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Abstract: During the last decade, studies have raised awareness of the crucial role that the right
ventricle plays in various clinical settings, including diseases primarily linked to the left ventricle.
The assessment of right ventricular performance with conventional echocardiography is challenging.
Novel echocardiographic techniques improve the functional assessment of the right ventricle and they
show good correlation with the gold standard represented by cardiac magnetic resonance. This review
summarizes the traditional and innovative echocardiographic techniques used in the functional
assessment of the right ventricle, focusing on the role of right ventricular dysfunction in heart failure
with reduced ejection fraction and providing a perspective on recent evidence from literature.

Keywords: right ventricle; heart failure with reduced ejection fraction; myocardial strain; three-
dimensional echocardiography

1. Introduction

Heart failure (HF) remains a rising public health concern, with an estimated prevalence
of almost 38 million individuals worldwide [1,2]. The total percentage of the population
with HF is predicted to rise to 2.97% in 2030 [3]. Currently, HF is classified into HF
with preserved, mid-range, or reduced ejection fraction (EF) [4], the latter being the most
extensively studied.

Most of the previous research demonstrated the high prognostic value of left ventric-
ular (LV) dysfunction [5], while the significance of right ventricular (RV) dysfunction in
HF with reduced EF is less clear. This may be partly explained by the complex RV three-
dimensional (3D) geometry, which makes its echocardiographic assessment challenging [6];
for this reason, the RV used to be called for quite a while “the forgotten chamber” [7].
However, during the last decade, RV dysfunction emerged as a strong predictor in HF
and/or pulmonary hypertension [8,9], thus raising awareness of the importance of accurate
assessment of RV performance.

In the era of multi-modality imaging, cardiac magnetic resonance (CMR) imaging
remains the gold standard for RV quantification, despite the technical innovations in
the field of echocardiography [10–13]. The prognostic role of CMR-derived RVEF in
patients with dilated cardiomyopathy (DCM) and reduced LVEF is well established. In this
population, RVEF was found to be an independent predictor of transplant-free survival [14],
malignant arrhythmic events [15], cardiac death [16], and all-cause mortality [17].

However, the high cost and low availability of CMR hamper its unrestricted use on
all patients with HF. By comparison, echocardiography is a bedside, widely available tool,
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and novel echocardiographic techniques such as myocardial strain imaging and three-
dimensional (3D) echocardiography allow an accurate RV quantification that has been
validated against (CMR) [18,19].

The aim of this review is to summarize the role of both conventional and novel
echocardiographic parameters of RV function in patients with HF and reduced EF (HFrEF),
while focusing on recent research.

2. The Echocardiographic Assessment of the Right Ventricle

The echocardiographic assessment of the RV faces several challenges: (1) the complex
RV geometry; (2) its position behind the sternum; (3) the cumbersome endocardial tracing
due to prominent trabeculations; and (4) its dependence on hemodynamic load and the
RV–LV interdependence. In fact, some authors suggest that up to 20–40% of RV stroke
volume results from the contraction of the LV [20]. The contraction pattern of the RV
is sequential, starting at the inlet and progressing to the infundibulum [21]. The RV
mechanics encompass a complex interplay between the longitudinal, radial, and antero-
posterior shortening [22]. Traditionally, it was considered that the RV pump function was
mainly driven by the longitudinal contraction. However, recent studies revealed that the
radial and antero-posterior contractile components are equally important [23,24].

There is no ideal echocardiographic parameter for RV quantification [25], hence a
thorough echocardiographic evaluation needs an integrative, multi-parametric approach
from multiple acoustic windows, as suggested by current guidelines [26]. Conventional
parameters assessing RV systolic function are tricuspid annular plane systolic excursion
(TAPSE), tissue Doppler imaging (TDI)–derived tricuspid lateral annular systolic velocity
(S’ wave), RV isovolumic acceleration, and RV fractional area change (FAC). The RV my-
ocardial performance index (MPI) is a measure of global systolic and diastolic RV function.
Innovative parameters for the assessment of the RV performance are derived from two-
dimensional (2D) or 3D speckle-tracking echocardiography (STE) or 3D echocardiography:
RV global and free wall strain and strain rate, as well as the 3D RVEF.

Most of these parameters (such as TAPSE, S’ wave, and RV strain) assess only the longi-
tudinal RV function, while others (such as FAC) account for both the longitudinal and radial
components of the RV contraction. However, most of the RV functional parameters neglect
the contribution of the outflow tract contraction, potentially leading to an underestimation
or overestimation of the global RV systolic performance [25]. This limitation is overcome
by 3D RVEF, which integrates all the three components of RV mechanics, by reconstructing
the RV endocardial surface independent of any geometric assumptions [27].

3. Tricuspid Annular Plane Systolic Excursion (TAPSE)

TAPSE is a highly reproducible, easy obtainable parameter [28] of RV longitudinal
function, which is acquired by placing the M-mode line at the lateral tricuspid annulus
in the apical four-chamber view. The vertical excursion of the annulus is measured and
reported in millimeters. A value of TAPSE < 16 mm reflects RV systolic dysfunction [26,29].
The main limitations are that TAPSE is angle- and load-dependent [29] and that it measures
the displacement of a single segment of the RV free wall. Furthermore, it does not account
for the radial and antero-posterior contraction, and therefore, it does not reflect the global
RV systolic function [30].

Load-dependency means that TAPSE will change with different loading conditions
without actual changes in myocardial contractility. TAPSE decreases with increased pul-
monary vascular resistance [31], but it also may be overestimated in patients with pul-
monary hypertension and clockwise rotation of the heart due to LV compression [32].
TAPSE is also dependent on preload, being directly correlated with RV end-diastolic
volume and overestimating RV function in patients with mild to moderate RV dilation [33].

Ghio et al. showed that TAPSE ≤ 14 mm is an independent predictor of death or emer-
gency cardiac transplantation in patients with congestive HF [34]. Similarly, Venner et al.
found TAPSE ≤ 15 mm to be an independent predictor of major adverse cardiovascular
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events (MACEs) in patients with idiopathic DCM [35]. Several other studies showed that
TAPSE is an independent predictor of all-cause mortality in patients with HF [36–38].
The prognostic ability of TAPSE appears to be improved when combined with the echocar-
diographic estimation of pulmonary artery systolic pressure (PASP): a PASP ≥ 40 mm
Hg combined with TAPSE ≤ 14 mm predict unfavorable outcomes in patients with HF,
irrespective of its ischemic or non-ischemic etiology [9].

4. Tricuspid Lateral Annular Systolic Velocity (S’ Wave)

The systolic velocity of the tricuspid lateral annulus is measured in the apical four-
chamber view by placing the tissue Doppler marker on the lateral tricuspid annulus [29,30].
Similar to TAPSE, it is an easy obtainable parameter, but it is angle-dependent, and it
evaluates the longitudinal shortening and not the global systolic function of the RV [29,30].
An S’ wave value <9.5 cm/s reflects RV systolic dysfunction [26,29].

Studies found that decreased TDI systolic velocity of the tricuspid annulus is an
independent predictor of either cardiac death [39,40] or cardiovascular death and rehos-
pitalizations for HF [41] in patients with LV systolic dysfunction. Damy et al. showed
that an S’ wave <9.5 cm/s is a strong independent predictor of outcomes in patients
with LVEF <35%, with better prognostic value than FAC and TAPSE [42]. This could be
explained by the lower variability of S’ wave measurement as compared to the other
parameters. Another study found that both TDI systolic and diastolic velocities of the
tricuspid annulus were independent predictors of survival and of event-free survival in
HFrEF. In this study, patients with combined peak systolic velocity <10.8 cm/s and peak
early diastolic velocity <8.9 cm/s had the worst prognosis [43].

5. Right Ventricular Myocardial Performance Index (RV MPI)

The RV myocardial performance index, also known as the right Tei index, is a measure
of both systolic and diastolic RV function. It is a unitless parameter, calculated by dividing
the total isovolumic time (isovolumic contraction plus isovolumic relaxation) by the ejection
time (ET) [30]. Systolic dysfunction prolongs the isovolumic contraction time (ICT) and
shortens the ET, while prolonged isovolumic relaxation time (IRT) is encountered in both
systolic and diastolic dysfunction. Therefore, impaired RV global function will lead to a
high RV MPI. The parameter can be measured using either pulsed-wave Doppler or tissue
Doppler (Figure 1). The proposed cutoff values for abnormal RV MPI are >0.43 using pulsed
Doppler and >0.54 using tissue Doppler [26]. The advantage of RV MPI is that it bypasses
the limitations of the complex RV geometry, as it is only derived from time intervals and
makes use of no assumption of RV shape. However, it is unreliable in patients with elevated
right atrial pressure, and irregular rhythms make MPI difficult to calculate [29,30].

The prognostic value of the pulsed-Doppler-derived RV MPI was assessed in a cohort
of HFrEF patients, who were prospectively followed for 5 years for a combined endpoint
of cardiac death and readmissions for HF. The authors found that an RV MPI > 0.38 was
an independent predictor of adverse outcomes [44]. In a study by Field et al., each 0.1-
unit increase in RV MPI was associated with a 16% increased risk of MACEs (defined as
death, cardiac transplantation, or ventricular assist device placement) in patients with
advanced HF referred for cardiac resynchronization therapy (CRT) [45]. To our knowledge,
there are no studies to assess the prognostic role of TDI-derived RV MPI in HF. However,
some authors suggest that TDI-derived MPI is superior to pulsed-Doppler-derived MPI
because all the time intervals are measured during the same cardiac cycle [46].
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relaxation time; TCT—total contraction time. 
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Figure 1. Calculation of right ventricular myocardial performance index (RV MPI) using the tissue
Doppler imaging (TDI) method. RV—right ventricle; MPI—myocardial performance index; TDI—tissue
Doppler imaging; ICT—isovolumic contraction time; ET—ejection time; IRT—isovolumic relaxation
time; TCT—total contraction time.

6. Right Ventricular Fractional Area Change (RV FAC)

FAC is a 2D measure of RV systolic function obtained from the RV-focused apical
four chamber view by manually tracing the endocardial border of the RV in end-diastole
and end-systole. It is calculated as: (end-diastolic area − end-systolic area)/end-diastolic
area × 100% [26]. The RV-focused view is acquired by laterally displacing and rotating
the probe from the standard apical four-chamber view until the maximal RV basal and
longitudinal diameters are obtained [47,48]. The measurements from the RV-focused view
are more reproducible than those obtained from the apical four-chamber view [48]. RV FAC
reflects both the longitudinal and radial shortening of the RV, but it neglects the contraction
of the outflow tract [26,30]. It has shown good correlation with the RV ejection fraction
(RVEF) determined by CMR [49], but it is load-dependent and potentially difficult to
acquire in the case of poor endocardial definition [30,50]. An RV FAC < 35% reflects RV
dysfunction [26,29].

Zornoff et al. found that RV FAC is an independent predictor of total mortality, car-
diovascular mortality, and development of HF in patients with LV systolic dysfunction
following a myocardial infarction (MI), with each 5% decrease in FAC being associated
with a 16% increase in odds of cardiovascular mortality [51]. Similar findings were re-
ported by Anavekar et al., who found RV FAC to be an independent predictor of all-cause
mortality, cardiovascular death, sudden death, HF, and stroke in patients with MI and LV
dysfunction [52].

A small retrospective study found that RV FAC < 26.7% is predictive of death or LV
assist device implantation in patients with DCM, providing better prognostic value than
TAPSE and S’ wave velocity [53]. Similar results were reported by Merlo et al., who found
FAC < 35% to be an independent predictor of death or heart transplantation in patients
with idiopathic DCM; moreover, RV FAC had stronger predictive value than other well-
known prognostic factors such as LV dimensions and New York Heart Association (NYHA)
functional class [54].
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7. Right Ventricular Isovolumic Acceleration

Myocardial acceleration during isovolumic contraction is usually obtained using
TDI at the lateral tricuspid annulus in the apical four-chamber view. It is calculated as
the peak myocardial velocity during isovolumic contraction divided by the time needed
to reach this velocity (Figure 2). While it has the advantage of being relatively load-
independent [30], it has a large confidence interval around the normal values [29]; hence,
it is not recommended for routine use and no reference value for this parameter has
been proposed by the latest guidelines [26]. Consequently, its prognostic utility has not
been broadly studied. However, Sciatti et al. found RV isovolumic acceleration to be a
better predictor for cardiac death and rehospitalization in patients with HF and reduced
LVEF than traditional parameters of RV systolic function such as TAPSE, RV FAC, and S’
wave [55].
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Figure 2. Calculation of RIVA using TDI. RIVA—right isovolumic acceleration; TDI—tissue Doppler imaging; IVV—
isovolumic velocity; AT—acceleration time.

8. Right Ventricular Strain and Strain Rate Derived from Two-Dimensional
Speckle-Tracking Echocardiography (2D STE)

Speckle-tracking echocardiography is a non-invasive, innovative technique that ana-
lyzes the segmental myocardial deformation along different planes through the displace-
ment of speckles [25]. Originally designed for the assessment of the LV, it is now also being
applied for the analysis of RV deformation. Strain represents the percentage change in
length of a myocardial segment, while strain rate represents the rate of deformation over
time [56]. Both strain and strain rate are indices of myocardial contractility [57]. The RV
longitudinal strain and strain rate may be measured in the apical RV-focused four-chamber
view, using the software dedicated for the LV assessment. The RV free wall and the inter-
ventricular septum (IVS) are each divided into three segments (basal, medial, and apical),
providing a six-segment model (Figure 3). The global longitudinal strain of the RV is
calculated as the average of the six segmental values, while the longitudinal strain of the
RV free wall (RVFW) is calculated as the average of the three segmental values of the free
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wall [58]. The latter is considered to be more specific for the RV [25], since the motion of
the IVS contributes to both RV and LV function.
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tracking echocardiography.

STE assesses the deformation of myocardial speckles in two dimensions along the
myocardial wall direction, thus being less confounded by the motion of the heart [59] and
relatively angle-independent when compared to TDI-derived parameters [60]. The advan-
tages of 2D-STE-derived strain are the angle independence, the relative load independence,
the strong correlation with RVEF measured by CMR [61], and the ability of detecting
subtle myocardial abnormalities, which cannot be identified using conventional parame-
ters [62,63]. One study showed that RVFW strain had a good correlation with the extent
of myocardial fibrosis detected on CMR [64]. However, there is no uniformity among
software and no reference range agreement between vendors. Other drawbacks are that
strain assessment is dependent on good image quality, it is influenced by artifacts, and it
neglects the contribution of the RV outflow tract (RVOT) to the global RV performance [26].
For the longitudinal strain of the RV free wall, a value > −20% is considered abnormal [26].

Martin et al. analyzed which of the RV strain parameters was a better predictor
of hospitalizations for HF in patients with left heart disease. They showed that the RV
global longitudinal strain independently predicts readmissions, providing additional
prognostic information to that obtained by TAPSE [65]. Similar findings were reported
by Motoki et al., who found global RV strain to be an independent predictor of long-term
adverse outcomes in patients with LVEF < 35%, while RVFW strain was not. In their
study, a global RV strain > −14.8% independently predicted the primary endpoint of death,
cardiac transplantation, or hospitalization for HF at 5 year follow-up [66]. This is contrary
to the results of another study, which found that RVFW strain was a better outcome
predictor than global RV strain in HFrEF, as it independently predicted total mortality and
readmissions for HF [67]. Another prospective study showed that an RVFW strain > −21%
in patients with HF is an independent predictor for a composite endpoint of death, acute
HF, emergency transplantation, or left ventricular assist device (LVAD) implantation at
1 year [68].

Carluccio et al. proved the superiority of RV strain over TAPSE, by following 200 pa-
tients with HFrEF but preserved TAPSE (>16 mm) for a composite endpoint of death
and HF rehospitalization. The authors found that the RVFW longitudinal strain was an
independent predictor of adverse outcome, with a cutoff value for endpoint prediction
of −15.3% [69]. In a recent study by Seo et al., 143 patients with DCM were prospec-
tively followed for long-term unfavorable events (defined as all-cause death, cardiac death,
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aborted sudden cardiac death, and HF hospitalization), for a median period of 40 months.
The RVFW longitudinal strain was the only independent predictor of the primary outcome,
with an optimal cutoff value for event prediction of −16.5% [70].

Several studies discovered independent prognostic roles for both global RV strain
and RVFW strain in HFrEF. Cameli et al. found that in patients with advanced systolic
HF referred for cardiac transplantation, both global and free-wall RV strain are indepen-
dent predictors of an adverse outcomes (defined as cardiac death, heart transplantation,
LVAD placement, intra-aortic balloon pump implantation, or acute HF), with stronger pre-
dictive power than other conventional parameters, including parameters of LV function [71].
Another study reported that both global RV strain and RVFW strain are independent pre-
dictors of all-cause mortality in patients with HF and LVEF < 45% [72]. A recent study by
Houard et al. evaluated the prognostic value of 2D RV strain for survival prediction and
compared it with conventional echocardiographic parameters and CMR in 266 patients
with HF and reduced EF. The authors found out that both global RV strain and RVFW strain
were independent predictors for overall mortality and cardiovascular mortality; moreover,
the predictive power of RV strain was higher than that of FAC, TAPSE, CMR-derived RVEF,
and CMR-derived RV strain [73].

9. Three-Dimensional Right Ventricular Ejection Fraction (3D RVEF)

3D echocardiography overcomes the geometric assumptions used in 2D echocardio-
graphy. As such, it is particularly useful for the evaluation of the RV, which—due to
its complex anatomy—cannot be comprehensively assessed with 2D measurements only.
3D echocardiography integrates both the longitudinal and radial components of RV con-
traction [30] and, unlike 2D echocardiography, allows the assessment of antero-posterior
shortening as well. The images are acquired with a 3D probe from the apical RV-focused
view, usually using a full-volume data set and a multi-beat acquisition. The acquired
image must include the entire RV volume, from the tricuspid valve to the pulmonary valve,
with good temporal and spatial resolution. The data set is subsequently analyzed with
dedicated software (Figure 4), by tracing the endocardial surface of the RV, which allows
the reconstruction of the RV geometry and the calculation of RV volumes and EF. The 3D
RV volumes and EF have been widely validated against the gold standard represented
by CMR [74–76]. The main limitations of 3D RVEF are load dependency, challenges in
correctly tracing the endocardial border, image quality, “stitching” artefacts in the case
of arrhythmias, time consumption, and limited availability [30]. A 3D RVEF < 45% is
considered abnormal [26].

In a population-based cohort study that enrolled 1004 elderly people, Nochioka et al.
used 2D and 3D echocardiography to analyze the prevalence and prognostic role of RV
dysfunction in HF. Among patients with no HF at baseline, 3D RVEF proved to be an
independent predictor of death or incident HF: each 5% decrease in 3D RVEF was associated
with a 20% increase in the hazard of death or hospitalization for HF, independent of
LVEF [77].

Magunia et al. found that 3D RVEF is an independent predictor of post-operative RV
failure in LVAD recipients [78], which is a well-known, common cause of mortality after
LVAD implantation [79]. In a recent study, the long-term prognostic value of 3D RVEF was
evaluated in 446 patients with various cardiovascular diseases, who were followed during
4.1 years for a primary endpoint of cardiac death and a secondary composite endpoint of
cardiac death, ventricular fibrillation, nonfatal myocardial infarction, and hospitalization
for HF exacerbation. At the end of the follow-up period, 3D RVEF was found to be an
independent predictor of both cardiac death and of the secondary endpoint of MACEs [80].

A recent retrospective study of Surkova et al. evaluated the relative importance of
different combinations of reduced and preserved 3D LVEF and 3D RVEF in predicting
mortality in patients with different cardiac diseases. Reduced 3D RVEF, but not LVEF,
was a strong and independent predictor of both all-cause mortality and cardiovascular
mortality [81]. Moreover, 3D RVEF was superior to conventional echocardiographic pa-
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rameters of RV performance to predict total mortality. The group of patients with reduced
LVEF and reduced RVEF had the highest mortality in the study; interestingly, patients with
reduced LVEF and preserved RVEF had significantly better survival than patients with
reduced RVEF and preserved LVEF [81]. The results of this study draw attention to the
potential role of therapies targeting RV dysfunction to improve clinical outcome.
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10. Three-Dimensional Speckle-Tracking Echocardiography (3D STE)

3D STE is a novel imaging technique that evaluates myocardial deformation using
3D full-volume data sets. It is currently limited to research and not available for routine
use, but it appears to be a promising tool for the assessment of the complex RV myocardial
motion [82]. A study by Field et al. showed favorable results concerning the ability of 3D
STE to detect subclinical biventricular dysfunction after anthracycline chemotherapy [45].
Another study found that 3D strain of the RVFW is a predictor of mortality in LVAD
recipients [78]. Smith et al. evaluated the utility of 3D STE for RV assessment in a cohort of
patients with pulmonary hypertension of different etiologies (including left heart disease)
and found out that RV area-strain derived from 3D STE correlated well with RVEF and was
an independent predictor of mortality [83].

11. Other Parameters of Right Ventricular Function

The interaction between the RV and the pulmonary circulation unit is reflected in
the RV–pulmonary artery coupling (RVPAC), which is usually assessed with right heart
catheterization. This parameter reflects the adaptation of the RV to afterload, and it is
calculated from invasive pressure–volume loops as the ratio of RV end-systolic elastance to
pulmonary artery elastance [84]. Several echocardiographic studies used the ratio between
TAPSE and PASP as a non-invasive surrogate for the RVPAC, as this ratio, which reflects
the interaction between the shortening of the RV fibers and the force generated by the
RV, showed good correlation with invasively measured RVPAC [85]. The TAPSE/PASP
ratio was found to be an independent predictor of cardiac mortality [86] and of major
events (cardiac death, heart transplant, or LVAD implant) [87] in patients with HF. In a
recent study, Ghio et al. enrolled 1663 patients with HF (1123 with reduced LVEF, 156 with
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mid-range LVEF, 384 with preserved LVEF) and showed that TAPSE/PASP is a powerful,
independent predictor of all-cause mortality in all HF patients, regardless of the extent of
LV dysfunction [88]. Similar results were found by Bosch et al., in a study that assessed
the contribution of RV dysfunction in HFrEF versus HF with preserved EF (HFpEF); they
showed that TAPSE/PASP ratio was an independent predictor of all-cause death and HF
hospitalization, with no difference between HFrEF and HFpEF and regardless of LVEF [89].

As innovative echocardiographic techniques become part of the comprehensive as-
sessment of RV performance, some researchers used 2D RV longitudinal strain or 3D
RVEF for the non-invasive estimation of RVPAC, which was calculated as either RV
strain/PASP ratio [89,90] or as 3D RVEF/PASP ratio [77]. One recent study found that
the ratio between RVFW strain and PASP independently predicted a composite endpoint
of all-cause death and rehospitalizations in patients with HF [89]. Similar results were
found by Iacoviello et al., who showed that both RVFW strain/PASP ratio and global
RV strain/PASP ratio are independent predictors for all-cause mortality in patients with
HF and LVEF < 45% [90]. In another study, RVPAC was estimated non-invasively using
the ratio between 3D RVEF and PASP; the authors found that each 0.5 unit decrease in
RVEF/PASP ratio was associated with a 65% increase in the hazard of death or hospitaliza-
tion for HF [77].

Fractional shortening of the RVOT (RVOT-FS) is an index of RV performance that is
obtained using M-mode echocardiography in the parasternal short axis window at the
level of the aortic root. It is calculated as the percentage change in RVOT diameter at
end-systole compared to end-diastole [91]. Several studies showed a good correlation
between RVOT-FS and other indices of RV systolic performance [92,93]. Yamaguchi et al.
showed that RVOT-FS is an independent predictor of MACE (defined as cardiac death,
heart transplantation, or hospitalization for HF) in a cohort of patients with LVEF < 40%,
with a higher rate of adverse outcome in patients with RVOT-FS < 20% [94].

The above-mentioned studies evaluating the prognostic role of RV dysfunction in HF
are summarized in Table 1.

Table 1. Selection of studies demonstrating an independent prognostic role of RV functional parameters in patients with HF.

Study Publication Year Number of
Patients Study Type Parameter Proposed Cutoff

Dokainish et al. [41] 2007 107 Prospective S’ wave 9 cm/s

Damy et al. [42] 2009 136 Prospective S’ wave 9.5 cm/s

De Groote et al. [40] 2012 527 Prospective S’ wave 9.7 cm/s

Vizzardi et al. [44] 2012 95 Prospective RV MPI 0.38

Dini et al. [37] 2012 373 Prospective TAPSE 14 mm

Damy et al. [38] 2012 1547 Prospective TAPSE 15.9 mm

Guazzi et al. [86] 2013 293 Prospective TAPSE/PASP 0.36

Yamaguchi et al. [94] 2013 81 Prospective RVOT-FS 20%

Motoki et al. [66] 2014 171 Retrospective Global RV strain −14.8%

Sciatti et al. [55] 2015 60 Prospective RIVA 1.5 m/s2

Garcia-Martin et al. [65] 2016 103 Prospective Global RV strain −17.3%

Iacoviello et al. [72] 2016 332 Prospective Global RV strain,
RVFW strain −14%, −20.6%

Venner et al. [35] 2016 136 Retrospective TAPSE 15 mm

Merlo et al. [54] 2016 512 Retrospective FAC 35%

Kawata et al. [53] 2017 68 Retrospective FAC 26.7%

Ghio et al. [88] 2017 1663 Retrospective TAPSE/PASP 0.36

Bosch et al. [89] 2017 438 Prospective TAPSE/PASP, global
RV strain/PASP 0.48, −0.56
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Table 1. Cont.

Study Publication Year Number of
Patients Study Type Parameter Proposed Cutoff

Iacoviello et al. [90] 2017 315 Prospective RV strain/PASP,
RVFW strain/PASP −0.36, −0.66

Nagata et al. [80] 2017 446 Prospective 3D RVEF
35% for cardiac
death, 41% for

MACE

Seo et al. [70] 2019 143 Prospective RVFW strain −16.5%

Houard et al. [73] 2019 266 Prospective Global RV strain −19%

Carluccio et al. [67] 2019 288 Prospective Global RV strain,
RVFW strain −14.6%, −15.3%

Surkova et al. [81] 2019 394 Prospective 3D RVEF 45%

Abbreviations: S’ wave—systolic velocity of the tricuspid lateral annulus; RV—right ventricular; MPI—myocardial performance index;
TAPSE—tricuspid annular plane systolic excursion; PASP—pulmonary artery systolic pressure; RVOT-FS—right ventricular outflow tract
fractional shortening; RIVA—right ventricular isovolumic acceleration time; RVFW—right ventricular free wall; FAC—fractional area
change; 3D—three dimensional; RVEF—right ventricular ejection fraction.

12. Artificial Intelligence Algorithms

Artificial intelligence (AI) techniques, such as machine learning (ML) and deep learn-
ing, can improve the diagnostic accuracy of echocardiography, by providing fully auto-
mated image analysis and thus potentially reducing human error [95]. So far, only one
study evaluated an ML-based software for 3D echocardiographic quantification of the RV.
The algorithm provided accurate and reproducible measurements for RV volumes and
function, showing good correlation with CMR [96]. Further research is still needed in order
to refine and validate such algorithms and to establish their utility in routine clinical prac-
tice. However, AI-based approaches hold great promise to improve the echocardiographic
quantification of the RV.

13. Conclusions

The RV plays a crucial role in various clinical settings. RV dysfunction is a strong
independent predictor of mortality and adverse outcomes not only in diseases of the
right heart or pulmonary vascular bed but also in diseases primarily involving the LV.
In the particular setting of DCM, RV FAC appears to be a better outcome predictor than
other conventional RV parameters, while RVFW strain has a higher prognostic value than
global RV strain. There is no perfect single parameter that comprehensively evaluates RV
performance. Integrating novel techniques in the RV echocardiographic assessment allows
a better evaluation and an enhanced risk stratification for patients with HF, thus improving
therapeutic strategies and potentially leading to an improved outcome.
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