0749.

9-bromo-5-methyl-12H-quino[3,4-b]pyrido[5,6-e][1,4]thiazinium chloride (3b): Yield: 75%; 1H NMR
(CD3OD, 600 MHz) δ (ppm): 4.22 (s, 3H, NCH3), 7.10–7.16 (d, 3J = 8.1 Hz 1H, H10), 7.37–
7.42 (d, 3J = 8.1 Hz, 1H, H11), 7.80–7.90 (m, 1H, Harom), 8.06–8.13 (m, 2H, Harom), 8.42–8.50
(m, 2H, Harom); 13C NMR (CD3OD, 150.9 MHz) δ (ppm): 42.47 (NCH3), 108.64 (C), 116.01
(C), 118.40 (C), 118.63 (C), 122.79 (C), 126.12 (C), 128.55 (C), 134.31 (C), 134.91 (C), 139.19
(C), 140.44 (C), 143.31 (C), 146.70 (C), 148.17 (C); ESI-HRMS Calcd for C15H11Br[79]N3S
([M]+): 343.9852, Found: 343.9849; ESI-HRMS Calcd for C15H11Br[81]N3S ([M]+): 345.9831,
Found: 345.9828.

10-bromo-5-methyl-12H-quino[3,4-b]pyrido[5,6-e][1,4]thiazinium chloride (3c): Yield: 72%;
1H NMR (CD3OD, 600 MHz) δ (ppm): 4.22 (s, 3H, NCH3), 7.25–7.32 (m, 2H, Harom),
7.83–7.92 (m, 1H, Harom), 8.05–8.14 (m, 2H, Harom), 8.42–8.50 (m, 2H, Harom); 13C NMR
(CD3OD, 150.9 MHz) δ (ppm): 42.37 (NCH3), 108.01 (C), 115.91 (C), 118.37 (C), 122.75
(C), 126.39 (C), 126.93 (C), 128.48 (C), 133.08 (C), 134.93 (C), 136.36 (C), 139.31 (C), 142.06
(C), 143.13 (C), 150.86 (C); ESI-HRMS Calcd for C15H11Br[79]N3S ([M]+): 343.9852, Found:
343.9849; ESI-HRMS Calcd for C15H11Br[81]N3S ([M]+): 345.9831, Found: 345.9828.

9-chloro-5-methyl-12H-quino[3,4-b]pyrido[5,6-e][1,4]thiazinium chloride (3d): Yield: 85%; 1H NMR
(CD3OD, 600 MHz) δ (ppm): 4.23 (s, 3H, NCH3), 7.15–7.18 (d, J = 8.4Hz, 1H, H10), 7.38–7.41
(d, J = 8.4 Hz, 1H, H11), 7.85–7.90 (m, 1H, H2), 8.06–8.14 (m, 2H, H3, H4), 8.44–8.47 (m, 1H,
H1), 8.48 (s, 1H, H6); 13C NMR (CD3OD, 150.9 MHz) δ (ppm): 42.35 (NCH3), 107.90 (C4a),
115.89 (C12b), 118.36 (C4), 122.76 (C1), 123.04 (C10), 126.72 (C11), 128.46 (C2), 132.67 (C11a),
134.93 (C3), 139.31 (C12a), 141.66 (C), 143.12 (C6), 146.86 (C), 150.91 (C6a); ESI-HRMS Calcd
for C15H11ClN3S ([M]+): 300.0357, Found: 300.0352.

9-fluoro-5-methyl-12H-quino[3,4-b]pyrido[5,6-e][1,4]thiazinium chloride (3e): Yield: 69%; 1H NMR
(CD3OD, 600 MHz) δ (ppm): 4.21 (s, 3H, NCH3), 6.70–6.82 (m, 1H, Harom), 7.54–7.60 (m, 1H,
Harom), 7.84–7.89 (m, 1H, Harom), 8.05–8.12 (m, 2H, Harom), 8.44 (s, 1H, H6), 8.48–8.50 (m, 1H,
Harom); 13C NMR (CD3OD, 150.9 MHz) δ (ppm): 42.25 (NCH3), 107.41 (C, JC–F = 36.2 Hz),
107.78 (C), 115.77 (C), 118.31 (C), 122.79 (C), 128.34 (C), 129.53 (C, JC–F = 7.5 Hz), 131.28 (C,
JC–F = 4.5 Hz), 134.90 (C), 139.09 (C, JC–F = 15.1 Hz), 139.35 (C), 142.99 (C), 151.29 (C), 160.85
(C, JC–F = 241.4 Hz); ESI-HRMS Calcd for C15H11FN3S ([M]+): 284.0652, Found: 284.0649.

9-iodo-5-methyl-12H-quino[3,4-b]pyrido[5,6-e][1,4]thiazinium chloride (3f): Yield: 78%; 1H NMR
(CD3OD, 600 MHz) δ (ppm): 4.22 (s, 3H, NCH3), 7.04–7.09 (d, 3J = 8.4 Hz, 1H, H11), 7.49–
7.53 (d, 3J = 8.4 Hz, 1H, H10), 7.83–7.90 (m, 1H, Harom), 8.05–8.13 (m, 2H, Harom), 8.44–8.46
(m, 1H, H1), 8.48 (s, 1H, H6); 13C NMR (DMSOd-6, 150.9 MHz) δ (ppm): 43.34 (NCH3),
107.24 (C), 111.99 (C) 116.24 (C), 119.35 (C), 124.45 (C), 125.98 (C), 126.85 (C), 128.64 (C),
134.27 (C), 135.30 (C), 139.23 (C), 142.55 (C), 143.95 (C), 150.33 (C); ESI-HRMS Calcd for
C15H11IN3S ([M]+): 391.9713, Found: 391.9713.

9-chloro-5,11-dimethyl-12H-quino[3,4-b]pyrido[5,6-e][1,4]thiazinium chloride (3g): Yield: 61%;
1H NMR (CD3OD, 600 MHz) δ (ppm): 2.45 (s, 3H, 11CH3), 4.28 (s, 3H, NCH3), 7.14 (s,
1H, H10), 7.85–7.95 (m, 1H, Harom), 8.10–8.21 (m, 2H, Harom), 8.40–8.45 (m, 1H, Harom),
8.55–8.66 (m, 1H, Harom); 13C NMR (CD3OD, 150.9 MHz) δ (ppm): 15.53 (CH3), 42.60
(NCH3), 110.05 (C), 116.73 (C), 118.36 (C), 123.05 (C), 124.81 (C), 128.52 (C), 131.48 (C),
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134.97 (C), 138.73 (C), 139.26 (C), 142.55 (C), 143.65 (C), 146.69 (C); 151.94 (C); ESI-HRMS
Calcd for C16H13ClN3S ([M]+): 314.0513, Found: 314.0513.

9-fluoro-5,11-dimethyl-12H-quino[3,4-b]pyrido[5,6-e][1,4]thiazinium chloride (3h): Yield: 63%;
1H NMR (CD3OD, 600 MHz) δ (ppm): 2.50 (s, 3H, CH3), 4.28 (s, 3H, NCH3), 6.78 (s, 1H,
H10), 7.88–7.95 (m, 1H, Harom), 8.11–8.20 (m, 2H, Harom), 8.40–8.45 (m, 1H, Harom), 8.61 (s,
1H, H6); 13C NMR (CD3OD, 150.9 MHz) δ (ppm): 16.015 (CH3, JC–F = 1.5 Hz), 42.57 (C),
109.28 (C, JC–F = 37.7 Hz), 116.63 (C), 118.35 (C), 123.08 (C), 128.46 (C), 130.08 (C), 134.97 (C),
139.27 (C), 140.08 (C, JC–F = 16.6 Hz), 141.73 (C, JC–F = 7.5 Hz), 143. 56 (C), 152.35 (C), 160.74
(C, JC–F = 239.9 Hz); ESI-HRMS Calcd for C16H13FN3S ([M]+): 298.0809, Found: 298.0814.
5,11-dimethyl-12H-quino[3,4-b]pyrido[5,6-e][1,4]thiazinium chloride (3i): Yield: 65%; 1H NMR
(CD3OD, 600 MHz) δ (ppm): 2.57 (s, 3H, 11-CH3), 4.33 (s, 3H, NCH3), 7.27–7.31 (d,3J = 5.4 Hz,
1H, Hpirydyl), 7.91–7.00 (m, 1H, Harom), 7.08–7.13 (d, 3J = 5.4 Hz, 1H, Hpirydyl), 7.14–7.20 (m,
1H, Harom), 7.2–7.25 (m, 1H, Harom), 7.47–7.52 (m, 1H, Harom), 8.74 (s, 1H, H6); 13C NMR
(CD3OD, 150.9 MHz) δ (ppm): 16.02 (CH3), 42.86 (NCH3), 109.44 (C), 116.89 (C), 118.51
(C), 123.14 (C), 126.21 (C), 128.75 (C), 133.61 (C), 135.16 (C), 138.48 (C), 139.30 (C), 141.47
(C), 143.50 (C), 144.11 (C), 152.16 (C); ESI-HRMS Calcd for C16H14N3S ([M]+): 280.0903,
Found: 280.0907.

9-methoxy-5-methyl-12H-quino[3,4-b]pyrido[5,6-e][1,4]thiazinium chloride (3j): Yield: 86%;
1H NMR (CD3OD, 600 MHz) δ (ppm): 3.83 (s, 3H, OCH3), 4.15 (s, 3H, NCH3), 6.40-6.52 (d,
3J = 8.4 Hz, 1H, H10), 7.38–7.42 (d, 3J = 8.4 Hz, 1H, H11), 7.80–7.83 (m, 1H, H2), 8.00–8.05
(m, 2H, H3, H4), 8.32 (s, 1H, H6), 8.43–8.46 (m, 1H, H1); 13C NMR (DMSOd-6, 150.9 MHz) δ
(ppm): 42.90 (NCH3), 54.40 (OCH3), 106.25 (C4a), 109.22 (C10), 115.86 (C12b), 119.06 (C4),
124.86 (C1), 127.75 (C2), 128.14 (C11), 129.77 (C3), 135.08 (C), 137.25 (C12a), 139.26 (C11a),
143.0 (C6), 150.74 (C6a), 161.77 (C); ESI-HRMS Calcd for C16H14N3OS ([M]+): 296.0852,
Found: 296.0861.

3.1.2. Synthesis of 5-Methyl-12H-quino[3,4-b]pyrido[3,4-e][1,4]thiazinium Chloride 4a

Argon was bubbled through a suspension (0.448 g) of 1-methyl-3-benzoylthio-4-
(butylthio)quinolinium chloride and 2.5 mmol of 3-amino-4-chloropyridine in 6 mL of
anhydrous pyridine for 30 min. The flask was sealed and the reaction was carried out at
room temperature for 30 days while stirring the suspension on a magnetic stirrer. The
resulting precipitate was then filtered off with suction and washed 5 times (5 mL each)
with ether. The crude product was purified by alumina chromatography column using
chloroform: ethanol (10:1, v/v) as eluent.

5-methyl-5H-qujino[3,4-b]pyrido[3,4-e][1,4]thiazinium chloride (4a): Yield: 80%; 1H NMR
(CD3OD, 600 MHz) δ (ppm): 4.11 (s, 3H, NCH3), 6.96–6.97 (d, 3J = 4.8 Hz, 1H, H8),
7.75–7.77 (m, 1H, H2), 7.99–8.00 (m, 3H, H3, H4, H9), 8.15 (s, 1H, H11), 8.36 (s, 1H, H6),
8.43–8.45 (m, 1H, H1); 13C NMR (CD3OD, 150.9 MHz) δ (ppm): 42.34 (NCH3), 105.91 (C6a),
116.15 (C12b), 118.36 (C4), 121.25 (C8), 122.77 (C1), 128.39 (C2), 129.17 (C7a), 133.50 (C11a),
134.92 (C3), 137.12 (C11), 139.33 (C4a), 143.08 (C6), 146.99 (C9), 152.25 (C12a); ESI-HRMS
Calcd for C15H12N3OS ([M]+): 266.0751, Found: 266.0749.
1H NMR and 13C NMR spectrum data are reported in Supplementary Materials
(Figures S1–S22).

3.2. X-ray Structural Analysis

Crystal data for C16H13ClN3S+PCl− (3g): M = 350.25, red needle, 0.048× 0.056× 0.359 mm,
monoclinic, space group P21/n, a = 5.1502(1), b = 23.5062(5), c = 12.6880(3), Å, β = 90.234(1)◦,
V = 1536.02(6), Å3, Z = 4, Dc = 1.515 g Pcm−3, F000 = 720, Bruker AXS D8 VENTURE DUO,
CuKa radiation, λ = 1.54178 Å, T = 166(2), K, θmax = 72.48◦, 49,709 reflections collected,
3025 unique (Rint = 0.076). Final GooF = 1.03, R = 0.038, wR = 0.093, R indices based on
2447 reflections with I > 2σ (I) (refinement on F2), 205 parameters, 0 restraints. Lp and
absorption corrections applied, µ = 3.365 mm−1. CCDC deposition number 2095596.
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Crystal data for C16H14N3OS+PCl−P2H2O (3j): M = 367.84, red needle,
0.031 × 0.039 × 0.372 mm, monoclinic, space group P21/n, a = 11.548(1), b = 6.9221(8),
c = 21.054(2), Å, β = 102.187(7)◦, V = 1645.0(3), Å3, Z = 4, Dc = 1.534 gPcm−3, F000 = 786,
Bruker AXS D8 VENTURE DUO, CuKa radiation, λ = 1.54178 Å, T = 150(2), K, θmax = 62.47◦,
13,217 reflections collected, 2453 unique (Rint = 0.097). Final GooF = 1.01, R = 0.075,
wR = 0.161, R indices based on 1375 reflections with I > 2σ(I) (refinement on F2), 233 parameters,
0 restraints. Lp and absorption corrections applied, µ = 3.426 mm−1. CCDC deposition
number 2095597.

3.3. Biological Evaluation
3.3.1. Cell Culture

Compounds were evaluated for their antiproliferative activity using three cultured
cell lines: A549 (human lung carcinoma, ATCC, Manassas, VA, USA), SNB-19 (human
glioblastoma, DSMZ, German Collection of Microorganisms and Cell Cultures), T-47D
(human breast cancer, ATCC, Manassas, VA, USA) and NHDF (normal human dermal
fibroblasts, ATCC, Manassas, VA, USA). The cultured cells were kept at 37 ◦C and 5%
CO2. The cells were seeded (1 × 104 cells/well/100 µL DMEM supplemented with 10%
FCS and streptomycin and penicillin) using 96-well plates (Corning). Cells were counted
in a hemocytometer (Burker chamber) using a phase contrast Olympus IX50 microscope
equipped with Sony SSC-DC58 AP camera and Olympus DP10 digital camera.

3.3.2. Proliferation Assay

The antiproliferative effect of the compounds exerted on cancer and normal cells was
determined using the Cell Proliferation Reagent WST-1 assay (Roche Molecular Biochemi-
cals Mannheim, Germany). This assay is based on a colorimetric method using the enzy-
matic ability of viable cells to cause the bright red-colored stable tetrazolium monosodium
salt [2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)–2H-tetra-zolium] to trans-
form into the dark red-colored soluble formazan. A greater number of viable cells resulted
in a greater overall activity of mitochondrial dehydrogenases in the measured sample. An
increase in the amount of formazan dye formed correlated with the number of metaboli-
cally active cells in the culture. The formazan dye produced by metabolically active cells
was quantified by absorbance reading at appropriate wavelengths. The examined cells
were exposed to the tested compounds (1 mg/mL DMSO stock) for 72 h at various con-
centrations (0.1 µg/mL–100 µg/mL). The control was performed in order to eliminate the
DMSO effect at the concentration used. Cell cultures were incubated with WST-1 (10 µL)
for 1 h. The absorbance of the samples was measured against a background control at
450 nm using a microplate reader with a reference wavelength at 600 nm. The obtained
results are expressed as the means of at least two independent experiments performed
in triplicate. The antiproliferative activity of the tested compounds were compared to
cisplatinum. The values of IC50 (a concentration of a compound that is required for 50%
inhibition) were calculated from the dose-response relationship with respect to control.

3.3.3. In Vitro Antistaphylococcal Evaluation

The synthesized compounds were evaluated for in vitro antibacterial activity against
representatives of multidrug-resistant bacteria and clinical isolates of methicillin-resistant
Staphylococcus aureus (MRSA) 63718, SA 630, and SA 3202 that were obtained from the
National Institute of Public Health (Prague, Czech Republic) [29,41]. S. aureus ATCC 29213
was used as a reference and quality control strain. Ampicillin (Sigma, St. Louis, MO,
USA) was employed as the standard. Prior to testing, each strain was passaged onto
nutrient agar (Oxoid, Basingstoke, UK) with 5% of bovine blood, and bacterial inocula
were prepared by suspending a small portion of a bacterial colony in sterile phosphate-
buffered saline (pH 7.2–7.3). The cell density was adjusted to 0.5 McFarland units using
a densitometer (Densi-La-Meter, LIAP, Riga, Latvia). This inoculum was diluted to reach
the final concentration of bacterial cells 5 × 105 CFU/mL in the wells. The compounds
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were dissolved in DMSO (Sigma), and the final concentration of DMSO in the cation-
adjusted Mueller–Hinton (CaMH) broth (Oxoid) did not exceed 2.5% of the total solution
composition. The final concentrations of the evaluated compounds ranged from 256
to 0.008 µg/mL. The broth dilution micro-method, modified according to the NCCLS
(National Committee for Clinical Laboratory Standards) guidelines in Mueller–Hinton
(MH) broth, was used to determine the minimum inhibitory concentration (MIC) [42].
Drug-free controls, sterility controls, and controls consisting of MH broth and DMSO
alone were included. The determination of results was performed visually after 24 h of
static incubation in the darkness at 37 ◦C in an aerobic atmosphere. Each experiment was
repeated at least three times. The results are reported in Table 2.

3.4. Molecular Modeling
3.4.1. Model Building

CACTVS/csed and CORINA molecular generators were engaged to produce 3D
structural geometries. The file format transformation was performed using OpenBabel
(inter)change file format converter. Molecular modeling simulations were conducted
using Sybyl-X 2.0 package (Certara) installed on a DELL workstation with Ubuntu 20.10
operating. MAXMIN2 module implemented in Sybyl-X was applied in order to optimize
the initial compound spatial geometry with the standard Tripos force field (POWELL
conjugate gradient algorithm) with a 0.01 kcal/mol energy gradient convergence criterion.
The electrostatic potential values were calculated using Gasteiger–Hückel method. One
10-ordered atom probe superimposition was generated on the most active compound
3e according to the active analogue approach (AAA) with FIT method to encompass
the entire bonding topology (quinoline, pyridine and linkers) in the maximal common
structure (MCS).

In order to simulate 20 × 20 to 40 × 40 self-organizing maps (SOMs) with a winning
distance in the range from 0.2 to 2.0 in CoMSA analysis SONNIA software was employed.
Cartesian (x, y, z) coordinates of the molecular surfaces and the corresponding potential
values distributed on the molecular surface were used as input to SOM network to produce
a 2D map of the electrostatic potential (MEP). Subsequently, the obtained maps were
reshaped into a 400- to 1600-element vector and subjected to the PLS method implemented
in our MATLAB software.

3.4.2. Principal Component and Hierarchical Clustering Analysis

The human-friendly 2D/3D images of the molecular distribution in the experimental
(FCS) and virtual (VCS) molecular space could be produced using the principal component
analysis (PCA). Briefly speaking, PCA is the projection method that can transform model
multidimensional data (mD) into 2D/3D space (scores and loadings) with a relatively small
number of so-called principal components (PCs) produced to maximize the description of
variance within the input data. The PCA model with f principal components for a data
matrix X can be calculated as follows:

X = TPT + E (1)

where X is a data matrix with m objects and n variables, T is the score matrix with di-
mensions (m × f ), PT is a transposed matrix of loadings with dimensions (f × n) and E
is a matrix of the residual variance (m × n) that is not explained by the first f principal
components. Generally, the first few principal components usually sufficiently describe
data variance.

In order to examine the (dis)similarities between objects in the descriptor-based
space the hierarchical clustering analysis (HCA) was combined with a color-coded map of
empirical dataset [31,32]. In fact, the similarity measure (e.g., Euclidean distance) as well
as the manner of resulting subcluster linkage (e.g., Ward’s algorithm) should be specified
a priori. A dendrogram augmented with visual display of experimental data allows the
direct interpretation of the produced clusters in terms of the original parameters, where
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OX axis presents the indices of the clustered objects while OY corresponds to the linkage
distances between two objects linked, respectively.

3.4.3. Theoretical Lipophilicity Evaluation

A variety of freely/commercially available in silico estimators can be applied to es-
timate the theoretical partition coefficients (clogP) using the additive type-dependent,
atom-based or cumulative fragment-related lipophilicity contributions with correction
factors calibrated on experimental training set, for instance, AlogPS, milogP, ClogP, Hy-
perChem logP, MarvinSketch logP, Dragon MlogP, Kowwin, XlogP3, OSIRIS clogP. The
redundant descriptor-based parameters of QSAR/QSPR studies were selected/eradicated
using the modified version of the uninformative variable elimination (UVE–PLS) method,
namely, iterative variable elimination (IVE–PLS) [39]. In short, the whole algorithm is
composed of several recurrent stages: (i) standard PLS analysis with LOO-CV to evaluate
the performance of the PLS model; (ii) elimination of the matrix column with the lowest abs
(mean (b)/std (b)) value; (iii) standard PLS analysis of the new matrix without the column
eliminated in (ii); (iv) iterative repetition of (i)–(iii) to maximize q2

cv value.

3.4.4. Similarity-Related Activity Landscape Index

The quantitative probing of the similarity-based structure-activity landscape index
(SALI) can be numerically expressed according to the following equation:

SALIx,y =

∣∣Ax − Ay
∣∣

1− sim(x, y)
(2)

where Ax and Ay are the activity profiles for the x-th and y-th molecule and sim(x,y) is
the pair-wise similarity metric. The fingerprint-based Tanimoto coefficient was chosen to
estimate the pairwise molecular similarities as follows:

T(x, y) =
nxy(

nx + ny − nxy
) (3)

where nxy is the number of bits set into 1 shared in the fingerprint of the molecule x and y,
nx is the number of bits set into 1 in the molecule x, ny is the number of bits set into 1 in the
molecule y, respectively.

3.4.5. Ligand-Based SAR Probing

The iterative IVE-PLS method was engaged to prune the original set of CoMSA
descriptors as a filter to eliminate nonsignificant variables (probably noise data) and
to specify the structural descriptors having the highest individual weightings for the
biological activity [40]. The relative importance or weight of each informative descriptor
is determined by the magnitude of the regression coefficient (b) giving a clear 3D picture
of the regions that should be modified to modulate the biological activity. On the whole,
the extraction of a column from the data matrix which is assigned with the lowest value
of abs (mean (b)/std (b)) slightly improves the q2

cv performance. The backward column
elimination is recurrently repeated as long as the optimal number of variables included
within the model is achieved—the moment of q2

cv deterioration indicates the number of the
relevant columns, i.e., crucial variables to be incorporated into the final PLS model. Unlike
in the standard procedure that displays such plots for a single training/test subset, an
attempt was made to identify a common ensemble of variables which survived backward
elimination and contributed importantly to activity simultaneously in all chosen models.
The cumulative sum of common columns for chosen models was specified and normalized
to the [0÷1] range. Subsequently, the group of columns with the value above the pre-chosen
cutoff of 0.6 was selected. The relative contribution of each variable was weighted by the
magnitude and the sign of the corresponding regression coefficient. The bright spheres
delineated the spatial pattern where an atom or substituent was predicted to be positioned
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in order to increase the compound’s activity, while the dark polyhedra denoted the areas
detrimental for the potency, probably due to steric hindrance or electrostatic factors.

4. Conclusions

We present here a new synthetic route leading to tetracyclic pyridoquinothiazine
derivatives based on the reaction of 1-methyl-3-benzoylthio-4-(butylthio)quinolinium
chloride with 3-aminopyridine derivatives bearing various substituents on the pyridine
ring. The direction and mechanism of the cyclization of intermediates with the structure of
1-methyl-4-(3-pyridylamino)quinolinium-3-thiolate was dependent on the substituents in
the 2- and 4-pyridine position. The structures of the compounds were confirmed by 1H,
13C NMR methods using advanced two-dimensional techniques (COSY, HSQC, HMBC).
The direction of the cyclization reaction (formation of the thiazine ring) and the products
structure was confirmed by X-ray diffraction analysis. Moreover, the biological activity
of the obtained derivatives was investigated. The antiproliferative activity against tumor
cell lines (A549, T47D and SNB-19) as well as a normal cell line (NHDF) was tested. The
antibacterial screening of all compounds was performed against the reference and quality
control strain Staphylococcus aureus ATCC 29213, three clinical isolates of methicillin-
resistant S. aureus (MRSA). Interestingly, both antitumor and antimicrobial activity were
shown to depend on the presence of substituents in the pyridoquinothiazine system. The
compounds that showed the greatest antitumor activity were the derivatives 3d, 3e and
3j, containing a chlorine atom, a fluorine atom or a methoxy group in the 9-position of
the tetracyclic system, respectively. The highest antibacterial activity was revealed by
compounds 3c and 3e bearing a bromine atom in the 10-position and a fluorine atom in
the 9-position of the pyridoquinothiazine system. The previously described tetracyclic
quinobenzothiazinium derivatives showed interesting anticancer properties, where the
suggested mechanism of their antitumor activity is based on DNA intercalation. The newly
synthesized pyridoquinothiazinium salts are structural analogs of quinobenzothiazines in
which the benzene ring was replaced with a pyridine ring; therefore, the similar mechanism
of action seems reasonable. As a matter of fact, some of the compounds show more
potent anti-cell proliferation activity compared to the reference compound (cisplatinum).
It appears that the flat structure of antiproliferative factor favors the intercalation into
DNA (just as doxorubicin). The newly synthesized molecule 3a with a completely flat
tetracyclic motif showed noticeably weaker antiproliferative activity compared to isomer
3j that is bent along the axis defined by the nitrogen and sulfur atoms of the thiazine ring.
Consequently, it is not clear whether the new compounds inhibit cell proliferation only
through DNA intercalation or other mechanisms of action exist as well. In this context, the
actual molecular mechanism of action has to be clarified in future studies.

In silico computation of the intermolecular similarity was performed using the prin-
cipal component analysis (PCA) and hierarchical clustering analysis (HCA) on the pool
of structure/property-related descriptors calculated for novel tetracyclic diazaphenoth-
iazine derivatives. The distance-oriented property evaluation for the congeneric series
of compounds was correlated with experimentally measured anticancer activities and an
empirical lipophilicity profile, respectively. A range of various software logP predictors for
the estimation of the numerical lipophilic values was employed and subsequently cross-
compared with the experimental parameters. Moreover, the newly synthesized adducts
were subjected to the quantitative shape comparison (CoMSA) with the generation of
an averaged pharmacophore pattern to illustrate the key 3D steric/electronic/lipophilic
features. Finally, the quantitative sampling of similarity-related activity landscape (SALI)
provided a subtle picture of favorable and disallowed structural modifications that are
valid for determining the activity cliffs. Hopefully, the novel series of tetracyclic diaza-
phenothiazine derivatives with the functionalized pyridine subunit can be structurally
modified to optimize anticancer activity and selectivity.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms222312826/s1.
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5. Zięba, A.; Czuba, Z.; Król, W. In vitro antimicrobial activity of novel azapheno thiazine derivatives. Acta Pol. Pharm. Drug Res.

2012, 69, 1149–1152.
6. Jeleń, M.; Pluta, K.; Zimecki, M.; Morak-Młodawska, B.; Artym, J.; Kocięba, M. 6-Substituted 9-fluoroquino[3,2-b]benzo[1,4]thiazines
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13. Zięba, A.; Latocha, M.; Sochanik, A. Synthesis and in vitro antiproliferative activity of novel 12(H)-quino[3,4-b][1,4]benzothiazine
derivatives. Med. Chem. Res. 2013, 22, 4158–4163. [CrossRef] [PubMed]
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