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Abstract

The molecular mechanisms underlying alcohol dependence involve different neurochemical systems and are brain region-
dependent. Chronic Intermittent Ethanol (CIE) procedure, combined with a Two-Bottle Choice voluntary drinking paradigm,
represents one of the best available animal models for alcohol dependence and relapse drinking. MicroRNAs, master
regulators of the cellular transcriptome and proteome, can regulate their targets in a cooperative, combinatorial fashion,
ensuring fine tuning and control over a large number of cellular functions. We analyzed cortex and midbrain microRNA
expression levels using an integrative approach to combine and relate data to previous protein profiling from the same CIE-
subjected samples, and examined the significance of the data in terms of relative contribution to alcohol consumption and
dependence. MicroRNA levels were significantly altered in CIE-exposed dependent mice compared with their non-
dependent controls. More importantly, our integrative analysis identified modules of coexpressed microRNAs that were
highly correlated with CIE effects and predicted target genes encoding differentially expressed proteins. Coexpressed CIE-
relevant proteins, in turn, were often negatively correlated with specific microRNA modules. Our results provide evidence
that microRNA-orchestrated translational imbalances are driving the behavioral transition from alcohol consumption to
dependence. This study represents the first attempt to combine ex vivo microRNA and protein expression on a global scale
from the same mammalian brain samples. The integrative systems approach used here will improve our understanding of
brain adaptive changes in response to drug abuse and suggests the potential therapeutic use of microRNAs as tools to
prevent or compensate multiple neuroadaptations underlying addictive behavior.
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Introduction

Cerebral cortex (CTX) and midbrain (MB) are two brain

regions particularly susceptible to the effects of long-term alcohol

abuse. CTX is prone to most severe brain damage in alcoholic

human brain [1–3], has major connections with the mesolimbic

reward pathway [4,5], and is crucial for cognitive, executive and

other important functions that are impaired in alcoholics [6,7].

The development of alcoholism involves molecular alterations

within the brain’s reward neuronal circuits [8–10], and MB with

its subdomains is well known to comprise addiction-related

pathways which are crucial for drug responses.

Synergetic molecular interactions regulate neurobiological

events associated with complex traits responsible for alcohol

dependence. Although lists of candidate molecules have been

reported based on their altered expression levels in alcohol-related

studies [11,12], their use is limited given the lack of contextual

information and the documented low and inaccurate correspon-

dence between transcript and protein levels [13–17]. Moreover,

even small changes in the levels of certain microRNAs (miRNAs),

which finely orchestrate gene and protein expression, could

extensively impact brain function. For these reasons, alcohol

researchers have recently started to focus on miRNAs in order to

develop a more integrated profile of the effects of alcohol abuse

[18].

miRNAs, short noncoding RNA molecules, have been effec-

tively described as master regulators of the cellular transcriptome

and proteome [19]. They can regulate their target genes in a

cooperative, combinatorial fashion, where a single miRNA can

target multiple mRNA transcripts and distinct miRNAs can target

the same mRNA, ensuring fine tuning and control over a large

number of cellular functions [20]. miRNAs are capable of

inhibiting protein synthesis both by repressing translation and by

facilitating deadenylation and subsequent degradation of mRNA

targets [21]. In certain cases, miRNAs have even been reported to

activate translation of targeted mRNAs [22]. miRNAs have been

proposed as novel diagnostic biomarkers of human disease in

circulating fluids such as plasma/serum [23], and there is recent

evidence that they can act as signals for membrane receptor

activation [24].

Previous microarray studies in human alcoholics and animal

models have shown miRNA regulation. Differential miRNA

expression has been reported following chronic intermittent

ethanol exposure and withdrawal in primary cortical neuronal

cultures [25], and persistent, coordinated changes in the expres-
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sion of miRNAs and their target mRNAs have also been shown in

rat medial prefrontal cortex following an alcohol dependence

paradigm [26]. Furthermore, miRNA is up-regulated in the

frontal cortex of human alcoholics who spent most of their adult

lives consuming high quantities of ethanol without developing

complicated alcohol-related disorders, indicating a robust homeo-

static adaptation to the effects of alcohol [27]. Interestingly, this

miRNA up-regulation might explain the down-regulation of

certain genes in human alcoholic cases [28–32]. Indeed, recent

evidences suggest that alcohol dependence results from changes in

co-regulation that might not be detectable using single molecular-

based analysis, since no one approach can fully account for the

repercussion of individual changes on the complex interactions

that regulate brain function. A number of studies have shown the

interconnectedness among different stages of information process-

ing at the molecular level. Quantitative proteomics studies have

shown that miRNAs participate in fine-tuning the production of

their targets, both at the mRNA and the protein level [33,34].

Select clusters of gene expression profiles identified by array

studies can be used to predict meaningful networks of interacting

proteins [35–37]. Several components of protein complexes may

be regulated simultaneously by a single miRNA or by several

coexpressed miRNAs, and miRNAs that target the same protein

complexes are frequently coexpressed [38]. Finally, several studies

have demonstrated that the targets of single miRNAs are more

connected in the protein-protein interaction (PPI) network than

expected by chance [39–41].

Since miRNAs may regulate their targets at the translational

level, without affecting mRNA abundance, the use of proteomic

techniques is crucial to identify miRNA targets and to quantify the

contribution of translational repression by miRNAs [42–45]. Our

group has recently reported the differential regulation in cerebral

cortex (CTX) and midbrain (MB) proteomes from C57BL/6J mice

subjected to a chronic intermittent ethanol (CIE), two bottle choice

(2BC) paradigm [46], which represents one of the best currently

available animal models for alcohol dependence and relapse

drinking. Here, we investigated the changes in global miRNA

expression levels from the same brain samples and integrate the

two datasets to investigate the molecular mechanisms of miRNA

direct translational control during alcohol dependence. Novel

systems-biology approaches have been utilized to comprehensively

examine brain alterations in human alcoholics [47]. To improve

our current molecular model of addiction, we used a systems

approach to data analysis that combines miRNA and protein

differential expression, miRNA and protein coexpression net-

works, miRNA target predictions, PPIs, and gene annotations.

Materials and Methods

Animals and Ethics Statement
Brain samples of male C57BL/6J mice subjected to Chronic

Intermittent Ethanol paradigm combined with Two-Bottle Choice

ethanol voluntary consumption were provided by Dr. Amanda J.

Roberts (The Scripps Research Institute, La Jolla, CA), as

previously described [46]. All procedures were conducted in

accordance with the guidelines established by the National

Institutes of Health in the Guide for the Care and Use of

Laboratory Animals and were approved by The Scripps Research

Institute’s Animal Care and Use Committee (protocol: 11-0026).

The paradigm used is summarized in Figure S1 and was based on

earlier reports [48,49]. Blood alcohol concentrations (BACs) were

in the range shown to be critical for escalated ethanol drinking

[50]. Brains were collected 72 hours after the last drinking session.

CTX and MB were dissected from 7 CIE-2BC ethanol vapor-

exposed (alcohol-dependent, high drinkers) mice, 7 Air-2BC air-

exposed matched controls (which have also had access to alcohol),

plus 7 ethanol-Naı̈ve mice.

miRNA expression analysis
Total RNA was isolated from the same 21 CTXs and 21 MBs

analyzed in our previous study [46] using mirVana PARIS kit (Life

Technologies, Carlsbad, CA), according to the manufacturer’s

instructions. Yield and quality of the RNA was determined using a

2100 Bioanalyzer (Agilent, Palo Alto, CA). Microarray hybridiza-

tion was performed at the Moffitt Cancer Center microarray

facility (Tampa, FL). Total RNA was hybridized with miRCURY

6th generation LNATM microRNA arrays (Exiqon, Vedbaek,

Denmark) to assess miRNA expression. The arrays included 1,223

human, 1,055 mouse, and 680 rat probes as referenced by

miRBase v.16, in addition to many proprietary probes. Samples

were labeled with Cy3, while the red channel was used for quality

control and reference purposes. Images were analyzed using

Imagene 8.0 (BioDiscovery, Hawthorne, CA). miRNA microarray

data analysis was implemented in R environment using the Linear

Models for Microarray Data (LIMMA) [51] and the Weighted

Gene Correlation Network Analysis (WGCNA) [52,53] packages

from Bioconductor (http://www.bioconductor.org).

Data preprocessing included between-arrays quantile normal-

ization [54] of single (green) channel, removal of flagged spots, and

weighting. Background subtraction was not necessary. For each

miRNA, a median was calculated from the intensity values of four

replicates. Data were fitted into a linear model with an appropriate

design matrix. Statistical differences between groups were

calculated using an empirical Bayesian approach. False discovery

rate (FDR) was assessed using the method of Benjamini and

Hochberg [55]. Microarray data have been deposited online at

NCBI Gene Expression Omnibus (GEO [56], accession number

GSE48576).

Protein expression analysis
Two-dimensional differential in-gel electrophoresis (2D-DIGE)

was previously used to measure protein expression levels from the

same 21 CTX and 21 MB samples. A comparative cross analysis

of 28 gels (14 for CTX and 14 for MB samples) was performed as

described [46,57]. Briefly, 2,369 spots were detected and matched,

and protein abundance values for individual samples as well as

differential expression ratios between experimental groups were

calculated. The standardized log abundances from 1,255 gel spots

with at least 69/84 appearances were used for protein coexpres-

sion analysis. Based on significance, fold change, correlations, and

appearances 93 spots were selected and identified by MALDI

tandem mass spectrometry (MS) (Figure S2). Related MS data

have been deposited to the ProteomeXchange Consortium via the

PRIDE partner repository (dataset PXD000349, DOI 10.6019/

PXD000349). The resulting protein coexpression dataset was

integrated with miRNA coexpression data from the same samples

in the present study.

Weighted Gene Correlation Network Analysis (WGCNA)
General information and purpose. WGCNA is a bioinformatics tool

which identifies significant over-represented patterns of directional

changes in expression levels, consistently repeated across all the

samples studied. We have previously used WGCNA to analyze

protein coexpression [46]. In the present study, WGCNA was

applied to miRNA expression data from the same samples. The

correlation between miRNAs measures the degree of similarity

between their expression patterns, and linkage hierarchical

clustering can be used to detect modules, which are groups of
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interconnected miRNAs showing over-represented patterns of

coexpression. We used WGCNA to examine modules of

interconnected miRNAs, as well as proteins, showing over-

represented patterns of coexpression. Module Eigengenes (MEs)

summarize and represent each module in one synthetic expression

profile. We used MEs to treat modules as single units and relate

them to external information used as trait (CIE- and Air-2BC

phenotypes) via simple measures (correlation).

miRNA microarray normalized intensity data were subjected to

coexpression analysis implemented in R environment using

‘‘WGCNA’’ package from Bioconductor. Expression data for

1,023 miRNAs were used.

Analytical procedure. The general framework of WGCNA has been

described in detail previously [47,52]. We ran separate analyses for

miRNAs in each region, as we have previously done with proteins

[46]. First, a measure of similarity between the miRNA expression

profiles was defined. This similarity measures the level of

concordance between miRNA expression profiles across samples.

Pearson’s correlations were calculated for all pairs of miRNAs, and

then a signed similarity (Sij) matrix was derived from Sij = (1 +
cor(xi,xj))/2, where expression profiles xi and xj consisted of the

expression of miRNAs ‘‘i’’ and ‘‘j’’ across multiple microarray

samples. In the signed networks, the similarity between miRNAs

reflects the sign of the correlation of their expression profiles. Next,

the similarity matrix was transformed into a weighted adjacency

matrix of connection strengths by using a power adjacency

function. The adjacency function (aij) depends on certain

parameters, which determine the sensitivity and specificity of the

pairwise connection strengths. The signed similarity (Sij) was raised

to power b (soft thresholding) to represent the connection strength

(aij): aij = Sij
b. This step aims to emphasize strong correlations and

reduce the emphasis of weak correlations on an exponential scale

[53]. We chose the appropriate ‘‘Soft Power’’ (b = 10) so that the

resulting networks exhibited approximate scale-free topology (the

lowest power for which the scale-free topology fit index R̂2.0.8),

according to the criterion proposed by Zhang and Horvath [52].

Next, a topological overlap matrix (TOM) that measures the

relative inter-connectedness of a pair of miRNAs in the network

was built from the adjacency matrix, and the corresponding

dissimilarity was obtained as dij(a);1 2 aij. Average linkage

hierarchical clustering of the topological overlap dissimilarity

matrix was then used to identify clusters of co-expressed miRNAs

(modules) [52]. miRNA modules correspond to branches of the

hierarchical clustering tree (dendrogram). The resulting miRNA

dendrogram was used for module detection with the ‘‘Dynamic

Tree Cut’’ method: a ‘‘cutting height’’ of 0.995 with the preset

‘‘deep split’’ option ( = 2) were chosen to cut branches off the tree,

and the resulting branches correspond to miRNA modules. The

‘‘minimum module size’’ parameter was set to limit the size of the

smallest modules to at least 5 miRNAs, in order to avoid a large

number of modules. The branches cut off of the miRNA tree

corresponding to modules were labeled in unique colors.

Unassigned miRNAs were labeled in gray.

Relating modules to sample information. In our analysis, we related

modules to CIE paradigm. As a trait, the ‘‘Escalation of

Consumption’’ (EoC) trait was intended as increased ethanol

consumption, with ‘‘0’’ for the Naı̈ve group, ‘‘1’’ for Air-2BC, and

‘‘2’’ for CIE-2BC. We also used actual average ethanol drinking

amounts for the last 5-days 2BC session, plus miRNA expression

and protein expression information from the same samples [46] as

traits. miRNAs whose coexpression was highly and significantly

correlated with the EoC trait were used as a trait for protein

coexpression modules and vice versa.

Real Time PCR analysis
Single-stranded cDNA was synthesized from total RNA using

the TaqManTM miRNA Reverse Transcription (Applied Biosys-

tems, Foster City, CA). Following reverse transcription, quantita-

tive RT-PCR (qRT-PCR) was performed in triplicate using

TaqManTM miRNA Assays (P/N: 4427975, Applied Biosystems)

according to the manufacturer’s instructions. All 7 samples for

each experimental group were included in every reaction. The

identification numbers for the single assays used are indicated in

Table 1.

qRT-PCR was carried out in a ViiATM 7 Real-Time PCR

System (Applied Biosystems), data collected using ViiATM 7

Software v. 1.2.2 (Applied Biosystems), and qRT-PCR results

imported into qbasePLUS software v. 2.4 (Biogazelle, Zwijnaarde,

Belgium) [58]. Data were normalized to the average of the best

endogenous control genes based on their M scores calculated by

the software (Table 1). Unpaired t-test with correction for multiple

testing was used to assess statistical significance. Target correlation

was calculated using Pearson correlation.

Functional annotations and bioinformatics tools
Functional annotations of differentially expressed miRNAs were

obtained by using Ingenuity Pathway Analysis (IPA) (Ingenuity

Systems, www.ingenuity.com). IPA Target Filter module was used

to associate detected miRNAs with experimentally observed and

predicted mRNA targets encoding for the differentially expressed

or coexpressed proteins identified with 2D-DIGE and mass

spectrometry from the same samples [46]. Target information

data were filtered by considering the following: for differential

expression data, miRNA p,0.06 (CTX) or p,0.05 (MB) and

proteins p#0.2 (CTX and MB); for coexpression data, miRNA

and proteins p#0.01 (CTX) or p,0.05 (MB) and correlation $0.5

(CTX and MB) (Table S1).

Integrative networks were built by combining our differential

expression and coexpression data with miRNA target predictions

obtained from IPA database and known/predicted PPIs from the

Search Tool for the Retrieval of Interacting Genes/Proteins

(String) database v.9.05 (confidence score: 0.15, http://string-db.

org/). Collected information was loaded on Cytoscape v.2.8.3

(http://www.cytoscape.org/), and networks were generated and

analyzed with several topology-based scoring methods [59–63].

Results

miRNA differential expression
miRNA microarrays were used to measure expression profiles in

the CTX and MB of mice subjected to CIE-2BC or Air-2BC and

alcohol-naı̈ve mice. The 2BC paradigm induced significant

changes in miRNA levels with the most significant differences

between the 2BC treated mice versus the Naı̈ve group (Dataset

S1). When comparing CIE-2BC to Naı̈ve, approximately 200

miRNAs were differentially expressed in the CTX (p,0.05, fold

change between 5 and 130%), and about 260 miRNAs were

differentially expressed in MB (p,0.05, fold change between 5 and

120%). When comparing Air-2BC to Naı̈ve, approximately 210

miRNAs were differentially expressed in the CTX (p,0.05, fold

change between 5 and 118%), and 300 miRNAs were differen-

tially expressed in the MB (p,0.05, fold change between 5 and

89%). The relative heatmaps for the top 10 differentially expressed

miRNAs show complete group separation (Figure 1 B-C, E-F).

The differences were smaller and less significant when

comparing CIE-2BC mice with their Air-2BC matched controls.

Forty-one miRNAs were differentially expressed in the CTX

(p,0.05) with a fold change between 5 and 135% compared to 95

MiRNA Translational Control in Alcohol Dependence
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miRNAs in the MB (p,0.05) with a fold change between 5 and

46% (Dataset S1). The relative heatmaps for the top 10

differentially expressed miRNAs show incomplete group separa-

tion (Figure 1 A, D).

Over-represented functional categories
Top IPA functional categories for differentially expressed

miRNAs between CIE-2BC and Air-2BC mice in CTX and MB

include the following: cell cycle, endocrine system disorders, and

inflammatory response (Table S2 A, D). Similar IPA analyses were

carried out for other group comparisons in CTX and MB (Table

S2 B-C, E-H). A comparison between regions shows greater

adaptations in endocrine, hematological, and inflammatory

disorders in the MB, with more differentially expressed miRNAs

involved in related functional categories (Table S2 I). About

,10% of differentially expressed and coexpressed miRNAs are

predicted to target genes related to immune response, in both

CTX and MB.

miRNA-protein overall changes
The overall significant directional changes in miRNA and

protein expression, for each comparison and brain region, are

summarized in Table 2. When comparing CIE-2BC versus the

Naı̈ve group, a predominant miRNA up- and protein down-

regulation was observed. On the contrary, when comparing CIE-

2BC with their Air-2BC matched controls, an overall miRNA

down- and protein up-regulation was prevalent.

WGCNA analysis
WGCNA analysis was performed on normalized expression

data from 1,023 miRNAs. Average linkage hierarchical clustering

identified 39 distinct modules of coexpressed miRNAs in the CTX

and 39 in the MB (Figure 2A, B). We related MEs (see Methods) to

CIE paradigm phenotypic data (‘‘EoC’’ and drinking) used as trait

through correlation analysis. In both regions, some modules are

highly correlated with the 2BC EoC trait and the average drinking

(for the last 5-days 2BC session). miRNA modules CTX10, CTX1,

MB29, MB1, and MB11 were highly positively correlated

(corr. = 0.58-0.69), while modules CTX30, CTX35, CTX22,

MB5, MB20, and MB2 were highly negatively correlated

(corr.,-0.6) to the EoC trait (Figure 2E, F). A list of the top 20

significantly coexpressed miRNAs is shown in Figure 2C, D.

Our previous protein WGCNA analysis was integrated with the

present miRNA coexpression analysis. Data from individual CIE-

related proteins, as well as information from 19 protein

coexpression modules in the CTX and 23 in the MB (Figure 2G,

H) were used.

Individual proteins whose coexpression was highly and signif-

icantly correlated with the EoC were used as a trait for miRNA

coexpression modules, and top correlated individual miRNAs

were used as a trait for protein modules. Several proteins were

highly negatively correlated with miRNA modules important

(positively correlated) for the EoC trait (i.e., distinct isoforms of

DNM1L, HBB1, HS90A, DYN1, Figure 2E, F). Similarly, several

miRNAs were highly negatively correlated with protein modules

that in turn are positively correlated to the EoC trait, and they

often belonged to the same miRNA module (i.e., miR-3091-3p

and miR-2861 in CTX and let-7a-2-3p and miR-763 in MB,

Figure 2G, H).

Validation by Real Time PCR analysis
To validate results from miRNA microarray analysis, we

performed qRT-PCR. A representative subset of 10 significantly

differentially regulated miRNAs was tested. One non-significantly

regulated miRNA was also tested as control. Following qRT-PCR,

five miRNAs were significantly regulated in the same direction as

shown by the microarray analysis (Table 1). Five other miRNAs

did not achieve statistically significant differences, but in 4 cases we

were still able to detect the expected change in expression levels.

The non-significantly regulated miRNA did also not achieve

statistical significance when tested by qRT-PCR.

Furthermore, when comparing the qPCR expression patterns of

the different miRNAs tested across the 14 samples used, miR-

200a-3p showed a 0.98 Pearson correlation (p = 3.6E-8) with miR-

96-5p and 0.97 correlation (p = 1E-7) with miR-141-3p. Indeed,

these three miRNAs were identified as coexpressed by WGCNA

analysis, belonging to the same miRNA module (CTX23).

Table 1. Results of qRT-PCR analysis.

Comparison microRNA
Exiqon
probe ID

Array
p-value Array FC

TaqMan
assay ID

RT-PCR
p-value RT-PCR FC Ref. genes

CTX, CIE-2BC/Naı̈ve miR-488-3p 17316 6.47E-07 1.237 001659 3.36E-03 1.267 A, B, C

CTX, CIE-2BC/Naı̈ve miR-410-3p 11102 1.07E-04 1.178 001274 4.66E-03 1.241 A, B, C

CTX, CIE-2BC/Naı̈ve miR-3084-3p 148484 8.84E-07 1.284 461806_mat 7.19E-03 1.416 A, B, C

CTX, CIE-2BC/Naı̈ve let-7a-2-3p 42530 1.95E-04 0.772 463508_mat 9.84E-01 1.002 A, B, C

CTX, CIE-2BC/Naı̈ve miR-200a-3p 11000 1.27E-02 2.295 000502 1.40E-01 2.593 B, C

CTX, CIE-2BC/Naı̈ve miR-140-3p 42630 4.96E-02 0.927 002234 1.09E-02 0.572 B, C

CTX, CIE-2BC/Naı̈ve miR-141-3p 10946 8.56E-03 2.017 000463 2.85E-01 2.546 B, C

CTX, CIE-2BC/Naı̈ve miR-96-5p 13147 3.17E-03 1.849 000186 1.40E-01 2.622 B, C

CTX, CIE-2BC/Air-2BC miR-3107-3p 42946 4.58E-02 2.352 462536_mat 3.96E-02 1.404 A, B

CTX, CIE-2BC/Air-2BC miR-34b-5p 29153 8.87E-02 1.153 002617 1.66E-01 1.537 A, B

CTX, CIE-2BC/Air-2BC miR-410-3p 11102 1.83E-02 1.098 001274 6.99E-01 1.11 A, B

Confirmation of differential expression for selected miRNA with real-time PCR. Total RNA from cortex samples was used, and all 7 samples for each experimental group
were included (number of datapoints per subgroup, n = 7). Array p-values are based on a Bayesian two-tailed t-test, and TaqMan assays p-values are based on an
unpaired t-test, corrected for multiple testing. Data were normalized to the average of the endogenous control genes indicated, based on qbasePLUS software’s M
scores. A, snoRNA142 (TaqMan assay ID: 001231); B, snoRNA234 (001234); C, U6 snRNA (001973). ID, Identification number; FC, fold change. P-values in italics, p,0.05.
doi:10.1371/journal.pone.0082565.t001
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Integrative networks
To distinguish key molecules involved in the escalation of

ethanol consumption to dependence in the CIE paradigm, we

integrated information from miRNA and protein differential

expression and coexpression analyses with currently available

miRNA target predictions (IPA database, Table S1), as well as

known and predicted PPIs (String database). The resulting

networks involve 48 (CTX) and 60 (MB) molecular nodes,

featuring several diverse regulatory mechanisms: coexpressed

miRNAs targeting the same regulated gene (e.g., miR-532-3p

and miR-339-5p on Pea15 in the MB), genes encoding physically

interacting or coexpressed proteins targeted by the same miRNA

(e.g., miR-494-3p on both Dpysl2 and Dpysl3, and miR-140-3p on

coexpressed Flot1 and Dnm1 in the CTX), and isoform-specific

Figure 1. Hierarchical clustering of differentially expressed miRNAs from CIE-2BC (green), Air-2BC (yellow), and Naı̈ve (grey) mice.
Top 10 significant differentially expressed miRNAs for each comparison and brain region analyzed are shown. A-C, CTX; D-F, MB. A, D: CIE-2BC vs. Air-
2BC; B, E: CIE-2BC vs. Naı̈ve; C, F: Air-2BC vs. Naı̈ve. Rows: individual miRNAs; columns: individual samples. Red within the heatmap represents miRNA
up-regulation, and blue within the heatmap represents miRNA down-regulation. Each heat map shown contains 10 miRNAs with significant
differential expression (p,5E-02, p,5E-04, p,5E-04, p,5E-03, p,5E-06, p,5E-07, respectively). Refer to Dataset S1 for p-values and fold change for
individual miRNAs. The Venn diagrams indicate the number of shared and unique differentially expressed miRNAs among comparisons: between CIE-
2BC versus Air-2BC, CIE-2BC versus Naı̈ve, and Air-2BC versus Naı̈ve groups in CTX (G), MB (H), and across the two brain regions (I). Only differences
greater than 1.05 fold with p,0.05 (Bayesian two-tailed t-test) on mapped miRNAs eligible for IPA dataset filter are listed in Venn diagrams.
doi:10.1371/journal.pone.0082565.g001
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translational repression (e.g., Hnrnpa2b1 in the MB). Furthermore,

miRNA coexpression modules CTX1, CTX10, CTX12, MB1,

and MB26 regulate proteins in modules CTX3, CTX18, MB11.

The resulting networks for CTX and MB were then analyzed with

several topology-based scoring methods (Figure 3). Top-scoring

molecular nodes include proteins encoded by genes Actg1, Dnm1,

Dnm1l, Dpysl2, Nefl, Ppp3ca, and Snca in the CTX, and Actg1,

Hnrnpa2b1, and Ppp3ca in the MB.

Discussion

The global impact of miRNAs on protein output has been

reported in vitro in cell cultures [33,34,43,64], and ex vivo from

human cartilage [65] and mouse cochlea and vestibule [66], but

ours is the first study to report opposing miRNA/protein

expression from the same brain samples of alcohol dependent

mice. Our integrated approach surpasses the gene- and protein-

centric analyses that have become popular in alcohol research.

This is an important distinction, since mRNA expression does not

always reflect the actual protein levels [13]. By combining two

high-throughput techniques, we obtained a comprehensive iden-

tification and characterization of molecular events associated with

alcohol consumption and dependence. While our arrays contain

the most up to date and complete mouse miRNA probe set,

limitations in 2D-DIGE technology include reproducibility and

relatively small dynamic range.

As previously reported for proteins, we observed smaller net

effects, as expected, when comparing differentially expressed

miRNAs between CIE-2BC with air-matched controls since both

groups had access to alcohol in the 2BC model. We identified

diverse sets of deregulated miRNAs in CTX and MB and showed

that distinct sets of miRNAs were associated with alcohol

consumption versus dependence (Figure 1), suggesting critical

neurobiological adaptive changes during the transition from

alcohol consumption to dependence. This could be explained by

the evidence that although both 2BC-exposed groups consumed

increasing levels of ethanol, CIE-2BC were subjected to higher

brain alcohol concentrations compared with Air-2BC mice and

experienced signs of alcohol dependence. Notably, miRNA

profiles from CIE-2BC versus Naı̈ve animals segregated into

clearly separable clusters (Figure 1). When comparing CIE-2BC

versus Naı̈ve mice, we found miRNA to be predominantly up-

regulated while protein was predominantly down-regulated

(Table 2). On the contrary, we found a prevalence of miRNA

down-regulation and protein up-regulation when we compared

CIE-2BC mice with their air matched controls in both CTX and

MB.

MiRNA up-regulation has previously been shown in prefrontal

cortex of human alcoholics who drank high alcohol doses for many

years [27]. Oxidative stress and morphine treatment were also

associated with increased miRNA expression in vitro and ex vivo

[67,68]. In addition, miRNA up-regulation has been reported in

rat striatum following extended cocaine self-administration [69]

and in mouse dopamine 2 receptor-expressing neurons after acute

cocaine injections [70]. Conversely, miRNA down-regulation was

prevalent in the medial prefrontal cortex of alcohol post-

dependent rats [26]. In our current study, we found prevalent

miRNA up-regulation in the CTX and MB when we compared

CIE-2BC mice with alcohol-naı̈ve animals. The resulting net

down-regulation that we observed between CIE-2BC and Air-2BC

mice (Table 2) may be due to expression levels of some miRNAs

rising as an initial response to alcohol consumption (higher in Air-

2BC group), but then slightly going back with the establishment of

dependence in CIE-2BC (e.g., miR-497-3p in MB). However,

other miRNA levels are increased or decreased in proportion to

the amounts of alcohol consumed (as shown by WGCNA) or

augmented in dependent mice only (e.g., miR-1955-5p and miR-

486-3p in CTX). Such dynamicity in brain miRNA-mediated

adaptations to the effect of alcohol has not been previously

described on a global scale and provides intriguing evidence for

the intricate role of miRNAs in the development of alcohol

dependence. The dynamics of miRNA expression are thought to

parallel the widespread changes in gene expression following

excessive alcohol consumption, in agreement with the functional

fine-tuning of miRNAs on the transcriptional regulatory network

[33,34]. Hence, the observed differences in miRNA levels of CIE-

2BC dependent mice may compensate for, or reprogram,

Table 2. Global directional changes in miRNA and protein expression induced by CIE paradigm.

Brain
Region Comparison Molecule type N. DE % DE % q % Q

Prevalent
Direction Paired Exp.

CTX A. CIE-2BC vs. Air-2BC miRNAs 45 4% 44% 47% Q Qq

proteins 54 2% 52% 43% q

CTX B. CIE-2BC vs. Naı̈ve miRNAs 219 21% 59% 36% q q«

proteins 232 10% 45% 46% «

CTX C. Air-2BC vs. Naı̈ve miRNAs 237 23% 55% 38% q qq

proteins 344 15% 49% 44% q

MB D. CIE-2BC vs. Air-2BC miRNAs 108 11% 30% 58% Q Qq

proteins 57 2% 61% 28% q

MB E. CIE-2BC vs. Naı̈ve miRNAs 321 31% 62% 31% q qQ

proteins 175 7% 43% 48% Q

MB F. Air-2BC vs. Naı̈ve miRNAs 376 37% 65% 24% q qQ

proteins 226 10% 37% 53% Q

Overall directional changes in miRNA (microarrays) and protein spot (2D-DIGE) expression for each comparison and brain region analyzed. Comparisons A-F are named
as in Figure 1. N. DE, number of differentially expressed molecules with fold change .5% or ,-5% and p,0.05 (gel appearances were not considered in this case); % DE,
percentage of differentially expressed molecules based on their total number (1,023 miRNAs and 2,369 protein spots detected); % q and % Q, percentages of up- and
down-regulated molecules; Paired Exp., paired expression between miRNAs and protein spots in the same brain region and comparison.
doi:10.1371/journal.pone.0082565.t002
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transcriptional regulatory processes. Additional differences be-

tween alcohol dependent (CIE-2BC) and non-dependent (Air-

2BC) mice were found at the protein level due at least in part to

translational inhibition by miRNAs, and this differential regulation

might delineate the molecular signature of alcohol dependence. It

is possible that even small individual changes in the identified

miRNAs could exert cumulative effects by ultimately affecting

proteins; a change in protein expression level following chronic

ethanol could then alter the availability of proteins for important

PPI networking and the composition of respective protein

complexes, highlighting the overall impact of individual, small

fold-changes among miRNAs and their relation to a molecular

model of alcohol dependence. Our integrative systems approach

offers a novel perspective on these complex remodeling mecha-

nisms in response to alcohol consumption and dependence.

In our previous proteomic analysis from the same samples we

reported isoforms of dynamin-1 as distinctively regulated in CTX

and MB [46]. These isoforms showed an escalating up-regulation

or a gradual down-regulation during the transition from alcohol

consumption to dependence. We also showed evidence of

significant up-regulation of Dnm1 gene expression in the CTX

by RT-PCR. Accordingly, we here report miR-140, which targets

dynamin [71], as down-regulated in the CTX of both 2BC groups

but conversely up-regulated in the MB. This could be explained by

the onset of midbrain-specific adaptations related to reward

neurocircuits; another possibility is that miR-140 targets different

isoforms of dynamin in different brain regions.

We used a sophisticated systems approach to data analysis and

applied WGCNA [53] to identify groups of interconnected

miRNAs showing over-represented patterns of coexpression. Some

of these distinct modules of coexpressed miRNAs (Figure 2E, F)

Figure 2. WGCNA analysis of miRNA expression in CTX and MB of mice subjected to CIE paradigm identified distinct modules of
coexpressed miRNAs. A and B show dendrograms produced by average linkage hierarchical clustering. Horizontal color bars represent different
coexpression modules. Bar sizes correspond to the number of miRNAs in each module. SoftPower b = 10 (A), 9 (B), minModuleSize = 5,
cutHeight = 0.995, deepSplit = 2 (see Methods). Tables C, D show the relative contribution of miRNAs to CIE paradigm, in terms of correlation (Corr.)
between the individual top 20 coexpressed miRNAs sorted by their gene significance (GS) for the EoC trait, with relative p-values and rank. Module
number and color information are also included. Full lists are reported in Dataset S1. Tables E-H show correlation between modules of coexpressed
miRNAs (E, F) or proteins (G, H) and the EoC trait, or the average 2BC ethanol consumption, as well as individual proteins or miRNAs as traits. Modules
are named by a number and a color. Protein names are followed by corresponding gel spot number. In correlation columns, blue represents negative
and red represents positive correlations, as reported on the legend. Green p-values are ,0.05. Part of the data shown in G and H is taken from our
previous study [46].
doi:10.1371/journal.pone.0082565.g002

Figure 3. Integrative networks for CTX and MB. To highlight molecular mechanisms underlying the transition from alcohol consumption to
dependence in the CIE paradigm, we integrated information from miRNA and protein differential expression and coexpression analyses with currently
available miRNA target predictions (IPA database), as well as known and predicted PPIs (String database). The resulting networks for CTX (A) and MB
(B) were analyzed with several topology-based scoring methods (C). Nodes with highest score for the corresponding network attribute are listed.
Blue, down-regulation; red, up-regulation; diamonds, miRNAs; circles, mRNAs (genes encoding for the identified proteins); dashed lines, target
predictions; continuous lines, PPIs; dotted lines, coexpression. Refer to Methods for further details.
doi:10.1371/journal.pone.0082565.g003
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showed a high correlation with the EoC trait and alcohol drinking

in CTX and MB. To further investigate putative miRNA

translational control mechanisms, we then linked proteins to the

contextual miRNA information by using protein expression data

from the same samples as a trait for the miRNA coexpression

modules. We found that the miRNA modules which were best

correlated with the EoC trait were also negatively correlated with

some coexpressed and differentially expressed (down-regulated)

proteins (e.g., DNM1L and HS90A in CTX, DNM1L, DPYL3,

and DYN1 pI = 7.2 in MB) and positively correlated with other

up-regulated ones (e.g., FSCN1, DYN1 isoforms in MB, etc.). In

turn, we used miRNA coexpression data as a trait for the

coexpressed protein modules and found that the protein modules

that best correlated to the EoC trait were negatively correlated

with down-regulated miR-3091-3p, miR-503-5p, 346-3p, miR-

2861 in CTX (Figure 2G) and also negatively correlated with

down-regulated let-7a-2-3p, miR-763, miR-1958, miR-697

(among others) in MB (Figure 2H). On the other hand, up-

regulated miR-384-5p in CTX and miR-488-3p in MB were

among the miRNAs with the highest positive correlations with

protein modules associated with the EoC trait. Further inspection

revealed that the individual miRNAs, oppositely correlated with

the top protein modules, also belonged to miRNA coexpression

modules which were highly, inversely correlated to the EoC trait

(CTX12, CTX22, CTX30, MB2, MB5, and MB20) (Figure 2C, D

and Dataset S1). Figure 4 depicts a miRNA-protein modular

scenario representing a unique integrated model of alcohol

drinking and dependence. Increasing levels of alcohol consump-

tion leading to physical dependence (EoC trait) may involve a

gradual synergistic down-regulation of the negatively highly

correlated miRNAs mentioned above; the corresponding gradual

looseness in their translational repression was reflected in an

escalating two-step up-regulation of proteins important for energy

metabolism and endocytic pathways in Air-2BC and CIE-2BC

mice compared to Naı̈ve. Indeed, protein modules CTX15,

CTX18, MB4, and MB19 were highly, positively correlated to the

EoC trait. At the same time, these protein modules were also

positively correlated with certain coexpressed miRNAs (e.g.,

miRNA modules CTX1, CTX10, MB11, and MB1, see

Figure 2G-H, C-D): since in this case miRNAs and proteins are

regulated in the same direction, this may either involve an indirect

translational control step via transcription factors or reflect a time

lapse in the temporal evolution of gene network adaptive responses

during disease progression that we could not capture with our

experimental design.

The significance of our WGCNA analysis is verified by the RT-

PCR experiments, where we tested the expression levels of three

miRNAs from the same module and obtained high Pearson

correlations among their expression patterns across the samples

(Table 1). This highlights the complementarity of differential

expression and coexpression for detecting coordinated molecular

changes.

We generated a sophisticated integrative network to examine

finely orchestrated molecular changes important for the transition

from alcohol consumption to dependence, using currently

available miRNA target predictions from the IPA database (Table

S1) and PPIs from the String database along with information

from differential expression and coexpression of miRNAs and

proteins (Figure 3). In miRNA regulation there is often a

connection between co-regulated entities; protein connectivity

and miRNA regulation complexity are positively correlated [40],

and a single miRNA or coexpressed miRNAs are likely to have

cumulative effects by simultaneously targeting several components

of protein complexes [38,39,41]. Remarkably, in our integrative

network several target genes of differentially expressed miRNAs

encode regulated components of interacting proteins complexes or

coexpressed proteins.

The molecular remodeling suggested in our study is summa-

rized in Figure 5 and depicts how the brain can gradually regain

stability through widespread neuroadaptations following alcohol

exposure. miRNAs or proteins associated with increasing levels of

alcohol consumption are regulated in the same direction in 2BC

Figure 4. Provisional representation of miRNA-mRNA modular network derived from miRNA and protein WGCNA and correlation
analysis in mouse CTX (A) and MB (B). Module colors reflect those from WGCNA analysis. Increasing ethanol consumption levels can be
described as ‘‘0’’ for the Naı̈ve group, ‘‘1’’ for Air-2BC, and ‘‘2’’ for CIE-2BC (EoC trait, sketched in C). Protein modules (circles) that are more relevant to
alcohol actions are shown based on their correlation to the EoC trait. Proteins in these modules showed an increasing up-regulation across
experimental groups, parallel to the EoC trait. miRNA modules (diamonds) negatively correlated to the EoC trait are also shown; the miRNAs in these
modules showed an increasing down-regulation across experimental groups, inversely proportional to the EoC trait. These miRNAs are also
oppositely correlated to the protein modules which are in turn important for the EoC trait. Therefore, miRNAs and proteins listed respond to 2BC
drinking and/or CIE with opposite directional changes in their expression levels, and might thus play a crucial role in excessive ethanol drinking
associated with dependence. Protein modules related to endocytic pathways and energy metabolism appear to be important for the effects caused
by CIE paradigm. Blue and red outline, negative and positive correlation with the EoC trait.
doi:10.1371/journal.pone.0082565.g004
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groups compared to Naı̈ve (Figure 5A); however, these modifica-

tions are always more pronounced in the CIE-2BC than the Air-

2BC group, since their expression levels are proportional (or

inversely proportional) to the amounts of alcohol consumed, as

shown by WGCNA analysis (i.e., modules highly positively/

negatively correlated to the EoC trait). Indeed, such dysregulations

become more severe with repeated alcohol consumption, and this

in turn causes further alcohol intake. Another distinct set of

molecular changes is represented by the miRNAs and proteins

which are exclusively regulated in Air-2BC but not in CIE-2BC

mice (Figure 5B), indicating their specific role during the transition

to dependence. The directional changes in Air-2BC group are in

this case opposite to what is the resulting CIE-2BC/Air-2BC

differential expression. Furthermore, proteins and miRNAs

regulated in CIE-2BC but not Air-2BC mice (Figure 5C) could

be crucial for the maintenance of alcohol dependence, since their

expression levels are unmodified in non-dependent animals. This

conceptual perspective of our research is consistent with the

allostatic model of drug addiction [72].

In summary, our integrative analysis of global miRNA and

protein expression levels from different brain regions of mice

subjected to a CIE paradigm uncovered coordinated, synergistic

regulation of miRNAs and proteins with direct evidence of altered

brain translational control driving the behavioral transition from

alcohol consumption to dependence. The concomitant, opposite

gradual molecular changes related to behavioral patterns provide a

Figure 5. General classification of brain molecular changes underlying the escalation of ethanol consumption associated with
dependence. We propose three overall patterns of change and list examples of molecules specific to each category (in purple). Y-axis represents the
level of expression, and x-axis shows the progression of the disease, in terms of patterns of changes and experimental groups (grey, Naı̈ve; yellow, Air-
2BC; green, CIE-2BC). Changes associated with escalation of consumption (A) were identified by WGCNA analysis, and are positively (red) or negatively
(blue) correlated with the amounts of alcohol consumed (inset); therefore, these modifications are more pronounced in the CIE-2BC than the Air-2BC
group. Changes important for the transition to dependence (B) are almost exclusively present in Air-2BC but not CIE-2BC mice, compared to Naı̈ve;
The resulting CIE-/Air-2BC ratio from the differential expression analysis (DE) shows down- (blue) or up- (red) regulation, although the changes in Air-
2BC follow the opposite direction. Finally, changes associated with the maintenance of alcohol dependence (C) include those molecules regulated in
CIE-2BC but not in Air-2BC mice; their expression levels remain unmodified in non-dependent animals, and thus the differential expression ratio
follows the same direction of the respective expression levels.
doi:10.1371/journal.pone.0082565.g005
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more comprehensive and integrated picture of the molecular basis

of addiction, and suggests the potential therapeutic use of miRNAs

as tools to prevent or compensate multiple neuroadaptations

underlying addictive behavior.

Supporting Information

Dataset S1 Changes in miRNA expression induced by CIE

paradigm. All the detected miRNAs sorted by their p-value for

differential expression in the comparison CIE-2BC vs. Air-2BC.

Tables include differential expression (DE) for all the comparisons

and brain regions analyzed. Red represents miRNA up-regulation

and blue represents miRNA down-regulation. Data from

WGCNA analysis are also included, providing the relative

contribution of each miRNA to the effects of the EoC trait.

WGCNA-related columns show correlation between individual

miRNAs and the EoC trait, with relative p-values and rank.

Module information is also included: number, color, and

frequency (size). In correlation columns, blue represents negative

and red represents positive correlations. Green p-values are

,0.05.

(XLS)

Figure S1 General CIE protocol for 2BC drinking. Mice were

made physically dependent on alcohol by intermittent EtOH

vapor exposure (3X16h EtOH + 8h Air). The EtOH consumption

was measured during the 2h limited access, 2BC procedure. The

injections consisted of 68.1 g/kg pyrazole + saline or pyrazole +
1.5 g/kg 20% EtOH. Following the vapor/control chamber

exposures (2BC#1 and 2BC#2) there were significant increases in

EtOH consumption in CIE-2BC vapor-exposed mice relative to

Air-2BC control mice. *p,0.05 post-hoc analysis. Group average

levels of ethanol consumed are expressed in g/Kg. The figure is

adapted from [46].

(TIF)

Figure S2 Representative 2D-DIGE gel used for proteomic

experiments. Gel images were scanned immediately following the

SDS-PAGE. Each scan revealed one of the CyDye signals (Cy2,

Cy3 and Cy5). Cy2 was used to normalize the signals from Cy3

and Cy5 channels. Single and overlay images were generated to

compare different samples, and a comparative analysis of all spots

was performed using DeCyder ‘‘in-gel’’ or ‘‘cross-gel’’ analysis

software. The overlay image shown was obtained from gel#14,

CIE-2BC sample CTX#20 compared to the Air-2BC sample

CTX#15. Spots of interest were selected based on 1.15-fold,

allowing for the appearance of the spots in 23 out of 28 gels (69 out

of 84 total images). The 93 spots shown were picked, trypsin

digested, and subjected to MALDI-TOF MS and TOF/TOF

tandem MS/MS; resulting peptide mass and the associated

fragmentation spectra were submitted to MASCOT search

engine. Candidates with either protein score C.I. % or Ion C.I.

% greater than 95 were considered significant. The best matches

were selected based on C.I.% and pI/MW location of the spot in

the gel. Protein accession name is indicated for each spot. The

figure is adapted from [46].

(TIF)

Table S1 miRNA target prediction analysis. IPA Target Filter

module was used to associate detected miRNAs with experimen-

tally observed and predicted mRNA targets encoding for the

differentially expressed or coexpressed proteins identified with 2D-

DIGE and mass spectrometry. Target information data were

filtered by considering the following: for differential expression

data, miRNA p,0.06 (CTX) or p,0.05 (MB) and proteins p#0.2

(CTX and MB); for coexpression data, miRNA and proteins

p#0.01 (CTX) or p,0.05 (MB) and corr. $0.5 (CTX and MB).

(XLSX)

Table S2 Ingenuity Pathway ‘‘Core’’ analysis of differentially

expressed miRNAs. IPA summary for differentially expressed

miRNAs across multiple comparisons. A-C, G, CTX; D-F, H,

MB. A, D: CIE-2BC vs. Air-2BC; B, E: CIE-2BC vs. Naı̈ve; C, F:

Air-2BC vs. Naı̈ve. G, H: CIE-2BC/Air-2BC minus CIE-2BC/

Naı̈ve and Air-2BC/Naı̈ve. miRNAs used for the analysis were

selected from CTX and MB based on fold change $5% or #-5%

and p,0.05. The following data are reported: top networks, top

biological functions, listed with their respective scores, p-values,

and number of molecules involved. The tab I shows a comparison

between IPA analyses for CIE-2BC vs. Air-2BC in CTX and MB.

(XLSX)
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