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Abstract

When predicting physical phenomena through simulation, quantification of the total uncertainty due
to multiple sources is as crucial as making sure the underlying numerical model is accurate. Possible
sources include irreducible aleatoric uncertainty due to noise in the data, epistemic uncertainty induced
by insufficient data or inadequate parameterization, and model-form uncertainty related to the use of
misspecified model equations. In addition, recently proposed approaches provide flexible ways to com-
bine information from data with full or partial satisfaction of equations that typically encode physical
principles. Physics-based regularization interacts in nontrivial ways with aleatoric, epistemic and model-
form uncertainty and their combination, and a better understanding of this interaction is needed to
improve the predictive performance of physics-informed digital twins that operate under real conditions.
To better understand this interaction, with a specific focus on biological and physiological models, this
study investigates the decomposition of total uncertainty in the estimation of states and parameters of a
differential system simulated with MC X-TFC, a new physics-informed approach for uncertainty quan-
tification based on random projections and Monte-Carlo sampling. After an introductory comparison
between approaches for physics-informed estimation, MC X-TFC is applied to a six-compartment stiff
ODE system, the CVSim-6 model, developed in the context of human physiology. The system is first
analyzed by progressively removing data while estimating an increasing number of parameters, and sub-
sequently by investigating total uncertainty under model-form misspecification of non-linear resistance
in the pulmonary compartment. In particular, we focus on the interaction between the formulation of
the discrepancy term and quantification of model-form uncertainty, and show how additional physics
can help in the estimation process. The method demonstrates robustness and efficiency in estimating
unknown states and parameters, even with limited, sparse, and noisy data. It also offers great flexibility
in integrating data with physics for improved estimation, even in cases of model misspecification.

Keywords— Cardiovascular physiology, Physics-informed machine learning, Random-projection neural networks,
Total uncertainty quantification, Time-series

1 Introduction

Characterizing uncertainty from multiple sources is crucial for developing computational models that can accurately
predict real physical phenomena. However, not all sources of uncertainty are equally relevant across all applications.
Consistent with the discussion in [1], common sources in scientific machine learning applications relate to the quality
of data, assumptions in the equations formulated to capture physical phenomena, and the estimator used to infer
relevant states or parameters. Uncertainty from data is typically referred to as aleatoric, and includes the inability to
precisely characterize a physical quantity due to inaccurate measurements that manifest as noise, missing or scarce
data that exacerbate the ill-posed character of inverse problems, and noise model misspecification. Uncertainty
related to model misspecification or the effects of disregarding stochasticity is referred to as model-form uncertainty.
In addition, for data-driven estimators, prediction variability due to the network size, hyperparameter selection,
and determination of optimal weights and biases in optimization or inference tasks constitute a form of epistemic
uncertainty.

In this context, physics-informed neural networks (PINNs) [2] have emerged as widely used estimators for problems
involving differential equations (DE) across diverse disciplines such as fluid mechanics [3, 4, 5, 6, 7], epidemiology [8, 9,
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10, 11], and beyond. Leveraging modern machine learning techniques, including automatic differentiation and efficient
optimization methods, PINNs have proven effective in solving differential equations, assimilating data, and tackling ill-
posed inverse problems [12, 13], as discussed in a number of comprehensive reviews [14, 15]. Uncertainty quantification
methods for neural networks, such as variational inference [16, 17, 18], dropout [19] and deep ensemble [20], have
also been integrated into PINNs for quantifying uncertainty arising from multiple sources. These include noisy and
gappy data [21, 22], physical model misspecification [23], noisy inputs [24] and inherent uncertainty of neural network
models [1, 25, 26].

However, one of the main drawbacks of PINN-based approaches is the computational cost associate with back-
propagation and the need to augment the loss function to account for initial and boundary conditions, adding
complexity to the process of learning DE solutions. An alternative approach, the Theory of Functional Connections
(TFC) [27, 28, 29, 30, 31], offers a constrained expression to approximate differential equation solutions while analyti-
cally satisfying initial and boundary conditions. Building on this framework, the eXtreme-TFC approach (X-TFC [32])
combines TFC with random-projection neural networks (a.k.a. extreme learning machine [33, 34]), providing a fast
and accurate method for inference and prediction in partially observed and possibly misspecified dynamical systems.
Random-projection neural networks have been widely employed in physics-informed frameworks for solving linear and
nonlinear partial differential equations [35, 34, 36, 37, 38, 39, 40, 41], inverse problems for parameter estimations and
dynamical systems discovery [42, 43, 44], and neural operators [45]. While X-TFC has demonstrated robustness and
efficiency in various applications [46, 47, 48, 49], including forward problems [50, 51, 52, 53, 54, 55, 56, 57, 58], inverse
problems for the estimation of parameters and missing terms in equations [59, 60], and combined with symbolic
regression for physics discovery [60, 61], its uncertainty quantification capabilities have been largely overlooked in the
literature. This study aims to address this gap by investigating physics-informed estimation under total uncertainty
in the context of numerical models with applications in biology and physiology.

Computational models in biology have a rich history, encompassing diverse areas such as epidemiology [62],
species and population dynamics [63], gene regulatory networks [64], metabolic pathways [65], and phylogenetics [66],
among many others. Similarly, the field of physiology has seen a constant growth in the complexity of model
formulations following early studies by Harvey [67], Poiseuille [68], Frank [69], and many others. Two- or three-
element Windkessel models represent basic examples of lumped parameter hemodynamic models. These models
approximate the Navier-Stokes equations in cylindrical coordinates, linearized around rest conditions [70], and are
analogous to equations describing current and voltage in electrical circuits. More complex one-dimensional models [71]
offer a more accurate hemodynamic representation but still rely on approximations for minor losses related, e.g., to
stenosis or bifurcations. Additionally, hemodynamics can be solved using complex multi-physics three-dimensional
models with fluid-structure interaction [72, 73] or include cardiac electrophysiology [74, 75]. In addition, a number
of recent studies have focused on the quantification of uncertainty in the predictions from hemodynamic models
due to variability in boundary conditions, material properties of vascular tissue [76, 77, 78, 79] or anatomical model
geometry [80]. More recent approaches have also focused on the solution of inverse problems, combined forward
and inverse problems [81, 82, 83, 84], multi-fidelity propagation and sensitivity analysis [85, 86, 87, 88, 89], and
probabilistic neural twins [90].

The main contribution of this study is to propose a new X-TFC-based method for uncertainty quantification and
to improve understanding of the interaction between total uncertainty and physics-informed regularization under a
variable amount of data. We do so by focusing on time-dependent problems formulated as systems of ODEs. We
begin with a controlled computational experiment to examine the behavior of X-TFC-based estimators under separate
aleatoric, epistemic, and model-form uncertainties, comparing their performance to PINN and Bayesian PINN (B-
PINN)estimators. Next, we conduct an ablation study for CVSim-6, a stiff differential ODE model, focusing on
aleatoric and epistemic uncertainties. We assess prediction variability by systematically reducing the available data
for six compartmental pressures while estimating parameters that characterize pulmonary venous resistance and
aortic compliance. We then consider the common situation arising in lumped-parameter hemodynamics models, in
which a compartment with linear resistance is used as a simplified model of a complex vascular tree. To study the
impact of this model simplification on the total uncertainty, we introduce a discrepancy function. Furthermore, we
demonstrate how different modeling choices for such discrepancy directly influence the quantification of model-form
uncertainty.

To the best of our knowledge, this is the first study in which the behavior of physics-informed neural estimators is
investigated under total uncertainty for stiff differential systems in the context of lumped parameter hemodynamics.
This paper is organized as follows. Section 2 introduces the CVSim-6 cardiovascular model, provides the formulation
as a differential system, and discusses its stiffness. Section 3 introduces the X-TFC methodology for gray-box identi-
fication, parameter estimation, and how it is used for uncertainty quantification. Section 4 presents an introductory
example to facilitate the reader’s understanding of total uncertainty decomposition and to better explain the individ-
ual contributions of each uncertainty source. Finally, the results for the uncertainty quantification for the CVSim-6
cardiovascular model are presented in Section 5, followed by a discussion and the conclusions in Section 6.
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(a) Schematic diagram of the CVSim-6 circuit model layout.
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(b) CVSim-6 model solution for pressures
(top), volumes (middle) and flows (bot-
tom), corresponding to the default param-
eter set in Tables 4, 5, 6 and 7.

Figure 1: CVSim-6 model circuit and default output.

2 The CVSim-6 cardiovascular model

The CVSim-6 is a lumped-parameter hemodynamic model, originally developed for teaching cardiovascular physiol-
ogy [91, 92]. It includes six compartments, where the subscripts l, r, a, v, pa, and pv indicate quantities referred to the
left ventricle, right ventricle, systemic arteries, systemic vein, pulmonary arteries, and pulmonary veins, respectively.
It consists of six differential equations (one per compartment) and 23 input parameters. These parameters, together
with a specific combination (referred to as the default set) providing outputs associated with the physiology of a
healthy subject, are grouped in Tables 4, 5, 6 and 7. A schematic of the CVSim-6 model is also shown in Figure 1a.

The CVSim-6 model consists of a system of six ODEs, one per compartment, expressed as

Ṗl(t) =
Ql,in(t)−Ql,out(t)−

(
Pl(t)− Pth

)
Ċl(t)

Cl(t)
, Ṗa(t) =

Ql,out(t)−Qa(t)

Ca

Ṗv(t) =
Qa(t)−Qr,in(t)

Cv
, Ṗr(t) =

Qr,in(t)−Qr,out(t)−
(
Pr(t)− Pth

)
Ċr(t)

Cr(t)

Ṗpa(t) =
Qr,out(t)−Qpv(t)

Cpa
, Ṗpv(t) =

Qpv(t)−Ql,in(t)

Cpv
.

(1)
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Volumetric flows are defined via Ohm’s law under a uni-directional valve assumption as

Ql,in(t) =
Ppv(t)− Pl(t)

Rl,in
IPpv(t)>Pl(t), Ql,out(t) =

Pl(t)− Pa(t)

Rl,out
IPl(t)>Pa(t)

Qa(t) =
Pa(t)− Pv(t)

Ra
, Qr,in(t) =

Pv(t)− Pr(t)

Rr,in
IPv(t)>Pr(t)

Qr,out(t) =
Pr(t)− Ppa(t)

Rr,out
IPr(t)>Ppa(t), Qpv(t) =

Ppa(t)− Ppv(t)

Rpv
.

(2)

Finally, stressed volumes for each compartment are calculated via a linear pressure-volume relationship of the form

Vl(t) = V 0
l +

(
Pl(t)− Pth

)
Cl(t), Va(t) = V 0

a +
(
Pa(t)−

1

3
Pth

)
Ca,

Vv(t) = V 0
v + Pv(t)Cv, Vr(t) = V 0

r +
(
Pr(t)− Pth

)
Cr(t),

Vpa(t) = V 0
pa +

(
Ppa(t)− Pth

)
Cpa, Vpv(t) = V 0

pv +
(
Ppv(t)− Pth

)
Cpv .

(3)

The evolution over a few cardiac cycles for the pressures, volumes, and flows associated with the default parameter
set is shown in Figure 1b. The values of the basic physiological quantities, capacitances, resistances, and unstressed
volumes used in this work are listed in Appendix A.

The CVSim-6 model has two sources of nonlinearity: the unidirectional valves and the time-varying left and right
ventricular capacitance, which are responsible for ventricular contraction. Both mechanisms induce stiffness in the
differential system, particularly during systole, when the opening of the aortic valve couples the left ventricular and
systemic compartments, resulting in a particularly short relaxation time (as expressed by the equivalent RC constant).
The key to achieving a correct periodic response is to carefully use implicit solvers and adaptive time-stepping.

3 Method

3.1 eXtreme Theory of Functional Connections

The Theory of Functional Connections (TFC) [27] provides the so-called constrained expression (CE) to approximate
the solution of the differential equation in a form depending on the problem constraints [31, 30, 93]. Consider an
initial value problem governing the evolution of the scalar quantity x ∈ R of the form{

dx/dt = f(x, t)

x(0) = x0

,

where the unknown solution is approximated by the constrained expression [27]

x(t,β) = g(t,β)− g(0,β) + x0,

with a user-selected function g(t,β). According to the X-TFC framework [32], the function g(t,β) belongs to the
family of single-layer random projection neural networks, with input weights and biases assigned randomly before
training. It is expressed as

g(t,β) =

L∑
j=1

βjσ(wj t+ bj) =


σ(w1 t+ b1)
σ(w2 t+ b2)

...
σ(wL t+ bL)

 β = σT β, and σT (0) =


σ(0)
σ(0)
...

σ(0)

 = σT
0 , (4)

where wj , bj and βj , j = 1, . . . , L represent the weight, bias, and output weight associated with the j-th neuron of the
single hidden layer available to the network. Nonlinearity is implemented through a user-selected activation function
σ(w t+ b) (in this work, tanh or softplus activation functions are used). A parametric approximation for the solution
of the original ODE [27] and its time derivative can thus be written as

x(t,β) = [σ − σ0]
T β + x0, (5)

ẋ(t,β) = σ̇T β. (6)

Black- or gray-box approximation problems are then formulated as determining the value of the coefficients β
from observations of the unknown solution and/or prior knowledge of the physics (i.e., differential equation). This
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problem is formulated on a number of sub-domains obtained by defining n sub-intervals of equal length h = tk− tk−1,
for k = 1, . . . , n, leading to a collection of initial value problems{

dx(k)/dt = f(x(k), t), for x(k) ∈ [tk, tk+1],

x
(k)
0 = x

(k−1)
f .

(7)

where continuity of the solution on successive intervals is imposed through the boundary conditions.
We now focus on black-box system identification for a system of m differential equations with m unknown of the

form 
ẋ1 = f1(x1, x2, . . . , xm)

ẋ2 = f2(x1, x2, . . . , xm)
...

ẋm = fm(x1, x2, . . . , xm),

(8)

in which the right-hand-side functions f1, f2, . . . , fm, are completely unknown. The first step is to build the CEs for
each state variable under consideration. For this example, we have

x1(t) = (σ − σ0)
T β1 + x1(0)

x2(t) = (σ − σ0)
T β2 + x2(0)

...

xm(t) = (σ − σ0)
T βm + xm(0)

and their derivatives


ẋ1(t) = c σ̇T β1

ẋ2(t) = c σ̇T β2

...

ẋm(t) = c σ̇T βm,

(9)

where c is a scaling factor mapping the time domain t ∈ [t0, tf ] (with t0 = 0 and tf = T ) into the activation function

domain z ∈ [z0, zf ], and it is defined as c =
zf − z0
tf − t0

. The loss functions we want to minimize are the differences

between the observed dynamics (x̃1,1, x̃2,1, . . . , x̃m,1), (x̃1,2, x̃2,2, . . . , x̃m,2) up to (x̃1,p, x̃2,p, . . . , x̃m,p) and their CEs
approximations at p time instants tk < t1 < t2 < · · · < tp < tk+1

Ldata,1(t1) = x̃1,1 − x1(t1), Ldata,1(t2) = x̃1,2 − x1(t2), . . . Ldata,1(tp) = x̃1,p − x1(tp)

Ldata,2(t1) = x̃2,1 − x2(t1), Ldata,2(t2) = x̃2,2 − x2(t2), . . . Ldata,2(tp) = x̃2,p − x2(tp)
...

Ldata,m(t1) = x̃m,1 − xm(t1), Ldata,m(t2) = x̃m,2 − xm(t2), . . . Ldata,m(tp) = x̃m,p − xm(tp).

(10)

The next step is to express the loss as a linear function of the coefficients β through the Jacobian matrix from a
Taylor expansion of the form

Ldata,i(tj ,β
k
i +∆βk

i ) = Ldata,i(tj ,β
k
i ) +∆βk

i
∂Ldata,i(tj ,β

k
i )

∂βk
i

+ o

[(
∆βk

i

)2
]
.

Since we would like to achieve a zero loss at the next iteration, we can write

Ldata,i(tj ,β
k
i )−∆βk

i (σ(tj)− σ(tk))
T = 0.

This leads to a Newton-type iteration of the form

βk+1
i = βk

i +∆βk
i , where ∆βk

i is the solution of J i ∆βk
i = Li.

When p observations are available in [tk, tk+1] for the i-th variable, a left-hand-side matrix L is obtained by stacking
vertically the gradient contributions, i.e.

J ∈ Rp×L =


σ(t1)− σ(tk)
σ(t2)− σ(tk)

...
σ(tp)− σ(tk)

 , and similarly L ∈ Rp


L1

L2

...
Lp

 ,

leading to a linear system of equations with p equations and L unknowns. For cases where p > L, the resulting
over-determined system can be solved by least-squares to determine the k-th iterate of the coefficient vector β

∆βk = −
[
J T J

]−1

J T L. (11)
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Figure 2: Schematic of the X-TFC algorithm for performing gray-box identification of the pulmonary flux
discrepancy. Input weights and biases are randomly selected. The last step solves iteratively a least-squares
problem.

A representative schematic of the gray-box X-TFC algorithm is shown in Figure 2, displaying its main steps.
The above framework is based on a loss function that only encodes model solution errors. In practice, the residuals

of the differential system (8) are directly added to the loss (10) to give

Lx1 = f1(x1, x2, . . . , xm)− ẋ1, Lx2 = f2(x1, x2 . . . , xm)− ẋ2, · · · , Lxm = fm(x1, x2, . . . , xm)− ẋm,

Ldata,x1 = x̃1 − x1, Ldata,x2 = x̃2 − x2, · · · , Ldata,xm = x̃m − xm.

where the functions f1, f2 . . . , fm are approximated with a small neural network
f1(x1, x2, . . . , xm) = cσT β̃1

f2(x1, x2, . . . , xm) = cσT β̃2

...

fm(x1, x2, . . . , xm) = cσT β̃m

,

where the constant c is unique on subdomains of equal length. In such a case, the Jacobian matrix becomes

J i =


cσ(ti) 0 0 −c σ̇(ti) 0 0

0 cσ(ti) 0 0 −c σ̇(ti) 0
0 0 cσ(ti) 0 0 −c σ̇(ti)

σ(tk)− σ(ti) 0 0 0 0 0
0 σ(tk)− σ(ti) 0 0 0 0
0 0 σ(tk)− σ(ti) 0 0 0

 ,

and the unknown vector β = [β̃1, . . . , β̃m,β1, . . . ,βm]T is computed by iteratively solving the linear system

J ∆βk = L, where J =


J 1

J 2

...
J p

 , and L =


L1

L2

...
Lp

 ,

with
Li =

[
Lx1(ti) Lx2(ti) · · · Lxm(ti) Ldata,x1(ti) Ldata,x2(ti) · · · Ldata,xm(ti)

]T
.
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Thus, by substituting them into the CEs, CE derivatives, and unknown functions of eqs. (7), (8), and (13), we obtain
an approximation for the learned dynamics [x1(t), x2(t), . . . , xm(t)]T , their variations in time [ẋ1, ẋ2, . . . , ẋm]T , and
the terms f1, f2, . . . , fm.

Remark 1. In this work, we decompose the overall domain into several sub-domains and solve a local least squares
problem on each sub-domain. Additionally, X-TFC enforces a C0 continuity condition for the solution x(t) at the
boundaries of each sub-domain, consistent with the formulation of CVSim-6 as a first-order initial value problem.
The sub-domains are small for the stiff ODEs we consider here so any discontinuity in the slope at the interfaces is
negligible.

3.2 X-TFC formulation for the CVSim-6 differential system

This section presents the X-TFC formulation used for parameter estimation in the CVSim-6 ODE system. The
parameters to be estimated generate additional unknowns in each least squares solution. For improved clarity, here
we present a step-by-step example based on (1), with unknown parameters Rpv and Ca, and data only observed for

P̃a and P̃pa. We first write the constrained expressions and their time derivatives from (5) and (6)

Pl = (σ − σ0)βl + Pl0 , Ṗl = cσ̇βl, Pa = (σ − σ0)βa + Pa0 , Ṗa = cσ̇βa,

Pv = (σ − σ0)βv + Pv0 , Ṗv = cσ̇βv, Pr = (σ − σ0)βr + Pr0 , Ṗr = cσ̇βr,

Ppa = (σ − σ0)βpa + Ppa0 , Ṗpa = cσ̇βpa, Ppv = (σ − σ0)βpv + Ppv0 , Ṗpv = cσ̇βpv.

(12)

We can now assemble the loss function from the residuals of the 6 ODEs and 2 observed pressures (P̃a, P̃pa), as follows

Ll ≡ Ṗl −
Ql,in −Ql,out −

(
Pl − Pth

)
Ċl(t)

Cl(t)
, La ≡ Ṗa − Ql,out −Qa

Ca
, Lv ≡ Ṗv − Qa −Qr,in(t)

Cv

Lr ≡ Ṗr −
Qr,in −Qr,out −

(
Pr − Pth

)
Ċr

Cr(t)
, Lpa ≡ Ṗpa − Qr,out −Qpv

Cpa
, Lpv ≡ Ṗpv − Qpv −Ql,in

Cpv

Ladata ≡ P̃a − Pa, Lpadata ≡ P̃pa − Ppa

(13)

such that
L = [Ll La Lv Lr Lpa Lpv]

T . (14)

The unknown vector β is composed of the unknown output weights of the neural network and the parameters to
estimate, such as

β = [βl βa βv βr βpa βpv Rpv Ca]
T . (15)

By computing the derivatives of the loss functions with respect to the unknowns, we get the Jacobian matrix

J =



Ll

βl

Ll

βa
0 0 0

Ll

βpv
0 0

La

βl

La

βa

La

βv
0 0 0 0

La

Ca

0
Lv

βa

Lv

βv

Lv

βr
0 0 0 0

0 0
Lr

βv

Lr

βr

Lr

βpa
0 0 0

0 0 0
Lpa

βr

Lpa

βpa

Lpa

βpv

Lpa

Rpv
0

Lpv

βl
0 0 0

Lpv

βpa

Lpv

βpv

Lpv

Rpv
0

0
Ladata

βa
0 0 0 0 0 0

0 0 0 0
Lpadata

βpa
0 0 0



(16)

Finally, we can compute the vector of the unknowns using (11), which provides both the estimated parameters Ca

and Rpv, and the pressure profiles from the constrained expressions (12).
As previously discussed in Section 3.1, we use domain decomposition in time to formulate the estimation problem

on small, sequentially ordered, non overlapping subdomains. Thus, X-TFC is iteratively applied to each subdomain,
selecting the initial conditions so variables are continuous across subdomain interfaces. Final parameter estimates
are obtained as averages over point values obtained at each subdomain. Missing terms in the differential equations
or any model discrepancies are estimated by adding a new neural network, similar to how the state variables are
estimated. For more details, interested readers can refer to the gray-box X-TFC formulation in [61].
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3.3 Uncertainty Quantification

This section formalizes physics-informed state and parameter estimation for dynamical systems under total uncer-
tainty, i.e., aleatoric, epistemic, and model-form uncertainty as defined in Section 1. Consider a statistical model of
the form

x̃(t) = x(t,β) + x0 + ϵ(t),

where x̃(t) is the underlying true process, x(t,β) is a gray-box X-TFC approximation and ϵ(t) ∼ N (0,C) is an
heteroscedastic noise model with diagonal covariance matrix, where the square root of the diagonal elements are
computed as

σi = 0.02 ·max
t

(|x̃i(t)|), for i = 1, . . . ,m, (17)

and reported in Table 1 for all CVSim-6 state variables. Let us also assume the quantity x(t,β) to be an approximation

Table 1: Noise standard deviations for pressure data.

Variable Maximum value (mmHg) σi (mmHg)

Pl 103.6 2.07
Pa 103.0 2.06
Pv 7.3 0.14
Pr 20.4 0.41
Ppa 20.0 0.40
Ppv 12.1 0.24

for the solution of the system of differential equations (1). These equations provide only an approximation of the true
circulatory response of an individual, and differ from the true response by a vector of model-form error components
expressed as

ẋ1 = f1(x1, x2, . . . , xm) + h1(x1, x2, . . . , xm, y1, y2, . . . , yn)

ẋ2 = f2(x1, x2, . . . , xm) + h2(x1, x2, . . . , xm, y1, y2, . . . , yn)
...

ẋm = fm(x1, x2, . . . , xm) + hm(x1, x2, . . . , xm, y1, y2, . . . , yn),

or in compact form ẋ = f(x) + h(x,y).

We first assume that the variables x are sufficient to describe the dynamics for the selected quantities of interest, or,
in other words, h(x,y) = h(x). This leads to a modified X-TFC approximation with additional coefficients βh used
to approximate the discrepancy term h, leading to the modified statistical model

x̃(t) = x(t,β,βh) + x0 + ϵ(t), (18)

which contains all three uncertainty mechanisms mentioned above.
The term ϵ(t) in (18) accounts for the irreducible aleatoric uncertainty, responsible for variability in the output

of repeated model evaluations. By epistemic uncertainty, we refer to the characterization of the variability in the
predicted x due to changes in the coefficients β, resulting from the random selection of the weights w and biases
b in (4), and variability in the observed data consistent with the assumed noise model, which also informs the
variability in the initial condition x0 (perturbed using a zero-mean Gaussian noise with standard deviations in (17)).
Additionally, model-form uncertainty consists of epistemic uncertainty on the discrepancy coefficients βh, induced by
noise in the pressure data and the random selection of the weights wh and biases bh.

To quantify uncertainty in the reconstructed X-TFC response, we use a simple, scalable, yet effective Monte
Carlo approach, which we refer to as MC X-TFC. Multiple instances of X-TFC are trained independently based on
synthetic data with added random noise from a known distribution, each with randomly initialized weights and biases.
MC X-TFC shares similarities with deep ensembles, as proposed in [20], which have proven to be highly effective for
uncertainty quantification in neural networks, even when such uncertainty arises solely due to the random initialization
of weights and biases (e.g., Refs. [94, 95, 96, 97, 1, 11, 98, 23, 99]). In the next section, we use a simple system to
compare the performance of X-TFC and PINNs in the quantification of total uncertainty.

Remark 2. The examples discussed in the next sections show how aleatoric, epistemic, and model-form uncertainty
are not independent. Aleatoric uncertainty is quantified a priori according to a known probability density and su-
perimposed on synthetically generated data. As such, it is only affected by assumptions related to the precision of
the measurement devices used to quantify blood pressures, flows, and volumes. However, its volatility directly affects
epistemic and model-form uncertainty in a non-linear fashion.
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4 Introductory example

As an introductory example, we examine the decomposition of total prediction uncertainty produced by MC X-TFC
when applied to the solution of a simple ODE system. The same decomposition is also evaluated using physics-
informed neural networks, specifically the deep ensemble method for PINNs [1, 11] and Bayesian PINNs [21]. In
Bayesian PINNs, a posterior distribution of the network parameters is first formulated by conditioning on both data
and model equations. Samples from such posterior are then generated by Hamiltonian Monte Carlo (HMC) [100],
and a posterior predictive distribution is finally identified through forward network evaluations.

4.1 Decomposition of total uncertainty
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Figure 3: Decomposition of total uncertainty (epistemic and aleatoric) in the reconstruction of a harmonic
ODE solution from noisy data using MC X-TFC. B denotes the bound of the uniform distribution U [−B,B]
from which the input weights and biases of the hidden layer are randomly initialized. For comparison, results
from ensemble PINN and B-PINN are also reported. The estimated values of k are presented in Table 2.
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Figure 4: Reconstructed x(t) and epistemic uncertainty computed using MC X-TFC for a varying degree of
physics-informed regularization, where λ1 in (20) denotes the penalty coefficient in the loss function. Both
the error in the predicted mean and the predicted uncertainty grow significantly as a result of increasingly
relying on (missing) data as λ1 is reduced.

9



Consider the following initial value problem
dx(t)

dt
=

cos(kt)

k
,

x(0) = x0 = 10,
(19)

with exact solution x(t) = sin(kt)/k2 + x0, and k > 0 is a constant. Also consider an inverse problem where k is
unknown, and N noisy realizations of the solution x are available at irregular time intervals, resulting in a dataset
{ti, xi}Ni=1. To this end, we use MC X-TFC to simultaneously perform three tasks: reconstruct x(t) from partial
observations, infer the value of k from both the data and the underlying ODE (19), and quantify the total uncertainty
using 1, 000 MC repetitions.

The reconstructed x(t) is shown in Figure 3, whereas k is estimated as 0.9840 ± 0.0536, which agrees well with
the exact value of k = 1. Also, both the reconstructed MC X-TFC solution and its uncertainty are similar to those
produced by the ensemble PINN and B-PINN approachs. The proposed example only considers data in [0, 5), so that
extrapolation for t > 5 mostly relies on satisfaction of (19) (i.e., physics-informed regularization) using the predicted
value of k. As expected, quantified epistemic uncertainty is smaller in t ∈ [0, 5) than in t ∈ [5, 10) due to the uneven
distribution of the available data. In addition, the predicted mean of x(t) agrees well with the exact solution, and
their difference is appropriately bounded by the predicted uncertainty, as shown in Figure 3.

We also investigate how the choice of the random initialization of weights and bias in the hidden layer affects
the predicted uncertainty. To do so, we fix the number of neurons in the hidden layer to m = 20, and randomly
draw initial choices for weights and biases from U [−B,B] using either B = 1 or B = 15. A larger B results in larger
epistemic (and total) uncertainty, as shown in Figure 3. Aleatoric uncertainty is determined by the noise model and
hence irreducible, and hence is the same across different methods and/or models. Finally, the estimated value of k
and a computational cost comparison between the different approaches are reported in Table 2.

Table 2: Estimated values of k (exact value k = 1) and computational costs of different methods whose
results are shown in Figure 3. Estimates of k are reported as µ ± SD, where µ and SD are the predicted
mean and standard deviation, respectively. Hyperparameters for X-TFC and PINN-based approaches can
be found in Section B.

Methods Inference of k Wall time (seconds)

MC X-TFC (B = 1) 0.9840± 0.0536 17.12
MC X-TFC (B = 15) 0.9765± 0.0747 5.42
Ensemble (10) PINNs 0.9313± 0.0317 55.28

B-PINNs 0.9595± 0.0354 28.29

X-TFC also allows us to control the relative amount of physics- versus data-informed regularization. To demon-
strate this capability, we apply different penalty coefficients to the two main components of the loss function, i.e.

L = λ1Leq + λ2Ldata, (20)

where λ1 and λ2 are associated with the physics- and data-informed loss component, respectively. Specifically, we
study the effect of a varying degree of physics-informed regularization under unevenly distributed data. When solely
relying on data (small λ1), the prediction error and corresponding epistemic uncertainty significantly increase, as
expected, in regions where observations are missing (see Figure 4).

4.2 System identification under model-form uncertainty

In this section, we assume that the differential equation (19) is an approximation of a true underlying non-linear
model, expressed as the initial value problem 

dx(t)

dt
=

x cos(kt)

k
x(0) = x0 = 10,

(21)

which is used as the data generating process, but whose formulation remains unknown. This scenario is a source of
model-form uncertainty. We deal with this situation by modifying (19) with the addition of an unknown discrepancy,
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Figure 5: Quantification of epistemic uncertainty in the reconstructed solution of a harmonic equation from
an inconsistent dataset of varying size. The first row presents an estimate for the solution x(t) while the
second row represents an estimate for the discrepancy δ(t). The predicted (epistemic) uncertainty of δ(t)
is used to characterize model-form uncertainty. On the leftmost plots, we present the result obtained by
ignoring δ(t), and using the misspecified differential equation, hence demonstrating the use of MC X-TFC
in the context of model misspecification.

which is learnt, as discussed in Section 3.1 and Figure 2, to compensate for the inconsistency between the linear and
non-linear models, such as 

dx(t)

dt
=

cos(kt)

k
+ δ(t)

x(0) = x0 = 10.
(22)

We note that the exact solution is x(t) = x0 exp[(1/k
2) sin(kt)] and hence the discrepancy can be computed exactly

as δ(t) = (x(t)− 1)[cos(kt)/k].
Results are presented in Figure 5, where the reconstructed x(t) and discrepancy δ(t) are shown in the first row

and second row, respectively, together with the quantified uncertainty. On the leftmost plot in Figure 5, we present
the consequence of utilizing the misspecified model directly (with k being unknown and learnable) while ignoring
the discrepancy, i.e. δ(t) = 0, ∀t ∈ [0, 10]. As shown, MC X-TFC fails to fit the data, as the underlying equation
does not agree with the available observations. Modeling the discrepancy δ(t) with an additional network allows the
equation loss Leq and the data loss Ldata to be simultaneously minimized, so that the data of x are fitted and the
(corrected) equation is satisfied [23]. From Figure 5, we can see that the discrepancy is also accurately captured
when irregularly sampled and noisy data are available. As the number of data decreases, the accuracy of both the
reconstructed x(t) and inferred δ(t) is reduced, and the errors between their predicted mean and true solution are
bounded by the predicted uncertainties. We note that in this case, we fix k = 1 to avoid solution multiplicity brought
by the unknown parameter k and unknown discrepancy δ(t). This is a modeling choice which interacts with the
quantification of model-form uncertainty. This aspect will be further discussed in Section 5.2.

5 Results for the CVSim-6 cardiovascular model

We consider two applications of MC X-TFC to the CVSim-6 cardiovascular system. The first consists of an ablation
study, where we are interested in determining how much data is needed for MC X-TFC to accurately estimate
states related to synthetically generated time histories of blood pressure, flow, and volume while, at the same time,
estimating a pulmonary resistance and a systemic compliance parameter. In addition, we would like to quantify the
total uncertainty (aleatoric plus epistemic) associated with these predictions.

The second application focuses on model-form uncertainty, particularly fitting data with an inadequate model.
This situation arises very often with lumped parameter models in hemodynamics, for example, when using perfect
unidirectional valves without accounting for possible regurgitation [101], when neglecting flow contributions from
collateral flow, or when excluding atria or organ-level compartments from the model.
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5.1 Ablation study under combined aleatoric and epistemic uncertainty

The MC X-TFC framework allows to naturally combine information from the available data and the CVSim-6 model
equations. Therefore it offers an ideal testbed for determining the minimum amount of data needed to estimate
states or parameters of a given system, and also to quantify the uncertainty associated with these estimates. To
demonstrate this process in the context of computational physiology, we perform an ablation study where pressure
data is progressively removed under physics-informed regularization, and first one and then two parameters are
simultaneously estimated. We then report the estimated pressure, flow, and volume traces and their variability under
combined aleatoric and epistemic uncertainty. This analysis is conducted across six scenarios, as outlined in Table 3,
and considers data acquired on six pressures and two parameters – the pulmonary venous resistance and the systemic
arterial compliance – since they are clinically relevant in the assessment of cardiovascular function.

Table 3: Matrix of measurements and parameters used in the ablation study.

Type Qty Sc1 Sc2 Sc3 Sc4 Sc5 Sc6

Measurements

Pl ✓ ✓ ✗ ✗ ✗ ✗
Pa ✓ ✓ ✓ ✓ ✓ ✓
Pv ✓ ✓ ✓ ✓ ✗ ✗
Pr ✓ ✓ ✓ ✗ ✗ ✗
Ppa ✓ ✓ ✓ ✓ ✓ ✓
Ppv ✓ ✗ ✗ ✗ ✗ ✗

Parameters
rpv ✗ ✗ ✗ ✗ ✗ ✗
ca ✓ ✓ ✓ ✓ ✓ ✗

5.1.1 State and parameter estimation under total uncertainty

Figure 6 shows the mean and standard deviation for the estimated systemic arterial and pulmonary venous pressures
under total uncertainty. After a few cardiac cycles, the Monte Carlo standard deviation of the two pressures reduces
to approximately 3.0 and 0.5 mmHg for Pa and Ppv, respectively, with values that are only marginally affected by the
difference of data availability across scenarios. Knowledge of the correct underlying equations allows MC X-TFC to
identify the system’s response under limited uncertainty, even when simultaneously estimating unknown parameters.
However, the loss of information created by the missing parameters needs to be compensated by providing pressure
data on the same compartments (systemic and pulmonary, respectively).
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Figure 6: Standard deviations and mean values for reconstructed pressures under aleatoric and epistemic
uncertainty. The mean solution for Sc1 and the pressure data are also shown in gray.

It is also evident from Figure 6 that the amount of variability reduces with time before reaching a periodic behavior
for all scenarios except scenario 6. This is the result of a filtering process due to physics-informed regularization of
random initial conditions, as suggested by Equation (7). In other words, for Sc1-Sc5, the CVSim-6 equations are alone
sufficient to reconstruct the physiological response, and availability of noisy data provides redundant information that
is distilled over time. This is confirmed by the smooth time history of the standard deviation for the pressure state
variables under epistemic uncertainty. When instead two parameters are estimated in Sc6, pressure data becomes
essential to the estimation process, as confirmed by the more noise-like time history for the standard deviation under
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epistemic uncertainty. In summary, the transition between Sc5 and Sc6 represents a switch from an estimation
process, where the physics and data compete, to a process where the physics and data cooperate.

(a) Noise correlation for scenario 1.

(b) Noise correlation for scenario 5.
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Figure 7: Time snapshots of correlation matrices for pressure unknowns.

To further understand how the statistical structure of the noise is affected by this filtering process, the noise
correlation matrix for all compartmental pressures is also shown in Figure 7. Correlations are representative of three
solution snapshots, at the beginning, half-time, and final simulation time, which correspond to early systole, diastole,
and systole, respectively. Correlation matrices are shown for scenarios 1 and 5 in Figure 7a and 7b, respectively. The
first snapshot confirms that noise in the initial condition is independently applied on each pressure. The second and
third snapshots (see Figure 7c) show a high correlation between all pressure components except Ppa in diastole and
(Ppa, Pr) in systole. The smooth pressure reconstruction achieved by X-TFC results in highly correlated noise among
different pressure components, facilitated by the communication between compartments following valve openings. In
contrast, the lack of correlation between Ppa and Pr is attributed to variability in the Rpv parameter, which fluctuates
as estimates are updated over time. Unlike Sc1 and Sc5, in Sc6 the noise in different pressure components remains
uncorrelated over time (not shown).

In scenarios 1 to 5, the CoV is approximately 3% for Pa, Pv and Ppa, 6% for Pl and Pr (due to higher measurement
noise) and 5% for Ppv, as a result of the estimation of rpv in Sc1 to Sc5. CoV is instead below 2% for all volumes except
for pulmonary veins where it slightly above 2.5%. Flow uncertainty is sensibly higher, with CoV for the systemic flow
(i.e., systemic arterial flow, left ventricular outflow, and right ventricular inflow) equal to approximately 2.5%, 8.5%
for the pulmonary flow CoV, except for the right ventricular outflow where it is approximately 13.5%. Since flows
are estimated by minimizing a residual that contains derivatives of a pressure approximated from noisy observations,
this higher variability is expected.

A regime shift is observed for Sc6, where the arterial compliance ca is also estimated as part of the solution process.
In this scenario, the uncertainty doubles for the left and right ventricular pressures and increases substantially for the
left ventricular volume, inflow, and outflow. Satisfaction of noisy pressure measurements on the systemic pressure
(remember that only Pa and Ppa are observed in this scenario) can be realized by either changing the left ventricular
volume or the aortic compliance (whose estimated value changes with time). If this was a Bayesian estimation
problem, we would say that the posterior marginal of left ventricular volume and aortic compliance shows a negative
correlation due to a lack of identifiability from pressure data.

We also investigate the ability of MC X-TFC to estimate physiologically relevant parameters. Parameter estimates
are computed on a per-simulation basis and averaged over a number of Monte Carlo runs, as shown in Figure 9. Final
averages agree well with true parameter values.

Finally, we analyze how total uncertainty can be decomposed into its aleatoric and epistemic components, con-
sidering only scenarios 1 and 5. Figure 10 illustrates this decomposition for Pa, Pl, Qli, and Qlo. The oscillating
nature of the total uncertainty is consistent with its calculation as a Monte Carlo estimate based on 100 samples.
For systemic arterial and left ventricular pressures, the uncertainty is mostly epistemic, except at diastole, where the
signal-to-noise ratio is smaller. Flow and volume quantities of interest are estimated from MC X-TFC as a result of
the CVSim-6 equations and observed data. As a result, any characterization of aleatoric uncertainty comes directly
from assumptions about the precision of the tool or device used to measure such quantities. In Figure 10, we highlight
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Figure 8: Ablation study summary. Time-average coefficients of variations (last two cardiac cycles) for
pressure (top), volume (center), and flow (bottom) quantities of interest and all scenarios.
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Figure 9: Estimates of pulmonary resistance and aortic compliance for Scenarios 5 and 6.

this by assuming infinite precision, causing epistemic and total uncertainty to coincide. In other words, epistemic
uncertainty in derived variables (e.g., blood flows and volumes) does not affect the estimation process, and can be
added in post-processing.

The results for all scenarios are obtained with subdomains of length 0.001 seconds, 5 collocation points per
subdomain, and 5 neurons. With this setup, the computational time is about 6 seconds per MC realization and
approximately 10 minutes for quantifying total uncertainty through 100 MC repetitions. Therefore, the fast execution
times for MC X-TFC and the fact that no offline training is required make it ideal for online state and parameter
estimation.
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Figure 10: Decomposition of total uncertainty in Sc1 and Sc5 for selected pressure and flow QoIs. For
demonstration purposes, we have assumed the possibility of measuring flow with infinite precision, resulting
in negligible aleatoric uncertainty.

5.2 Misspecified compartment: linear approximation of non-linear pulmonary
resistance

In this section, we investigate an important aspect of simulating circulatory systems with lumped parameter models,
that typically provide an oversimplified representation of the physiological response based on linear RLC circuits,
ideal unidirectional valves, and that often selectively consider the presence of organ-level compartments, depending
on the application. With reference to the CVSim-6 system, we consider a specific equation from (2) governing flow
in the pulmonary compartment

Qlin,pv(t) =
Ppa(t)− Ppv(t)

Rpv
. (23)

Due to the large number of branches that typically characterize the pulmonary arterial tree, we consider this linear
relation to be an approximation of the more accurate nonlinear one

Qnonlin,pv(t) =
Ppa(t)− Ppv(t)

Rpv(Qpv)
, (24)

where a nonlinear resistance is added, which accounts for the larger contribution of minor pressure losses at bifurca-
tions for an increasing pulmonary flow (see Figure 1). To account for the difference between a linear and non-linear
pressure-flow behavior, we use the flexibility of MC X-TFC to add a discrepancy term δ(t,β) to (23), such that

Qdisc,pv(t) =
Ppa(t)− Ppv(t)

Rpv
+ δ(t,β), (25)

and estimate this term from the available pressure data plus the satisfaction of the CVSim-6 differential equations,
by approximating it with another NN, such as

δ(t,β) = σβδ. (26)

Then, we verify the capability of MC X-TFC to correctly estimate the pulmonary flow discrepancy under deterministic
conditions and both aleatoric and epistemic uncertainty. In the following, we will refer to equations (23), (24) and (25)
as the linear, nonlinear, and linear + discrepancy model, respectively.

The values of linear and non-linear resistance for this application are selected with reference to the pulmonary
arterial anatomy shown in Figure 11a. In Table 11b we report the equivalent model resistance under mean, systolic
and diastolic flow, where the strong dependence of resistance from flow is evident. Note how the resistance under
mean flow is very similar to the value of Rpv in Table 6. Therefore, we consider a linear model with the default
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(a) Selected pulmonary arterial geometry.

Qty Qpv [L/min] Rpv [Barye·s/ml]

Diastolic 0.12 13.0
Mean 5.8 104.9
Systolic 19.8 327.8

(b) Pulmonary flows and resistance from three-
dimensional rigid wall CFD analysis.

Figure 11: Determination of nonlinear pulmonary resistance from three-dimensional arterial tree model.

resistance Ppv in Table 6, and use linear interpolation to determine a flow-dependent resistance to be used in the
nonlinear model.

We then investigate the ability of MC X-TFC to recover the correct discrepancy under ideal noiseless measurements
and complete knowledge of the CVSim-6 equations. We generate ideal data from the true nonlinear model and
reconstruct the physiological response using the linear and discrepancy models. The resulting difference in arterial
pressure, pulmonary venous flow, and right ventricular volume between these three models is illustrated in Figure 12.
Since the linear resistance was selected equal to the resistance at mean flow, and the linear and nonlinear models have
identical capacitance, the difference in response between the two models remains confined to the pulmonary venous
compartment. Therefore, under ideal noiseless conditions, X-TFC correctly recovers the flow discrepancy, as shown
in Figure 12.
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Figure 12: Difference in arterial pressure (left), pulmonary venous flow (center) and right ventricular volume
(right) between true nonlinear model, and linear model with and without discrepancy, under ideal noiseless
data. The plot on the left and right show how the use of a misspecified linear resistor only affects flow and
pressure in the pulmonary compartment, under noiseless data synthetically generated by the true underlying
non linear model. As shown in the central figure, the flow estimated by a misspecified linear model overes-
timates the true systolic flow as a result of considering a constant rather than flow dependent pulmonary
resistance. The central figure also shows how the discrepancy learned by X-TFC correctly restores the correct
pulmonary flow.

We now consider MC X-TFC reconstruction under total uncertainty, including model-form uncertainty. Results
for pulmonary arterial pressure and pulmonary venous flow are reported in Figure 13. While no bias was observed
for the linear model under ideal conditions, adding noise to the pressure observations induces bias consisting of a
moderate increase in the pulmonary arterial pressure for the linear model. However, once a discrepancy is introduced
and estimated, the bias is practically eliminated, and the total uncertainty in the pressure almost coincides with the
uncertainty of the true nonlinear model. Conversely, the mean estimated pulmonary flow shows significant oscillations
and is associated with substantial total uncertainty, even nonphysical negative values. This is due to two factors:
the first relates to modeling assumptions in the CVSim-6 model, which lacks any form of inertance, allowing sudden
variations in flow to go unopposed by the system. The second relates to the regularity of the flow discrepancy, which
is governed by the equation of a capacitor, which includes the derivative of pressure reconstructions for Ppa and
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Ppv that are affected by significant oscillations due to the stiffness of CVSim-6 at systole. In other words, modeling
assumptions combined with the specific choice of the variable chosen to represent the discrepancy directly affect the
quantification of model-form and total uncertainty.
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Figure 13: Reconstructed pulmonary arterial pressure (top) and pulmonary venous flow (bottom) under
total uncertainty, for true nonlinear (second column), misspecified linear (third column) and linear plus
discrepancy (right) model formulations. The first column shows a superposition of all average reconstructions
and associated 5-95% confidence regions, whereas the same reconstructions and confidence regions are shown
separately on the other columns for improved clarity. For the pressure predictions shown in the top row,
the available data are also plotted using gray crosses. Pressure bias due to a misspecified linear pulmonary
resistance (top row) is significantly reduced with the addition of a discrepancy term as shown in (25).
However, stiffness in the CVSim-6 ODE equations and lack of intertia result in large confidence intervals
and even non physiological negative pulmonary flow (bottom row).

A simple remedy is to add an inductor equation for the flow discrepancy of the form

δ̇(t) =
Ppa(t)− Ppv(t)

Lpv
, (27)

where Lpv represents the inductance of the pulmonary flow discrepancy, for this case chosen as Lpv = 10 rpv, and the
δ(t) is now approximated via a new TFC constrained expression as

δ(t,β) = (σ − σ0)βδ + δ0, (28)

where the initial condition δ0 is arbitrarily set to 0. This addresses two problems at the same time by both adding
inertia and, therefore, improving the realism of the CVSim-6 model, and posing additional conditions on the regularity
of the flow discrepancy. We refer to this new model configuration as CVSim-7 due to the additional differential
equation introduced for the discrepancy. The results are shown in Figure 14, where the discrepancy is able to reduce
the bias in Ppa while producing a physiologically consistent pulmonary venous flow.

The results for the discrepancy models are obtained with subdomains of length 0.01 seconds, 10 collocation points
per subdomain, and 10 neurons. Computing the average discrepancy requires a computational time of about 6 seconds
per MC realization, totaling about 10 minutes for the whole simulation and total uncertainty quantification for 100
MC realizations. Again, MC X-TFC confirms its robustness and efficiency for online estimation under model-form
uncertainty and does not require offline training.

6 Discussion and conclusions

This study focuses on characterizing aleatoric, epistemic, and model-form uncertainty in the physics-informed recon-
struction of synthetic responses generated by ODE systems. We first illustrate the performance of PINNs, B-PINNs,
and MC X-TFC on a single-equation differential model where the solution is reconstructed under total uncertainty,
i.e., combining aleatoric, epistemic, and model-form uncertainty. We then use MC X-TFC to estimate the physiologic
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Figure 14: Reconstructed pulmonary arterial pressure (top) and pulmonary venous flow (bottom) under total
uncertainty, for true nonlinear (second column), misspecified linear (third column) and linear plus discrepancy
(right) model formulations for the system with additional inertia. The first column shows a superposition
of all average reconstructions and associated 5-95% confidence regions, whereas the same reconstructions
and confidence regions are shown separately on the other columns for improved clarity. For the pressure
predictions shown in the top row, the available data are also plotted using gray crosses. Pressure bias due
to a misspecified linear pulmonary resistance (top row) is still reduced with the addition of a discrepancy
term, this time formulated as an inductance equation in (27). Additionally, a more physiologically consistent
discrepancy formulation greatly reduces total uncertainty in pulmonary flow (bottom row).

response of the CVSim-6 compartmental model, first considering aleatoric and epistemic uncertainty in an ablation
study, and then adding model-form uncertainty to consider misspecification in the pulmonary compartment. MC
X-TFC produces accurate reconstructions with limited uncertainty (up to ∼3 mmHg on systemic arterial pressure,
and generally smaller than variability in the clinical assessment of pressures, flows, and volumes), with fast execution
and without requiring offline training.

By progressively removing data and estimating an increasing number of parameters under a correctly formulated
model, we observe the transition from a competitive to a cooperative interaction between data-informed and physics-
informed approximation of the true underlying ODE solution. In addition, we have shown that the specific formulation
of an unobserved discrepancy term, introduced to compensate for model misspecification, strongly affects model-form
uncertainty. While this issue can be mitigated by adding data, we chose to provide additional regularization through
physics by adding an inductance, which injects inertia to the CVSim-6 system, while also posing additional conditions
on the rate of change of the pulmonary flow. This reduces estimation bias in the pulmonary arterial pressure, and
also results in a physiologically sound estimate of the pulmonary flow.

It’s important to note that this study focuses on the online reconstruction of an ODE solution based on equations
and data, differing from other parameter estimation approaches that rely on offline processes. In those approaches,
offline work is used to learn the forward or inverse map between model parameters and outputs, or to establish prior
or posterior information that informs the online process. This distinction is evident from the results of Sc6 in our
ablation study. When two parameters need to be estimated jointly, the information removed from the system must be
compensated by data from co-located compartments to ensure the underlying physical response is well-defined. The
independence between compartments and the lack of inertia in the CVSim-6 equations seem to limit the number of
parameters that can be estimated from a given dataset, relying on correlations between parameters or redundancies in
model components. This observation suggests potential future work in extending X-TFC with a hybrid offline/online
estimation approach.

While this study focuses on understanding the interaction between physics-informed regularization and total
uncertainty for compartmental models in physiology, several limitations may restrict the ability to generalize these
findings to more realistic conditions. First, we consider a Gaussian noise model on top of synthetically generated
data instead of real patient-specific data. Second, some of the pressure measurements considered available in our
study would be difficult to continuously measure in patients, or would only be available as time statistics, e.g.,
as mean, systolic or diastolic values. Third, the CVSim-6 is a relatively simple model for the human physiology
and does not account for a number of important physiological mechanisms, including a four-chamber hearth model,
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cardiorespiratory coupling or pressure autoregulation mechanisms. Finally, the range of model parameter considered
in this study relate to healthy conditions in human adults, but the model and X-TFC estimation process could be
adapted to specific conditions and measurement scenarios to inform on specific conditions.

Future work will focus on using MC X-TFC to estimate a larger number of physiologically relevant parameters,
more complex models, or on applications to ICU patients, where clinical data is continuously acquired from multiple
sensors. In such scenario, fast online estimation informed by continuously acquired clinical signals is crucial for
enhancing model-based patient monitoring and assessing critical conditions.
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A Default parameters from the CVSim-6 cardiovascular model

This section provides a list of default CVSim-6 model parameters, including basic parameters (Table 4), and values of
capacitance (Table 5), resistance (Table 6) and unstressed volume (Table 7), corresponding to a healthy physiological
response.

Table 4: Basic physiological quantities.

Num. Description Ref. Unit

1. Heart rate (Hr) 72.00 (bpm)
2. Transthoracic pressure (Pth) -4.00 (mmHg)
3. Systolic ratio per cardiac cycle (rsys) 0.33 −

Table 5: Capacitances of each compartment.

Num. Description Ref. Unit

4. Left ventricular diastolic capacitance (Cl,dia) 7.50 · 10−3 (mL/Barye)
5. Left ventricular systolic capacitance (Cl,sys) 3.00 · 10−4 (mL/Barye)
6. Arterial capacitance (Ca) 1.20 · 10−3 (mL/Barye)
7. Venous capacitance (Cv) 7.50 · 10−2 (mL/Barye)
8. Right ventricular diastolic capacitance (Cr,dia) 1.50 · 10−2 (mL/Barye)
9. Right ventricular systolic capacitance (Cr,sys) 9.00 · 10−4 (mL/Barye)
10. Pulmonary arterial capacitance (Cpa) 3.23 · 10−3 (mL/Barye)
11. Pulmonary venous capacitance (Cpv) 6.30 · 10−3 (mL/Barye)

Table 6: Resistance of each compartment (Outflow resistance equal to the inflow resistance of the following
compartment.)

Num. Description Ref. Unit

12. Left ventricular input resistance (Rl,in) 13.33 (Barye·s/mL)
13. Left ventricular output resistance (Rl,out) 8.00 (Barye·s/mL)
14. Arterial resistance (Ra) 1333.22 (Barye·s/mL)
15. Right ventricular input resistance (Rr,in) 66.66 (Barye·s/mL)
16. Right ventricular output resistance (Rr,out) 4.00 (Barye·s/mL)
17. Pulmonary venous resistance (Rpv) 106.66 (Barye·s/mL)
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Table 7: Unstressed volume of each compartment.

Num. Description Ref. Unit

18. Unstressed left ventricular volume (V 0
l ) 15.00 (mL)

19. Unstressed arterial volume (V 0
a ) 715.00 (mL)

20. Unstressed venous volume (V 0
v ) 2500.00 (mL)

21. Unstressed right ventricular volume (V 0
r ) 15.00 (mL)

22. Unstressed pulmonary arterial volume (V 0
pa) 90.00 (mL)

23. Unstressed pulmonary venous volume (V 0
pv) 490.00 (mL)

B Details of methods compared in the introductory example

This section provides details of methods (the MC X-TFC method, the ensemble PINNs method, and the B-PINNs
method) compared in Section 4. 1, 000 Monte Carlo simulations were performed for the MC X-TFC method, 10
PINNs were independently trained in the ensemble PINNs method, and 1, 000 posterior samples were taken in
Hamiltonian Monte Carlo (HMC) along with 2, 000 burn-in samples for satisfactory acceptance rate [21, 11] in the
B-PINNs method. The open-source NeuralUQ library [11] was used for fast and convenient implementations of HMC
in B-PINNs. We note that although in this work, the training of X-TFC and PINNs was conducted sequentially, both
the MC X-TFC and the ensemble PINNs methods are able to be accelerated by leveraging advanced vectorization
and/or parallelization techniques for fast uncertainty quantification [1]. In the MC X-TFC method, the width of the
hidden layer was set to 20, while in the ensemble PINNs and the B-PINNs methods, the neural network was chosen
to have one hidden layer with 50 neurons for acceptable results. The activation function was set to the hyperbolic
tangent in all methods. In the training of PINNs, the Adam optimizer [102] with 1× 10−3 was employed for 30, 000
iterations. The comparison was performed on a standard laptop CPU (13th Gen Intel(R) Core(TM) i9-13900HX
with 2.20 GHz processor).

C Ablation study of MC X-TFC in quantifying epistemic uncer-
tainty for the harmonic ODE solution

In this section we conduct an ablation study of the proposed method, i.e. MC X-TFC, in quantifying epistemic
uncertainty for the example presented in Section 4.1. Specifically, we investigate the effect of the number of Monte
Carlo simulations (denoted as M), the number of neurons in the hidden layer (denoted as m), the nonlinear activation
function, and the initialization method of the weights and biases in the hidden layer. Here we investigate five
activation functions (apart from the hyperbolic tangent): logistic function, sine function, inverse tangent function,
Softplus activation function, and Swish activation function [103]. The baseline parameters used in all the examples in
the paper are M = 1, 000, m = 20, hyperbolic tangent and the uniform distribution on [−1, 1] (denoted as U [−1, 1]),
unless stated otherwise.

As shown in the first three rows of Figure 15, results of MC X-TFC are consistent across different numbers of
Monte Carlo simulations, numbers of neurons in the hidden layer, and activation functions. The fourth row of Figure
15 presents results of MC X-TFC with the following five random initialization distributions: the uniform distribution
U [−1, 0], the uniform distribution U [−10, 0], the normal distribution N (0, 12), the normal distribution N (0, 102),
and exp(2) where exp(µ) denotes the exponential distribution with mean µ. We note that the random initialization
distribution U [−1, 0] only yields non-positive weights and biases in the hidden layer, while exp(2) generates only
strictly positive values. Nonetheless, they are able to produce results similar to the one with U [−1, 1] (presented
in Figure 3), demonstrating that MC X-TFC is robust to the choice of random initialization. However, we observe
that the predicted epistemic uncertainty is sensitive to the scale of randomly initialized weights and biases, which is
consistent with results presented in Section 4.1, i.e., a larger scale leads to a larger epistemic uncertainty.
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[22] Zongren Zou, Tingwei Meng, Paula Chen, Jérôme Darbon, and George Em Karniadakis. Leveraging vis-
cous Hamilton-Jacobi PDEs for uncertainty quantification in scientific machine learning. arXiv preprint
arXiv:2404.08809, 2024.

[23] Zongren Zou, Xuhui Meng, and George Em Karniadakis. Correcting model misspecification in physics-informed
neural networks (PINNs). Journal of Computational Physics, 505:112918, 2024.

[24] Zongren Zou, Xuhui Meng, and George Em Karniadakis. Uncertainty quantification for noisy inputs-outputs
in physics-informed neural networks and neural operators. arXiv preprint arXiv:2311.11262, 2023.

[25] Zongren Zou and George Em Karniadakis. L-HYDRA: Multi-head physics-informed neural networks. arXiv
preprint arXiv:2301.02152, 2023.
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