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Mass spectrometry (MS)-based top-down proteomics (TDP) requires high-resolution

separation of proteoforms before electrospray ionization (ESI)-MS and tandem mass

spectrometry (MS/MS). Capillary isoelectric focusing (cIEF)-ESI-MS and MS/MS could

be an ideal method for TDP because cIEF can enable separation of proteoforms

based on their isoelectric points (pIs) with ultra-high resolution. cIEF-ESI-MS has been

well-recognized for protein characterization since 1990s. However, the widespread

adoption of cIEF-MS for the characterization of proteoforms had been impeded by

several technical challenges, including the lack of highly sensitive and robust ESI

interface for coupling cIEF to MS, ESI suppression of analytes from ampholytes,

and the requirement of manual operations. In this mini review, we summarize the

technical improvements of cIEF-ESI-MS for characterizing proteoforms and highlight

some recent applications to hydrophobic proteins, urinary albumin variants, charge

variants of monoclonal antibodies, and large-scale TDP of complex proteomes.

Keywords: capillary isoelectric focusing-mass spectrometry, top-down proteomics, ESI interface, ampholytes,

proteoform, monoclonal antibody, hydrophobic protein

INTRODUCTION

Top-down proteomics (TDP) aims to globally characterize proteoforms in cells. The concept
of “proteoform” was published in 2013 to describe all the forms of protein molecules derived
from a same gene on account of genetic variations, alternative splicing, and post-translational
modifications (PTMs) (Smith et al., 2013). As proteoforms from a same gene can have divergent
functions, characterization of proteomes in a proteoform-specific manner is imperative for
understanding critical biological processes and disease mechanism (Ntai et al., 2018; Smith and
Kelleher, 2018). TDP is ideal for characterization of proteoforms because it directly measures
intact proteoforms using mass spectrometry (MS) and tandem mass spectrometry (MS/MS) for
determining proteoforms’ masses, sequences, and PTMs (Chen et al., 2017). Large-scale TDP of
complex proteomes require sufficient liquid-phase separations of proteoforms prior to MS and
MS/MS (Tran et al., 2011; Chen et al., 2017; Gomes and Yates, 2019; Schaffer et al., 2019; Shen
et al., 2019).

Capillary isoelectric focusing (cIEF) separates amphoteric compounds (e.g., proteins) according
to their isoelectric points (pIs) with the assistance of ampholytes (Righetti et al., 1997). cIEF
can achieve ultrahigh-resolution separation of proteins with as low as 0.004 pI differences
(Shen et al., 1999; Kahle and Wätzig, 2018). Integrating cIEF with electrospray ionization
(ESI)-MS is ideal for high-resolution separation and confident identification of proteoforms.
cIEF-MS for protein characterization has been pioneered by Lee and Smith group in
1990s (Tang et al., 1995; Yang et al., 1998; Jensen et al., 1999; Paša-Tolić et al., 1999).
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However, for a long time, cIEF-ESI-MS suffered from low
sensitivity due to the significant sample dilution by the sheath
liquid in the coaxial sheath flow CE-MS interface (Smith
et al., 1988) and the ionization suppression of analytes from
ampholytes. The early cIEF-MS studies required manually
pulling the separation capillary out of catholyte for focusing
and inserting it into the ESI interface for mobilization and
MS detection (Jensen et al., 1999; Paša-Tolić et al., 1999),
impeding the widespread adoption of the technique for
protein characterization.

During the last two decades, great efforts have been made
for improving the sensitivity of cIEF-MS through developing
new CE-MS interfaces and mitigating ampholyte impacts as
well as for developing automated cIEF-MS methods. Several
review papers focusing on cIEF-MS have been published recently
(Silvertand et al., 2008; Hühner et al., 2015; Lechner et al.,
2019). In this mini review, we summarize the important technical
progress of cIEF-MS and highlight most recent applications
of automated cIEF-MS for top-down MS characterization of
hydrophobic proteins, urinary albumin variants, charge variants
of monoclonal antibodies (mAbs), and large-scale TDP of
complex proteomes.

TECHNICAL DEVELOPMENT OF cIEF-MS

CE-MS Interface
Online hyphenation of cIEF and ESI-MS requires a CE-
MS interface that can establish electrical continuity for

FIGURE 1 | (A) Coaxial sheath flow interface. Reproduced with permission from Smith et al. (1988). Copyright 1988 American Chemical Society. (B) Flow-through

microvial interface. Reproduced with permission from Zhong et al. (2011a). Copyright 2011 American Chemical Society. (C) Electrokinetically pumped sheath flow

interface. Reproduced with permission from Sun et al. (2015). Copyright 2015 American Chemical Society. (D) Flowchart of automated cIEF-MS. Reproduced with

permission from Dai et al. (2018). Copyright 2018 American Chemical Society.

CE separation, and meanwhile produces stable electrospray.
Sheath-flow interfaces are well-suited for cIEF-MS studies.
Apart from assisting ionization, the sheath liquid can serve as
the chemical mobilizer to facilitate protein mobilization after
cIEF focusing. The concentration of carrier ampholytes can
be significantly decreased after mixing cIEF effluent with the
sheath liquid, thus benefiting ESI-MS detection. The coaxial
sheath flow interface (Smith et al., 1988), designed by Smith
group in 1988, is the earliest version of interface used for cIEF-
MS (Figure 1A). However, significant sample dilution can occur
using this interface due to the much higher flow rate of the sheath
liquid compared to the sample flow in CE capillary (1–10µL/min
vs. low nL/min).

Tremendous efforts have been invested to improve the
sensitivity of sheath-flow interface by reducing the flow rate of
sheath liquid to the nL/min level. The Chen group constructed
a flow-through microvial interface by placing the separation
capillary in a stainless-steel emitter (Maxwell et al., 2010)
(Figure 1B). The sheath buffer is delivered through the gap
between the capillary and the emitter via a springe pump at
a flow rate of 100–300 nL/min. They achieved at least five-
times better limit of detections (LODs) for amino acids using
the interface compared to the coaxial sheath flow interface. The
Dovichi group introduced an electrokinetically pumped sheath
flow interface to the field in 2010 (Wojcik et al., 2010). The
interface employed electroosmotic flow in the glass spray emitter
to pump the sheath liquid at the nL/min level for ESI (Figure 1C).
The interface was further improved regarding sensitivity and
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robustness by adjusting the emitter orifice size and distance
between the capillary end and emitter orifice in 2013 and 2015
(Sun et al., 2013, 2015). The improved interface-based CE-MS
showed extremely high sensitivity for peptides and proteoforms
(Sun et al., 2013; Yang et al., 2018; Lubeckyj et al., 2019).
The electrokinetically pumped sheath flow CE-MS interface
has been commercialized by the CMP Scientific (https://www.
cmpscientific.com/) as the EMASS-II CE-MS Ion Source. Both
the two sheath-flow interfaces have been successfully applied
to cIEF-MS characterization of intact proteins (Zhong et al.,
2011a,b; Zhu et al., 2017). More recently, several other sheath-
flow CE-MS interfaces with nL/min flow rates of sheath liquid
have been developed (Choi et al., 2016; Fang et al., 2018;
Krenkova et al., 2019; Höcker et al., 2020). However, based on our
best knowledge, there are still no literature reports about using
these new CE-MS interfaces for cIEF-MS.

Reducing the Impact of Carrier Ampholytes
Carrier ampholytes induce ionization suppression of analytes
(Dai et al., 2018), restricting the overall sensitivity of cIEF-
MS. However, they are indispensable for establishing and
maintaining pH gradient needed for cIEF separation. Reducing
the concentration of ampholyte can significantly improve
MS signal, but it adversely impacts separation resolution.
Compromise has to be made between MS signal and separation
resolution when performing cIEF-MS analysis and the
concentration of ampholytes needs to be reduced to 0.5%
or even lower (Paša-Tolić et al., 1999; Hühner et al., 2015; Zhu
et al., 2017).

Besides decreasing the ampholyte concentration, several other
approaches have been validated for reducing the impact of carrier
ampholytes on ESI of analytes. First, integrating the cIEF with
microdialysis (MD) is effective to remove the low-molecular-
weight ampholytes from relatively large proteins before ESI
(Lamoree et al., 1997). The method is not widely used due
to reduced separation efficiency caused by the MD devices.
Second, cIEF-MS has been performed in a carrier ampholyte-free
condition (Zhu et al., 2012). As amino acids have amphoteric
properties and are much smaller than peptides and proteins, they
can be used for establishing pH gradient for cIEF separation.
The drawback is amino acids cannot establish a continuous pH
gradient in the separation capillary as commercialized carrier
ampholytes. Third, some work has been successfully done for
creating an immobilized pH gradient in cIEF capillaries by
covalently immobilizing carrier ampholytes onto in-situ formed
monolithic materials for protein separation (Zhu et al., 2006;
Yang et al., 2010; Liang et al., 2011; Liu et al., 2019). However,
more systematic investigations of the immobilized pH gradient
cIEF-MS needs to be done before deploying it in routine
protein characterization.

Development of Automated cIEF-MS
The cIEF-MS analyses typically were implemented in a
semi-online manner, where capillary outlet was inserted in
a catholyte reservoir with basic buffer for focusing, and
then manually transferred to an interface filled with acidic

sheath liquid for mobilization and ionization (Jensen et al.,
1999). Alternatively, the capillary was fixed in the interface
during the whole process and sheath liquid in the interface
was substituted from basic buffer to acidic sheath liquid
when focusing was completed (Wang et al., 2018). The
appearance of “sandwich” injection configuration in 2009
makes it possible to perform fully automated cIEF-MS analysis
(Mokaddem et al., 2009). The method was carried out by
filling the capillary with MS compatible catholyte buffer such as
ammonia hydroxide, followed by a plug of sample-ampholyte
mixture. Thus, the cIEF focusing could be facilitated after
applying voltage even though its outlet was installed in an
interface with acidic sheath liquid. After focusing, a low
pressure (i.e., 50 mbar) or chemical mobilization was employed
to drive focused proteins toward MS for detection. The
chemical mobilization can automatically be initiated when
cations from anolyte and anions from sheath liquid enter
the capillary and gradually disrupt the pH gradient. The
automated cIEF-MS method is an appealing technique for
various applications.

APPLICATIONS

Because of the drastic improvement in the CE-MS interface
regarding stability and sensitivity, the method for reducing the
negative influence of ampholytes on ESI-MS, and the automated
operation, cIEF-MS has been recognized as a powerful and
sensitive analytical tool for top-down MS characterization of
intact proteins.

Automated cIEF-ESI-MS for Top-Down
Characterization of Hydrophobic Proteins,
Urinary Albumin, and mAb Charge Variants
Characterization of hydrophobic proteins with CE-MS is
always challenging because additives for stabilizing hydrophobic
proteins such as thiourea, urea, and surfactants are not
compatible with MS. Mokaddem et al. performed automated
cIEF-ESI-MS analysis of a mixture of hydrophobic and
hydrophilic proteins in a glycerol-water medium with a
commercialized coaxial interface (Mokaddem et al., 2009). The
automated cIEF-MS was carried out in three steps (Figure 1D).
First, the capillary (100 cm) was injected with a plug of catholyte
(60 cm) and a plug of sample-ampholyte mixture (40 cm). Then,
a voltage (30 kV) was applied on the capillary to facilitate
protein focusing. Finally, after focusing completed, a pressure
(50 mbar) was applied on the capillary to mobilize protein
bands. The study found that glycerol in the concentration range
of 10–30% (v/v) was both MS compatible and well-preserved
protein solubility. The data indicate the potential of cIEF-MS
for the characterization of membrane proteins. The method was
later employed by Lecoeur et al. for qualitative and quantitative
analysis of hydrophobic and hydrophilic whey proteins in bovine
milk (Lecoeur et al., 2010).

The automated cIEF-MS with glycerol medium is also well-
suited for top-down characterization of mAb charge variants. Dai
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et al. developed an automated cIEF-MS method using the similar
“sandwich” injection method reported by Mokaddem et al., a
capillary with neutral coating, and an electrokinetically pumped
sheath flow interface (Dai et al., 2018). Using this method,
the charge variants of various mAbs, including trastuzumab,
bevacizumab, infliximab, and cetuximab, were well-resolved. The
separation results showed good correlation with that from cIEF-
UV analysis. Later, Dai et al. created a middle-up approach
based on the automated cIEF-MS to boost its performance
for delineating complex mAb charge variants (i.e., cetuximab),
leading to the identification of at least eight different charge
variants of cetuximab (Dai and Zhang, 2018). More recently,
Tie et al. applied the automated cIEF-MS to the characterization
of urinary albumin species from the membranous nephropathy
(MN) patients (Tie et al., 2020). They observed distinct patterns
of urinary albumin charge variants from the primary and
secondary MN samples, suggesting the potential of the technique
for distinguishing different subtypes of MN.

Wang et al. demonstrated top-down characterization of
mAb charge variants on an automated cIEF-ESI-QTOF MS
system with a flow through microvial interface (Wang et al.,
2018; Wang and Chen, 2019). With consumption of only
30 ng of infliximab, four charge variants with 0.05–0.2 pI
differences and 13 glycoforms were detected (Wang et al., 2018).
Developing microchip-based cIEF-MS is also very attractive
to pharmaceutical industry. Recent microchip-based cIEF-MS
system developed by Mack et al. provided real-time optical
monitoring of focusing and mobilization process of cIEF, good
resolving power and high throughput (15min each assay) for
characterization of mAb charge variants (Mack et al., 2019).
Besides a direct coupling of cIEF and ESI-MS, cIEF has also been
coupled to CZE-MS using a mechanical valve or a nanoliter valve
for high-resolution characterization of intact proteins and mAb
charge variants (Hühner et al., 2017; Montealegre and Neusüß,
2018).

These works suggest automated cIEF-MS is a promising
tool for quality control of therapeutic mAbs regarding

charge variants and PTMs in pharmaceuticals by providing
high-resolution separation and accurate mass determination. All
the cIEF-MS studies mentioned here only performed protein
mass measurement without MS/MS. More efforts need to be
made about integrating extensive gas-phase fragmentation
techniques with automated cIEF-MS for delineation
of proteoforms.

Automated cIEF-ESI-MS/MS for
Large-Scale TDP
Coupling automated cIEF-MS with MS/MS enables online
fragmentation of separated proteoforms for identifying
proteoform sequences and localizing PTMs. Our lab presented
the first work of automated cIEF-MS/MS for large-scale TDP
of complex proteomes in 2020 (Xu et al., 2020). The automated
cIEF-MS/MS platform was constructed by integrating a linear-
polyacrylamide (LPA) coated capillary with an Orbitrap mass
spectrometer via an electrokinetically pumped sheath flow
interface. Based on “sandwich” injection configuration and
chemical mobilization, automated cIEF-MS/MS methods
identified 711 E. coli proteoforms in a single run by consuming
only nanograms of proteins.

Furthermore, combining size exclusion chromatography
(SEC) and the automated cIEF-MS/MS identified nearly 2000
proteoforms from the E. coli proteome. SEC-cIEF-MS/MS
was further employed for label-free quantitative TDP of
male and female zebrafish brains (Figure 2). Thousands of
proteoforms were quantified, and 263 proteoforms showed
statistically significant difference in abundance betweenmale and
female zebrafish brains. Gene ontology analysis found many of
these differentially expressed proteoforms were associated with
neuronal development and their expression can be regulated by
hormones, disclosing the sex dimorphism of zebrafish brains
at the proteoform level. The work clearly demonstrates the
capability of automated cIEF-MS/MS for large-scale qualitative
and quantitative TDP.

FIGURE 2 | Flow chart of label-free quantitative TDP of female and male zebrafish brains using automated cIEF-MS/MS. Reproduced with permission from Xu et al.

(2020). Copyright 2020 American Chemical Society.
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DISCUSSION

Reversed-phase liquid chromatography (RPLC)-MS/MS is the
routine choice for top-down characterization of proteoforms
(Tran et al., 2011; Chen et al., 2017; Schaffer et al., 2019).
However, RPLC typically fails to separate proteoforms, especially
large proteoforms (i.e., larger than 30 kDa), with high separation
efficiency due to their low diffusion coefficients and strong
interactions with the reversed-phase beads. Capillary zone
electrophoresis (CZE)-MS/MS has been suggested as a useful
alternative for TDP due to high separation efficiency of CZE
for proteoforms according to their electrophoretic mobilities
and high sensitivity of CZE-MS for proteoform measurements
(Gomes and Yates, 2019; Shen et al., 2019). Although sub-
microliter sample loading volumes have been reported for TDP
using CZE-MS/MS (Lubeckyj et al., 2017, 2019), the loading
volume is still limited to a small portion of the total capillary
volume for maintaining high separation efficiency. cIEF-MS/MS
has shown high potential for advancing TDP because cIEF can
achieve proteoform separations with high resolution and has
much higher sample loading capacity compared to CZE.

cIEF-MS has become an important technique for top-down
MS characterization of proteins. However, it still needs to
overcome several technical challenges. First, current cIEF-MS
methods can hardlymake full use of high resolving power of cIEF.
Decreasing concentration of carrier ampholytes is a common
choice to enhance sensitivity, but it can cause reduced separation
resolution. Immobilized pH gradient cIEF could be an alternative

because it allows cIEF separation without carrier ampholytes
and has shown good separation efficiency of proteins with
UV detection. However, its applications in cIEF-MS still need
to be systematically evaluated. Second, cIEF-MS suffers from
limited lifetime of capillary coating. cIEF-MS studies generally
use ammonia hydroxide (pH > 11) as catholyte. However, the
most commonly used LPA coating cannot stand this high pH for
a long time. Using a catholyte with pH lower than 10 can improve
the stability of capillary coating (Ramsay et al., 2011). Exploring
novel capillary coatings that are stable at high pH is vital for
reproducible and robust cIEF-MS analyses. Third, analysis of
highly basic (pI >10) or acidic (pI < 3) proteoforms remains
difficult for cIEF as the commonly used carrier ampholytes cover
a pI range of 3–10. Thus, novel cIEF-MS methods are required
for characterizing proteoforms with extremely low or high pIs.
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