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The carotid body (CB) oxygen-sensing mechanism remains 
elusive. Mitochondrial complex I and complex IV of CB 
type I cells are the most likely oxygen sensor candidates for 
initiating the hypoxia-induced release of neurotransmitters 
(NT) to excite synaptically connected sinus nerve fibers [7]. 
CB cytochrome c oxidase (CBCcO) is specialized by the 
subunit COX 4i2 [2, 7] which is characterized by twofold 
lower oxygen affinity than COX 4i1 [8]. In general, CcO 
contains four redox centers: heme a and heme a3 linked by 
helix-X and two copper centers (CuA and CuB). Oxygen 
binds to the heme  a3-CuB binuclear center as described in 
crystallographic studies on bovine CcO (bCcO) microcrys-
tals [3]. When helix-X relaxes, communication between the 
two heme groups facilitates electron transfer from mitochon-
drial cytochrome c (complex III) over CuA to heme a and 
the binuclear center.

As surrogate for oxygen, CO and NO replace oxygen at 
the binuclear center in a light-sensitive way and inhibit elec-
tron transfer [3]. Upon light-induced CO photodissociation 
under reducing conditions, helix-X switches from the open 
to the closed state when ferrous heme a3 iron is in an exog-
enous ligand-free state like in hypoxia [3]. Based on these 
studies, we present a deeper understanding of the nature of 
the CB oxygen sensor by reanalyzing CO experiments on 
isolated rat CBs super-fused in vitro as shown in Fig. 1a 
[4]. Changing gas composition of the super-fusion medium 
from 20%  O2, 3%  CO2, 77%  N2 (normoxia) to 97%  N2, 3% 

 CO2 (full hypoxia) is followed by a characteristic hypoxia-
induced increased chemoreceptor sinus nerve activity (regis-
tration in black) serving as control. Replacing 77%  N2 by CO 
induces an increased sinus nerve activity (registration in red) 
which is decreased to normoxic control levels by CO photo-
dissociation and oxygen ligand binding to the binuclear 
a3-CuB center reestablishing electron transfer. Additional 
CO to fully replace  O2 (resulting in 97% CO and 3%  CO2) 
increases chemoreceptor sinus nerve activity (full hypoxia, 
registration in red). CO photo-dissociation is followed by 
a further increase of chemoreceptor discharge reaching 
hypoxic control levels. We propose that ferrous heme a3 
iron now is in an exogenous ligand-free state and helix-X 
compressed into a closed conformation with inhibited elec-
tron transfer due to increased distance between heme a/a3.

We assume this large helix-X movement of about 3Ǻ 
[3] acts as a primary sensor signal to trigger chemorecep-
tor discharge under hypoxia by inducing a motion of the 
intracellular mitochondrial network [10] with subsequent 
cell shape changes (see Fig. 1c). This motion might trigger 
mechano-sensitive cation membrane channels leading to a 
primary rise of intracellular calcium initiating NT release.

To further characterize CBCcO, the mean hypoxic 
light absorption spectrum (black registration) of CBCcO 
was recorded (Fig. 1b; [1, 4]). The spectrum was fitted by 
deconvolution (red line) using characteristic light absorp-
tion spectra of mitochondrial cytochromes (c550, b563) 
and NADPH cytochrome (b558). CBCcO peaks at 592 nm 
and 603 nm matching light absorption spectra of bCcO-
CO microcrystals peaking at a593nm (CO-bound) and 
a604nm (ferrous) [3]. We assume that the CBCcO double 
peak results from binding of NO produced under hypoxia 
[6]. NO inhibits hypoxic CB chemoreception, while it 
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increases the chemosensory discharges in normoxia [6]. 
Upon binding to CBCcO, NO seems to induce the same 
helix-X changes like CO. NO ligand binding to CBCcO 
is reported to decrease oxygen consumption and favoring 
aerobic glycolysis [2]. Subsequent tissue acidification and 
lactate production as shown in Fig. 1c could lead to ampli-
fication of the primary calcium signal by closing TASK 
channels involving the PIN1/p47phox tandem [2] and influ-
encing the Fp/(Fp + NAD(P)H) redox ratio [2, 5, 9].
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Fig. 1  CcO crystallographic changes of about 3 Ångström are dis-
played by CB chemoreceptor discharge. a Chemoreceptor discharge 
under normoxic and hypoxic CO application (red registration line) 
The effect of CO is shown as a percentage of peak chemorecep-
tor activity induced by 4-min hypoxia. Control chemoreceptor dis-
charge without CO is shown as the black line. Data are mean values 
from 10 carotid bodies. CO application during normoxia (left side 
at time − 4) leads to excitation, which is eliminated during light-
induced photodissociation (vertical arrows). CO application during 
full hypoxia (right side of time zero) leads to discharge inhibition, 
which is reversed during photodissociation [4]. b Identification of 
carotid body heme proteins by light absorption photometry.  N2 versus 
aerobic steady-state spectrum (black solid noisy line; mean values of 
6 carotid bodies) was fitted by different mitochondrial and non-mito-

chondrial cytochrome spectra as indicated by different colors. The 
deconvolution fit curve (red solid line) obtained by varying the ampli-
tude of the optical density of five cytochromes closely fits the experi-
mental curve [1]. CBCcO double-absorption peaks are assumed to 
be comparable to bCcO CO bound and ferrous absorption peaks. c 
Changes in Helix-X from open to closed state under hypoxia are fine-
tuned by interaction of  O2 and NO binding on heme a3 iron. Subse-
quent mitochondria-induced cell shape changes lead to intracellular 
calcium increase and NT release (primary pathway). Reduced elec-
tron transfer between heme a and heme a3 stimulates aerobic glyco-
lysis with subsequent lactate production. Subsequent tissue acidifica-
tion inactivates TASK channels. In addition, ROS affecting the redox 
status involving PIN1/p47phox interact with TASK channels (amplifi-
cation pathway) [2]
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