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Abstract
Introduction  Identification of adverse events and determination of their seriousness ensures timely detection of potential 
patient safety concerns. Adverse event seriousness is a key factor in defining reporting timelines and is often performed 
manually by pharmacovigilance experts. The dramatic increase in the volume of safety reports necessitates exploration of 
scalable solutions that also meet reporting timeline requirements.
Objective  The aim of this study was to develop an augmented intelligence methodology for automatically identifying adverse 
event seriousness in spontaneous, solicited, and medical literature safety reports. Deep learning models were evaluated for 
accuracy and/or the F1 score against a ground truth labeled by pharmacovigilance experts.
Methods  Using a stratified random sample of safety reports received by Celgene, we developed three neural networks for 
addressing identification of adverse event seriousness: (1) a binary adverse-event level seriousness classifier; (2) a classifier 
for determining seriousness categorization at the adverse-event level; and (3) an annotator for identifying seriousness criteria 
terms to provide supporting evidence at the document level.
Results  The seriousness classifier achieved an accuracy of 83.0% in post-marketing reports, 92.9% in solicited reports, and 
86.3% in medical literature reports. F1 scores for seriousness categorization were 77.7 for death, 78.9 for hospitalization, 
and 75.5 for important medical events. The seriousness annotator achieved an F1 score of 89.9 in solicited reports, and 75.2 
in medical literature reports.
Conclusions  The results of this study indicate that a neural network approach can provide an accurate and scalable solu-
tion for potentially augmenting pharmacovigilance practitioner determination of adverse event seriousness in spontaneous, 
solicited, and medical literature reports.
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1  Introduction

Marketing authorization holders and sponsors are required 
to collect and collate any safety event that is associated with 
a drug’s use regardless of whether it is drug related [1–3]. 
Under the remit of a company’s product safety department, 
adverse events (AEs) are processed and compiled into indi-
vidual case safety reports (ICSRs). Each ICSR comprises all 
of the relevant reported data detailing one, or many, AEs [2, 

4]. Currently each report is reviewed, compiled, and format-
ted for submission to the appropriate health authority using 
labor-intensive processes relying on a team of pharmacovigi-
lance (PV) experts. The need for expertise combined with 
the dramatic increase in the volume of safety reports [5, 6], 
and their complexity, presents a challenge for meeting seri-
ous AE reporting timelines.

There are many components that need to be reviewed, 
assessed, and validated within each ICSR. Within a report, 
all events must each be documented as serious or not. An AE 
is considered serious when the patient outcome falls under 
any of the following seven categories: death, life threatening, 
hospitalization or hospital prolongation, disability, congeni-
tal anomaly, intervention required to prevent impairment, or 
an important medical event [7].

Accurate seriousness evaluation and the specific associ-
ated seriousness criteria of an AE are integral to ensuring 
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Key Points 

Volume, complexity, and time constraints of adverse 
event reporting are overwhelming the pharmacovigilance 
workforce. New solutions are needed to support these 
activities to meet global regulatory timelines.

We developed several augmented intelligence approaches 
to support the correct identification and classification of 
seriousness, a key factor in adverse reporting, in various 
document types.

Our deep learning models were trained using an exten-
sive data set that captured deep institutional pharma-
covigilance practitioner knowledge.

template-based form understanding technology was outside 
the scope of this paper.

2.2 � Data Collection and Management

A stratified random sample of 22,932 AE cases (including all 
associated versions and documents) was taken from a data 
set containing spontaneous or post-marketing (PM), solicited 
(SD), and medical literature (ML) AE reports received by 
Celgene between 2015 and 2016 (over 168,000 cases). Post-
marketing reports included all spontaneous reports received 
during the same time period. Solicited cases included those 
from clinical trials, registries, post-approval named patient 
use programs, patient support and disease management 
programs, patient surveys, or information gathered through 
efficacy and compliance programs [34]. The medical litera-
ture is continually reviewed for any presented abstracts or 
published manuscripts that mention Celgene’s medicinal 
products; thus, they represent the medical literature cases.

A random sample was selected using stratification by the 
Medical Dictionary for Regulatory Activities (MedDRA®; 
http://www.MedDR​A.org) code representation, distinct 
products, and AE seriousness classification to ensure a dis-
tribution that represented the diversity of case features. Posi-
tive linkage between AEs and seriousness was confirmed for 
all randomly selected reports prior to annotation by PV sub-
ject matter experts to establish the reference for all experi-
ments. The random sample was divided into a training and 
test set for all experiments. Table 1 contains the statistics of 
the training data set.

2.3 � Study Design

Our cognitive approach was able to perform three tasks. 
First, determining if the AEs in a case were serious (yes vs. 
no). Second, identifying the seriousness criteria associated 
with each AE. Finally, we annotated the specific terms relat-
ing to seriousness classification for a case.

We developed a recurrent neural network (RNN) for 
the binary assessment of AE-level classification as seri-
ous or not. To classify each AE to a seriousness category, 
we developed a separate RNN. Finally, we used a bi-direc-
tional long short-term memory (LSTM) annotator, which 
identified terms pertaining to seriousness categories in all 
types of cases. These annotated entities provided human 
reviewers with focal points for their review as well as addi-
tional evidence to consider for determining seriousness 
categorization.

Figure 1 describes the study design used to test the accu-
racy of our RNN seriousness classifiers. The RNN binary 
seriousness classifier was applied to the narrative section 
of all report types (PM, SD, ML) to determine if the AE in 
the report was serious or non-serious. Reports containing 

the appropriate reporting of AEs to global health authorities 
within compliance of defined reporting timelines. Currently, 
the evaluation of whether a report is serious, and which spe-
cific seriousness criteria relate to a specific AE, is conducted 
by a PV professional. This assessment requires considerable 
training and expertise to accurately assess if and how the 
AEs identified are serious in nature.

In response to the growing number of safety reports, 
many efforts in recent years have been made to automate 
the identification of AEs using annotation and text-mining 
methods in a variety of source document types such as elec-
tronic health records, clinical notes, and social media [8–17]. 
Other groups have employed classification approaches for 
identifying text from similar sources as AEs [18–29]. How-
ever, few efforts have focused on the classification of identi-
fied AEs with regard to their type, severity, seriousness, or 
causality [30–33].

Here, we present a state-of-the-art method that applies 
cognitive technologies to accurately determine seriousness 
from unstructured information in ICSRs at the case level, 
and identify seriousness categories at the AE level, in spon-
taneous, solicited, and medical literature safety cases.

2 � Methods

2.1 � Scope

The aim of this study was to develop a cognitive deep 
learning methodology for accurate identification and clas-
sification of AE seriousness in spontaneous, solicited, and 
medical literature safety reports. Analyses were applied to 
English-language text data but otherwise unfiltered beyond 
the representation of the data in the sample. Seriousness 
determination from structured information (e.g., checkbox 
in CIOMS forms) using optical character recognition and 

http://www.MedDRA.org
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AEs classified as serious were then further analyzed using a 
second RNN classifier to determine which of the categories 
of seriousness correspond to each AE in the report. Given 

the limitations of training data available resulting from Cel-
gene’s therapy portfolio, only three of the seven serious-
ness categories (hospitalization, disability, and death) were 

Table 1   Breakdown of report 
statistics for the training set

AE adverse event, ML medical literature, PM spontaneous reports, SD solicited reports
a Calculated using reported term

Total number of cases 22,932 (12,207 PM, 7,512 SD, 3,213 ML)
Total number of documents 26,256
By type
 Post-marketing 13,083
 Solicited 10,098
 Medical literature 3075

AE seriousness pairs, serious/non-serious 48,118/25,076
By seriousness classification
 Hospitalization 26,019
 Important medical event 15,149
 Death 6955
 Disability 13
 Congenital anomaly 0
 Required intervention (devices) 0
 Life threatening 48

Number of therapy areas covered 3 (oncology, hematology, immunology)
Number of suspect drugs covered PM = 23, SD = 237, ML = 32
Number of unique adverse events covereda PM (14,330), SD (8294), ML (3590)

Fig. 1   Study design. A stratified 
sample of 20,000 cases was 
derived from 2 years of safety 
data. Three neural networks 
were trained using 90% of the 
stratified sample and each was 
tested against the remaining 
10% of the sample as depicted 
in the neural network architec-
ture. IME important medical 
event, LLT lowest level term, 
MedDRA Medical Dictionary 
for Regulatory Activities, PT 
preferred term
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evaluated. The neural networks referenced only the unstruc-
tured text within the source document, thus tick boxes com-
monly used on AE reporting forms such as CIOMS and 
MedWatch were not a factor in determining seriousness.

The training set for the seriousness classifiers consisted 
of 26,256 documents (13,083 PM; 10,098 SD; 3075 ML), 
which were randomly selected from a stratified sample. 
Additionally, 2716 reports (1324 PM, 1045 SD, 347 ML) 
were randomly selected from the stratified sample as a test 
set as indicated in Table 2.

2.4 � Classifier Structure

Three neural networks were required in our methodology for 
determining seriousness: (1) an RNN classifier to determine 
the seriousness or non-seriousness of each AE; (2) an addi-
tional RNN classifier to determine seriousness categoriza-
tion for each AE; and (3) a bi-directional LSTM (Bi-LSTM) 
deep neural network annotator to identify seriousness terms; 
all methods require subsequent human review and use the 
concatenated narrative report, AE, and the MedDRA® pre-
ferred term as input. All approaches relied on the use of 
word embeddings created using the Glove algorithm [35] 
with the PubMed corpus [36].

We have used LSTM for classification tasks and a Bi-
LSTM neural network with a conditional random field [37] 
for annotation tasks based on the simple intuition of the 
structure of the tasks. Typical classification requires analy-
sis of the whole input sequence to generate the label. Long 
short-term memory does this by interpreting the vector 
representation of the last word of the input, which essen-
tially encodes the information of the whole sequence of 
words. Annotation tasks, however, need to make decisions 
for each word while reading the input sentence, and the 

accuracy of such decisions can be improved by knowing 
the semantics of the words on both sides of the word in 
focus. Hence, a Bi-LSTM network is more appropriate 
for these instances as it has the capability to provide the 
semantics of both sides of the input text with regard to a 
given word in the input.

2.4.1 � Recurrent Neural Network for Seriousness 
Classification

We developed a neural network inspired by Lipton et al. 
[38] to determine whether each AE in our sample should 
be classified as serious or non-serious. Case-report-level 
seriousness is a simple UNION of seriousness criteria from 
each AE in a report. If any one of the AEs is serious, the 
whole case report is considered serious. The classifier used 
as inputs the report narrative, AEs identified in the report, 
and the MedDRA® lowest level term and preferred terms 
corresponding to the identified AE. We created a binary 
classifier using an LSTM deep neural network to determine 
seriousness = yes/no for each AE. Figure 2a describes the 
structure of the classifier.

2.4.2 � Recurrent Neural Network for Seriousness 
Categorization

To determine which seriousness categories pertain to each 
report, we trained an RNN also based on Lipton et al. [38], 
utilizing the same inputs as above, but limited to train on 
only cases classified as serious. The representation of seri-
ousness criteria in the training data resulted in the ability to 
train three of the seven seriousness criteria (death, hospitali-
zation, and important medical events). We created a com-
bined set of binary classifiers using an LSTM deep neural 
network to determine death = yes/no, hospitalization = yes/
no, and IME = yes/no for each AE. Figure 2b describes the 
structure of the seriousness categorization classifiers.

2.4.3 � Long Short‑Term Memory Neural Network 
to Annotate Seriousness Category Terms

We created a Bi-LSTM deep neural network with a con-
ditional random field seriousness annotator to analyze 
the narrative text of reports. The output of the annotator 
included identified terms regarding seriousness and was 
used for human review to support seriousness category 
determination. Annotated terms are further normalized in 
post-processing to map to the seriousness sub-categories to 
augment human review. Figure 2c describes the structure of 
the seriousness term annotator.

Table 2   Breakdown of test set report statistics

AE adverse event, ML medical literature, PM spontaneous reports, SD 
solicited reports
a Calculated using the Medical Dictionary for Regulatory Activities 
code

Data type PM SD ML

Total number of reports 1324 1045 347
AE seriousness pairs, serious/non-

seriousa
763/1565 2615/660 811/668

By seriousness classification
 Hospitalization 207 1837 184
 Important medical event 485 330 507
 Death 71 448 120
 Disability 0 0 0
 Congenital anomaly 0 0 0
 Required intervention (devices) 0 0 0
 Life threatening 0 0 0



61AI and PV Seriousness Determination

2.5 � Performance Analysis

Performance of all neural networks was assessed against 
the manually annotated ground truth: for seriousness clas-
sification, accuracy was used; for seriousness category 
classification and the seriousness annotator, F1 score was 
used. For comparisons to alternate approaches, standard 

methods were used to develop random forest [39, 40] and 
support-vector machine [41–43] algorithms using the same 
PM training and test data utilized for neural network devel-
opment and testing.

Although PV is a highly regulated space, there are cur-
rently no thresholds defined by regulators for validating neu-
ral networks for use within PV. We therefore established 

Fig. 2   Model architectures. 
Neural network architectures for 
the a binary seriousness clas-
sifier, b seriousness category 
classifier, and c seriousness 
term annotator. B-SER begin-
ning of seriousness term, CRF 
conditional random field, IME 
important medical event, LSTM 
long short-term memory, O 
other

a

b

c
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that an acceptable performance target for our neural net-
works would be an F1 score or an accuracy of 75.0 or higher. 
To affirm the F1 score or accuracy, we derived a sampling 
approach that was based on the Z1.4 standard developed 
by the American National Standards Institute/American 
Society for Quality [44], or acceptable quality level (AQL) 
method. The AQL method defines the maximum number 
of errors allowed to accept a set of outputs. In our research, 
we defined our outputs as true positives. We set our qual-
ity threshold to 96% because the models were performing 
at an F1 score of 75.0 and above, and PV SMEs had been 
integrated into the development process. Further detail can 
be found in Fig. 3, which details the AQL process for PV 
neural networks and has been adapted with permission from 
its original source [45].

3 � Results

3.1 � Recurrent Neural Network for Seriousness 
Classification

To test our automated seriousness classifier’s ability to accu-
rately predict AE seriousness, we assessed the classifier’s 
predictions against the human ground truth determinations. 
Table 3 shows the results of this testing yielded equal to or 
greater than 83.0% accuracy in all report types.

3.2 � Recurrent Neural Network for Seriousness 
Categorization

We hypothesized that our method could be extended to iden-
tifying the seriousness categories corresponding to each AE 
in our reports. To test this, we used the same training data 
to develop an RNN classifier focused on classification of 
AEs in reports to seriousness categories. In initial tests, we 
encountered two issues: (1) because our model is designed 
to match seriousness categories to specific AEs, the large 
distance between AEs and seriousness terms (average of 
over 500 words) in long reports (typically in SD and ML 
reports) limited the classifier’s ability to connect an AE 
to seriousness terms; (2) our data set contained sufficient 
training data for classifying only three of the seven serious-
ness criteria—death, hospitalization, and IME as identified 
from the unstructured text within the source document. This 
imbalance in seriousness category representation within our 
sample reflects the composition of Celgene’s therapy portfo-
lio and risk management programs, which dictate the variety 
and frequency of other categories of seriousness. As a result, 
the seriousness category classifier was only applied to PM 
reports, yielding the F1 score results depicted in Table 3 of 
77.7 for death, 78.9 for hospitalization, and 75.5 for IME.

To observe if there were any cascade effects from com-
bining the binary classifier into our multi-category clas-
sifier approach, we integrated the binary classification as 
a separate category in the multi-category classifier. After 
integration, we observed the binary classification (new 
category “not serious”) F1 score increase by 0.6–1.3 (post-
marketing = 84.3, solicited reports = 93.5, medical litera-
ture = 87.0), whereas the remaining category classification 
F1 scores were very similar to the values in Table 3 (less 
than a 0.2 difference).

To understand how our deep learning classifiers per-
formed compared to other methods, we trained two addi-
tional classifiers using random forests [39, 40] and sup-
port-vector machines [41–43]. Table 4 depicts the results 
generated by these two algorithms in the PM data set.

3.3 � Long Short‑Term Memory Neural Network 
to Annotate Seriousness Category Terms

Next, we trained a Bi-LSTM deep neural network serious-
ness annotator to help facilitate human review of seriousness 
determination. This annotator performed with an F1 score 
of 89.9 in SD reports, and 75.2 in ML reports, as shown in 
Table 3.

3.4 � Example Model Analysis

An example from the data set of our models working in 
concert to determine the seriousness of each AE, categoriza-
tion of serious AEs, and annotation of potential seriousness 
terms is provided in Table 5.

4 � Discussion

Our results show that AE seriousness can be determined 
with a high accuracy and/or F1 score at both the binary and 
subcategorization level, in various sources of unstructured 
document narratives, using an advanced neural network 
classification/annotator approach. We chose a neural net-
work approach over other techniques such as support-vector 
machines and random forests because of the expected expo-
nential growth in training data and the need for scalability 
based on the published prior art [46–48].

To the best of our knowledge, this is the first work of 
this type to be published and we are not aware of any other 
directly comparable work. Initial approaches applying natu-
ral language processing to AE seriousness using deep learn-
ing neural networks have been reported, but they are not 
comprehensive and focus on AE-level seriousness [32, 33]. 
Our work is differentiated from these studies by address-
ing the problem in a comprehensive manner through deter-
mination of seriousness at the AE level, combined with 
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A developer generates results
of a neural network and
shares it with A PV SME

(Consis ng of FP/FN/TP/TNs)

PV SME reviews 100% of
FPs and FNs and provides
feedback in the results

table

PV SME creates a
randomized sample size
of TPs based on the AQL

method*

PV SME evaluates the
results

Is the AQL
acceptable based on

the 4%
column?

Neural Network
Approved

Neural network requires
       further tuning

Yes

Yes

No

Developer corrects the results
based on the feedback, and

further develops or tunes the
neural network

* TN/FP/FN might be included depending on the neural network
TP- True Posi ve
FP- False Posi ve
FN- False Nega ve
TN-True Nega ve

PV SME

Developer

TP < 150?

100% review of TPs

Number of errors
<= 4% of TPs?

No

Yes

            Does the
neural network have
an accuracy or F1 score 
           above 75%?

No

No
Yes

Validation Framework

Fig. 3   Acceptable quality level (AQL) process for pharmacovigi-
lance (PV) neural networks. This process depicts the framework for 
the validation of neural networks leveraging the AQL method. It was 
customized in a manner to accommodate for the inherent needs of 
PV. The validation process begins once the developer generates the 
results of a neural network and creates an excel output of the true 
positive (TP), false positive (FP), false negative (FN), and true nega-
tives (TNs). If the F1 score or accuracy is below the 75% threshold, 
the PV subject matter expert (SME) reviews 100% of the FP and FN 
results and reports any trends in errors and results of the review to 
the developer for further training. If the F1 score or accuracy is above 

75%, the PV SME reviews the TP results to ensure the neural net-
work is performing at the F1 score or accuracy claimed. For our pur-
poses, if the number of TPs was less than 150, the PV SME would 
perform a 100% review of TPs to ensure the system result matches 
the safety database entry and is indeed a TP, as it was within the work 
capacity of the team. If there were more than 150 TPs, the PV SME 
would randomize the TPs, select the appropriate AQL sample of TPs, 
and then review the results. For both instances, if the TP error rate 
was ≤ 4%, then the neural network was deemed passed, and if not, it 
was sent back to the developer for further training
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seriousness category classification and seriousness term 
annotation.

While the results of our modeling are notable, addi-
tional exploration of algorithmic techniques such as the 
use of Bi-LSTM in classification tasks may increase per-
formance and should be pursued in future studies. Regard-
less of performance levels, however, it is clear that safety 
report seriousness classification will always require human 
confirmation. Under increasing report volumes, the PV 
workforce needs help to identify, from the massive num-
ber of reports, those that need immediate attention. Our 
models could potentially be used to assist human review 
by enabling the identification of documents containing 

serious AEs. In addition, our annotator model could be 
used to assist human review with quickly identifying the 
key text supporting seriousness classification within a 
report.

It should be noted that there are various limitations to 
our approach. First, our neural network approach was not 
able to categorize AE seriousness in case documents with 
lengthy case narrative sections. We were unable to train 
our networks to understand the on average 500-word span 
between AEs and seriousness criteria terms. To address this 
limitation, we developed a seriousness criteria annotator to 
accelerate human review of these larger documents. This 
illustrates the fact that any practical PV technology solution 

Table 3   Performance of neural networks

IME important medical event, NC not calculated

Source data type Seriousness classification (accuracy) Seriousness categorization (F1 score) Annotation of seriousness category 
terms (F1 score)

Post-marketing 83.0% (precision = 0.95, recall = 0.74) Death—0.78 (precision = 0.88, 
recall = 0.70)

Hospitalization—0.79 (precision = 0.84, 
recall = 0.74)

IME—0.76 (precision = 0.81, 
recall = 0.72)

NC

Solicited reports 92.9% (precision = 0.87, recall = 0.87) NC 0.90 (precision = 0.88, recall = 0.91)
Medical literature 86.3% (precision = 0.83, recall = 0.82) NC 0.75 (precision = 0.62, recall = 0.96)

Table 4   Analysis of alternate algorithm performance on post-marketing data

IME important medical event

Algorithm Seriousness classification (accuracy) Seriousness categorization (F1 score)

Random forests 81.2% (precision = 0.89, recall = 0.71) Death—0.59 (precision = 0.53, recall = 0.66)
Hospitalization—0.74 (precision = 0.78, recall = 0.70)
IME—0.76 (precision = 0.84, recall = 0.69)

Support-vector machine 82.3% (precision = 0.94, recall = 0.72) Death—0.80 (precision = 0.92, recall = 0.71)
Hospitalization—0.75 (precision = 0.79, recall = 0.71)
IME – 0.82 (precision = 0.87, recall = 0.77)

Table 5   Example analysis by seriousness models

AE adverse event, LLT lowest level term, MedDRA® Medical Dictionary for Regulatory Activities, PT preferred term, IME important medical 
event

Model inputs Model outputs

Narrative: patient was hospitalized for arrhythmia and passed away 
3 days later from cardiac arrest

AE: arrhythmia
MedDRA® PT: arrhythmia; LLT: arrhythmia
AE: cardiac arrest
MedDRA® PT: cardiac arrest; LLT: cardiac arrest

Binary seriousness classifier
 AE: arrhythmia = serious
 AE: cardiac arrest = serious
 Case = serious
Seriousness category classifier
 AE: arrhythmia = hospitalization, IME
 AE: cardiac arrest = death
Annotator
 Patient was hospitalized for arrhythmia and passed away 3 days 

later from cardiac arrest
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will likely require various methodologies, working in con-
cert with human experts, to be successful.

Additional limitations of our method include the require-
ment for already identified AEs and MedDRA® terms as 
inputs for our classifier and the use of data from a single 
company’s drug portfolio, which may impact its generaliz-
ability. However, the method can be applied at additional 
companies using training data representative of that com-
pany’s AEs, seriousness categories, drug/indication portfo-
lios, and conventions.

Despite these limitations, our methodology represents a 
state-of-the-art approach to highly accurate automated seri-
ousness classification, at both the AE and case level, and 
suggests that the potential benefits hypothesized with the 
automation of seriousness determination—increased con-
sistency and efficiencies enabling compliance with stringent 
reporting timelines despite increasing report volumes—may 
be demonstrated when evaluated in future studies. Of par-
ticular interest is the conduct of user studies to evaluate 
what level of improvement, if any, might be expected from 
employing this method in a prospective evaluation environ-
ment. The benefits demonstrated in any such studies will 
need to be considered with system implementations and 
business process improvements.

5 � Conclusions

To our knowledge, our work is the first to demonstrate that 
deep learning can be applied to the evaluation of event and/
or case seriousness classification within PV. Given the 
increasing demands on the PV workforce, approaches like 
deep learning need to be considered for supporting the vol-
ume, complexity, and time constraints of AE report pro-
cessing. Augmentation of human review with deep learning 
is a viable approach to tackle these current challenges. We 
demonstrate that our deep learning algorithms were able to 
identify serious AEs, classify the seriousness of AEs, and 
annotate seriousness text in unstructured document narra-
tives. If introduced in the PV case management process, we 
believe that our algorithms could positively impact the con-
sistency and timeliness of reporting.
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