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I n the United States alone, 1 person dies from a coronary
event approximately every 1.5 minutes.1 Cardiovascular

disease (CVD) encompasses larger subclasses of diseases,
such as hypertension, coronary/peripheral artery disease,
endothelial dysfunction, and atrial fibrillation, and is associ-
ated with metabolic diseases such as diabetes and obesity.
Although these diseases are distinctive and their etiologies
are diverse, they share a common progressive end stage,
which is heart failure (HF). As the heart fails, it begins to lose
the ability to maintain energy balance and regulate metabolic
processes.2 Depending on the pathogenesis of CVD, the
metabolic profile can be distinct. Further complicating
diagnostic and prognostic assessments is the variable
temporal progression of the disease.

Clinical Diagnosis of Cardiovascular Disease
The heterogeneous clinical manifestations of CVD range from
subtle to life-threatening conditions. According to the National
Heart, Lung, and Blood Institute, clinical confirmation relies on
multiple tests, including evaluation of risk factors, physical
exam, and family history, and results from tests and
procedures such as electrocardiogram, echocardiogram,
chest x-ray, and blood tests. Misdiagnosis is common with
these methods, obscured by age, sex, complications from
other conditions such as obesity (including edema and
dyspnea), or erroneous baselines for circulating secreted

factors such as cardiac troponin, among others.3,4 Thus, many
studies strive to identify novel biomarkers for risk stratifica-
tion of CVD, diagnosis, and prognosis; however, progress is
hindered by the heterogeneous origin of these disorders.

Progress and Issues With Current CVD
Biomarkers
As defined by the National Institutes of Health, a biomarker is
“a characteristic that is objectively measured and evaluated
as an indicator of normal biological processes, pathogenic
processes, or pharmacologic responses to a therapeutic
intervention.”5 Progress in the CVD biomarker field has been
slow, given that a good biomarker must satisfy stringent
criteria including screening method, assay sensitivity, and the
context for its assay. For example, the screening of bodily
fluids, such as blood, urine, and saliva, are preferable to
painful and invasive organ biopsies. Tests should be sensitive,
yielding results quickly (in minutes or hours, not days).
Candidate biomarkers are assessed by context-specific crite-
ria such as their potential for diagnosis, prognosis, or
treatment-guided therapy. Finally, new biomarkers should
offer improvements over established biomarkers.

Current CVD biomarkers include many classes of mole-
cules, including metabolites, lipids, proteins, and peptides.
Blood-derived lipid levels are a good marker for CVD risk
stratification (Table 1), and the general guidelines for analysis
include: total cholesterol (ideally 9<200 mg/dL), low-density
lipoprotein (LDL; 9<130 mg/dL), high-density lipoprotein
(HDL; 9>60 mg/dL) and triglycerides (TGs; 9<150 mg/dL).
High total cholesterol, LDL, and TG levels negatively correlate
with patient outcomes whereas HDL levels have a positive
correlation. However, a drawback to lipid analysis is that they
are general markers for systemic health, not necessarily
cardiac health. Assay advantages and disadvantages are listed
in Table 1, and disadvantages include variable levels upon
sample collection (postprandial, fasting, morning, night, etc)
and many are not cardiac specific.

Circulating proteins and peptides are also used as
biomarkers, and like lipids, many are not cardiac specific or
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only are detected after significant cardiac damage has
occurred (Table 1). Proteins analyzed include: C-reactive
protein (CRP), fibrinogen, and the neurohormones, B-type
natriuretic peptide (BNP) and norepinephrine (NE).6,7 CRP is a
general marker of inflammation, high fibrinogen levels indicate
clot risk for stroke and atherosclerosis, NE concentration
directly correlates to left ventricular dysfunction,8 and BNP
levels are a strong predictor of mortality. From these
examples, it is clear that the magnitude and rate of changes
in circulating biomarker levels is critical for risk stratification,
diagnosis, and disease treatment.

As previously mentioned, a good biomarker must satisfy
stringent criteria, including screening method, assay sensitiv-
ity, and the context for its assay. New biomarkers must
improve upon the old, and a good example is cardiac-specific
troponin T (cTnT). cTnT supplanted previous assays detecting
creatine kinase/creatine kinase-MB (CK/CKMB) because they
are not cardiac specific. Interestingly, troponin T is expressed
in both cardiac and skeletal muscles; however, this protein is
encoded by different genes and results in 2 immunologically
distinct proteins. Also, assays detecting cTnT are more
sensitive than CK/CKMB assays, resulting in a faster
diagnosis. Hence, efforts to identify novel, cardiac-specific
biomarkers could improve upon current clinical biomarkers.

Identification of “Cardiokines” for
Mechanistic Studies

In addition to identifying novel biomarkers, it is important to
understand how biomarkers fit into our mechanistic under-
standing of CVD. As the heart begins to fail, disruption in its
metabolic processes can lead to the secretion of proteins from
the heart into the circulation called “cardiokines.”9 Cardiokines
are synthesized and secreted from multiple cell types in the
heart, including cardiomyocytes, fibroblasts, smooth muscle
(aortic or blood-derived progenitors), and vascular endothelial
cells. An extensive list of cardiokines are in Table 2; also listed
is their cellular origin, examples of stress-induced regulation,
as well as method of secretion (classical or nonclassical).
Cardiokines derived from cardiomyocytes and fibroblasts are
emphasized in Table 2, because these cell types represent
�56% and 27% of cells in the heart, respectively.10

Many different types of stress, occurring at various stages of
cardiac disease, can initiate cardiokine synthesis and secretion.
These stressors include: ischemia/reperfusion, oxidative
stress, hemodynamic stress, hypertrophy, etc, and are listed
in Table 2. Cardiokines have multiple modes of action, includ-
ing: autocrine, paracrine, and/or endocrine effects. The
significance of these endocrine effects is of particular interest

Table 1. Summary of Common Circulating Biomarkers for CVD Diagnosis

Circulating
Factor Assay Advantages Assay Disadvantages

BNP High levels indicate heart damage. High BNP level alone is not enough to diagnose a heart
problem.

CRP Increased levels indicate an inflammatory response to injury or infection. Measuring CRP alone does not indicate risk for heart
disease.

Fibronectin Excess protein can result in clot formation, leading to a heart attack or stroke. Currently, no direct treatments to lower fibrinogen levels;
test is also not universally standardized.

Glucose High blood glucose level is a risk factor for insulin resistance, prediabetes, and
type 2 diabetes mellitus. Untreated diabetes mellitus can lead to heart disease
and stroke.

Timing of measurements is critical because levels can vary
throughout the day (postprandial, fasting, circadian rhythm,
AM vs PM).

HDL HDL assists in removing LDL cholesterol, keeping arteries open, and increased
blood flow.

Timing of measurements is critical because levels can vary
throughout the day (postprandial, fasting, circadian rhythm,
AM vs PM).

Lp (a) Levels are genetically determined. High levels of Lp(a) may be a sign of
increased risk of heart disease.

Research has not clarified risk levels.

LDL
cholesterol

High blood levels cause accumulation of fatty deposits (plaques) in arteries
(atherosclerosis), which reduces blood flow. Plaques can rupture and lead to
major heart and vascular problems.

Timing of measurements is critical because levels can vary
throughout the day (postprandial, fasting, circadian rhythm,
AM vs PM).

TC High levels increase risk of heart disease.

TGs High levels indicate more calories are consumed than metabolically burned.
High levels increase risk of heart disease.

Timing of measurements is critical because levels can vary
throughout the day (postprandial, fasting, circadian rhythm,
AM vs PM).

Common diagnostic biomarkers for cardiovascular disease (CVD) are listed. These biomarkers are circulating factors assayed from human blood. Advantages and disadvantages for each
assay are concisely stated. BNP indicates B-type natriuretic peptide; CRP, C-reactive protein; HDL, High-density lipoprotein; LDL, Low-density lipoprotein; Lp (a), Lipoprotein (a); TC, Total
Cholesterol; TGs, Triglycerides.
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Table 2. Reported Cardiokines

Cardiokine Cellular Origin Secretory Pathway Stress-Mediated Regulation

Activin-A Myocyte Unknown Ischemia/reperfusion injury11

ADM Myocyte Classical Nitric oxide12

APLN Myocyte Classical Cardiac ischemia13

Angiotensin II Myocyte Unknown Oxidative stress14–17

Annexin V Myocyte Nonclassical Myocardial infarction18

ANP* Myocyte* Classical* Hemodynamic stress19*

BNP* Myocyte* Classical* Hemodynamic stress20*

CTRP9* Myocyte* Classical* Ischemia/reperfusion injury21*

CGRP Myocyte Classical Ischemia/reperfusion injury22

CT-1 Myocyte Classical Myocardial infarction23

C-C motif chemokine Fibroblast Classical Ischemia-induced myocardial injury24–26

Clusterin Myocyte Classical Myocardial infarction27

Collagen Fibroblast Classical Cardiac fibrosis23,28–31

C-type natriuretic peptide Myocytes Classical Myocardial infarction32,33

CypA Myocyte Nonclassical Hypoxia34

ET-1 Myocyte Classical Myocardial infarction35

Enkephalin Myocyte Classical Ischemia36

FSTL-1/FRP Myocyte Classical Transverse aortic constriction, ischemia/reperfusion
injury, and myocardial infarction37,38

FSTL-3 Neither Unknown Ischemia/reperfusion injury37

FGF-1 Fibroblast Nonclassical Ischemia/reperfusion injury39

FGF-2 Fibroblast Nonclassical Ischemia/reperfusion injury40

GDF-15/macrophage-inhibitory cytokine 1* Myocyte* Unknown* Ischemia/reperfusion injury41,42*

HSP60 Fibroblast Nonclassical Myocardial infarction43,44

HMG-1 Fibroblast Nonclassical Ischemia/reperfusion injury45

IL-1a Neither Nonclassical Myocardial infarction46,47

IL-1b Neither Nonclassical Myocyte hypertrophy46

IL-6 Neither Classical Atherothrombosis23,47,48

IL-33 Fibroblast Classical Apoptosis15,49,50

MANF Myocyte Unknown Myocardial infarction29

MIF Neither Nonclassical Atherosclerotic vascular lesions51

GDF-8* Myocyte* Classical* Cardiac hypertrophy41,42*

Necrosis factor-a Both Classical Hypertension47,52,53

NRG1 Nonclassical Reactive oxygen species54,55

OPN Myocyte Classical Cardiac hypertrophy, Ischemia/reperfusion injury29,56,57

PTX3 Fibroblast Classical Myocardial infarction58,59

PI16 Myocyte Classical Cardiac hypertrophy60

S100-A1 Myocyte Nonclassical Myocardial infarction61

Sfrp2 Neither Unknown Myocardial infarction28,62

Thioredoxin Myocyte Unknown Myocardial infarction/ischemia/reperfusion injury63

TNFa Myocyte Unknown Ischemia/reperfusion injury47,53

TGF-b1 Both Unknown Hypertrophy16,64,65

Continued
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mechanistically, given that multiple organs outside the heart
are affected by CVD, and organ cross-talk could potentially
precipitate its origin and/or progression. Yet, few cardiokines
are known to have endocrine effects (asterisk [*] symbol,
Table 2), although these factors may hold tremendous promise
in understanding CVD.

Communication between the heart and peripheral organs is
essential to maintain an efficient metabolism and preserve
normal cardiac function. Conversely, other organs can signal
to the heart by secreting their own factors. Adipose tissue
secretes adipokines; most are upregulated in the obese state,
are proinflammatory, and contribute to metabolic dysfunction.
Examples of these adipokines include leptin, tumor necrosis
factor (TNF), and interleukin-6 (IL-6), as reviewed elsewhere.67

In contrast, adiponectin (APN) is considered anti-inflammatory
and beneficial in target tissues, where it regulates glucose
homeostasis.68 It has been proposed that metabolic dysfunc-
tion and other diseases result from an imbalance in these
anti- and proinflammatory adipokines.68 Adipokines serve as a
striking example of how stress in one organ can significantly
impact the metabolism of peripheral organs. Another example
of a peripherally released factor is growth differentiation
factor-11 (GDF-11). Loffredo et al. identified GDF-11 as a
circulating factor possibly originating from the spleen that
prevents age-dependent cardiac hypertrophy using parabiosis
experiment with young animals.69 Similar roles are beginning
to be defined in the stressed heart and its secreted
cardiokines.

The heart is susceptible to stress impacting energy
homeostasis. To maintain cardiac contractility, the human
heart requires a large energy supply in the form of ATP. The
myocardial ATP pool is a balance between anabolic and
catabolic processes and is turned over �6 times per
minute.70 It is estimated that the heart stores enough energy
to sustain function for only a few beats. The adult heart relies
on mitochondrial fatty acid oxidation (FAO) as its primary ATP
energy output (60–90% of ATP production) whereas glycolytic

pathways contribute the remaining 10% to 40%.71 Underscor-
ing the importance of FAO to cardiomyocyte function, �30%
of cellular volume consists of mitochondria.72 During CVD,
cardiac mitochondrial function is diminished and the heart
shifts from FAO to a glycolytic metabolic program.73 The
resulting metabolic switch reduces ATP production and
impairs cardiac contractility.

Beyond ATP production, additional metabolic pathways are
altered in disease, including autophagy, cell growth, and redox
homeostasis, as reviewed here.74 During the transition to HF,
whole-body metabolism shifts to favor catabolism in a process
called cachexia. Thus, cardiac metabolic changes can signify
the transition from early to late cardiac disease and represent
multiple points of intervention for novel therapeutics. In this
review, we highlight cardiokines that regulate systemic
metabolism, including atrial natriuretic peptide (ANP), B-type
natriuretic peptide (BNP), growth differentiation factor-8 (GDF-
8) or myostatin, growth differentiation factor-15 (GDF-15),
and C1q/TNF-related protein 9 (CTRP9). We emphasize that
understanding the type of stress that induces these cardioki-
nes and regulates their secretion are key parameters to
evaluate their efficacy as CVD biomarkers. Also, even
cardiokines with limited clinical applications can become
hypothesis generating in the context of basic research.

Atrial and B-Type Natriuretic Peptides
Previously, de Bold et al. demonstrated that ANP is a
cardiokine that modulates a peripheral organ (the kidney).75

Subsequently, the ANP, BNP receptor atrial natriuretic peptide
receptor-A (NPR-A) was identified in multiple tissues, including
adipose tissue, suggesting other actions in addition to
regulating blood volume. It was subsequently determined
that cardiac-derived natriuretic peptides communicate with
adipose tissue to initiate “browning,” a thermogenic process
with therapeutic potential for treating obesity and reducing
the risk of CVD.76

Table 2. Continued

Cardiokine Cellular Origin Secretory Pathway Stress-Mediated Regulation

UCN Both Classical Ischemia/reperfusion injury12

VEGF Myocyte Classical Myocardial infarction47,66

This table is a comprehensive list of cardiokines reported in the literature, with emphasis on factors secreted by cardiomyocytes (abbreviated “myocyte” in the table) and fibroblasts.
*There is a striking contrast between the number of cardiokines reported in the literature that act by autocrine and paracrine mechanisms and endocrine. These include 5 cardiokines with
endocrine effects that modulate peripheral metabolism: atrial natriuretic peptide (ANP); B-type natriuretic peptide (BNP); growth differentiation factor-8 (GDF-8/myostatin) and -15 (GDF-
15); and C1q/TNF-related protein 9 (CTRP9). This list reinforces the need to explore cardiokines in the context of endocrine actions, to identify novel stressors resulting in cardiokine
secretion, and identification of cellular pathways leading to cardiokine secretion, including classical (endoplasmic reticulum [ER] dependent) and nonclassical (ER independent). ADM
indicates Adrenomedullin; ANP, Atrial natriuretic peptide; APLN, Apelin; BNP, B-type or brain natriuretic peptide; CGRP, Calcitonin gene-related peptide; CT-1, Cardiotrophin-1; CTRP9, C1q/
TNF-related protein 9; CypA, Cyclophilin A; ET-1, Endothelin-1; FGF-1, Fibroblast growth factor -1; FGF-2, Fibroblast growth factor-2; FRP, Follistatin Related Protein; FSTL-1, Follistatin-like 1;
FSTL-3, Follistatin-like 3; GDF-8, Growth differentiation factor 8; GDF-15, Growth differentiation factor; HMG-1, Highmobility group 1 protein; HSP60, Heat shock protein 60; IL-1a, Interleukin -
1a; IL-1b, Interleukin -1b; IL-6, Interleukin-6; IL-33, Interleukin-33; MANF, Mesencephalic astrocyte-derived neurotropic factor; MIF, Migration inhibitory factor; NRG1, Neuregulin 1; OPN,
Osteopontin; PI16, Protease inhibitor 16; PTX3, Pentraxin-3; Sfrp2, Secreted frizzled-related protein; TGF-b1, Transforming growth factor-b1; TNFa, Tumor necrosis factor a; UCN, Urocortin;
VEGF, Vascular endothelial growth factor.
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Discovery of ANP and BNP
The first evidence suggesting a cardiac-secreted factor
existed was published in 1963 when secretory granules were
identified by electron microscopy in the atria.77,78 The first
indication that the heart is capable of releasing cardiokines
affecting peripheral organs came in 1981 when it was
demonstrated that infusing atrial extracts into rats resulted in
a rapid natriuresis and diuresis from the kidney.75 The active
molecule was purified in 1983, and named ANP.79,80 In 1988,
a second cardiac natriuretic peptide, BNP, was isolated in pig
and subsequently human atria.81–84

Induction of Natriuretic Peptide Synthesis and
Secretion
ANP and BNP are members of the natriuretic peptide family of
proteins and expressed from the NPPA and NPPB genes,
respectively, on chromosome 1. ANP and BNP undergo
regulated secretion, and a focus of previous studies is
defining factors regulating their synthesis and secretions.85

The synthesis and release of ANP and BNP are highly
regulated processes underscoring important aspects of
cardiokine biology. Mechanical strain, including hemodynamic
stress, is an established inducer of ANP and BNP expres-
sion.20 Other signals that induce ANP, BNP production
include: vasoconstrictors (endothelin-1,19 angiotensin II, and
a-adrenergic agonists86), hormones (glucocorticoids,87 thy-
roid hormone88–90), growth factors, and proinflammatory
cytokines.91 Conversely, secretion of ANP, BNP is reduced
by nitric oxide (NO) and leptin.92,93 These signals are linked to
CVD, indicating a diverse, highly regulated mechanism
controlling secretion of these important signaling molecules.

Enzymatic Processing of Mature ANP and BNP
ANP, BNP are initially synthesized as prohormones and stored
as secretory granules before secretion.85 The cardiokine
action of ANP, BNP is largely regulated through prohormone
cleavage, which generates the mature and active peptides.
ANP, BNP are cleaved into their mature form by corin, a serine
protease expressed in heart, kidney, and blood.94 Interest-
ingly, multiple ANP and BNP peptides are found in circulation.
Detection of these processed fragments is important for their
utility as biomarkers.

Full-length ANP (153 amino acids [aa]) is cleaved by signal
peptidase in the sarcoplasmic reticulum (SR) to generate pro-
ANP (126 aa). Pro-ANP is stored in secretory granules for
regulated secretion (see Table 2). Once secreted, extracellular
pro-ANP is cleaved into inactive peptide NT-pro-ANP (aa 1–98)
and 28 aa active ANP (aa 99–126) by the cell-surface protein,
corin.95 For BNP processing, the signal peptide (26 aa) is

cleaved from preproBNP (134 aa) while it is cotranslated in
the SR. The resulting proBNP (108 aa) is secreted by
the conventional (ER-Golgi) pathway96 and regulated by
O-glycosylation at threonine residue 71 (Thr71).97 Modifica-
tion at Thr71 prevents cleavage, yielding glycosylated proBNP
(108 aa); no modification at Thr71 enables cleavage into NT-
proBNP (aa 1–76) and BNP-32 (aa 77–108). Distinct substrate
sequence preferences yield BNP (1–32) with furin cleavage
and BNP (4–32) with corin cleavage, peptides detected both
in vitro and in vivo.98,99 Another form detected in plasma, BNP
(3–32), could result from dipeptidyl peptidase cleavage.100

ANP and BNP Signaling
After cleavage, active peptides bind atrial natriuretic peptide
receptors A (NPR-A) or C (NPR-C), encoded by the genes,
NPR1 and NPR3, respectively. When bound to the “clearance
receptor,” NPR-C,101 the peptide is cleared from circulation;
to NPR-A, blood pressure is reduced and body fluid home-
ostasis is altered, among other effects. NPR-A is a cell-surface
receptor and a guanylate cyclase family member. ANP, BNP
ligand binding activates its catalytic function, converting GTP
into the second messenger, cyclic GMP.102,103 In contrast,
NPR-C is called the “clearance receptor” because it lacks a
guanylyl cyclase domain; it is an atypical G-protein-coupled
receptor coupled to inhibitor G proteins (Gi). It both inhibits
adenylyl cyclase and activates phospholipase C.104

To determine novel target organs of ANP and BNP,
expression patterns for both receptors are being defined at
different physiological and pathological states. Under physi-
ological conditions, NPR-A is expressed in heart and adipose
tissue,105 kidney and vascular tissue,106,107 adrenal gland,108

aortic smooth muscle and endothelial cells,109 and brain,110

among others. NPR-C is expressed in brain and choroid
plexus111 and adipose tissue.112,113 Under pathological
conditions, such as pressure overload, rats have upregulated
ligand (ANP and BNP) and receptor (NPR-A and NPR-C)
expression in the left ventricle.114

Natriuretic Peptides in Organ Cross-talk
Metabolic disorders such as obesity can accelerate CVD, and
recent evidence with cardiokines suggests the heart commu-
nicates with adipose tissue to regulate systemic metabolism.
NPR-A is expressed in the adipose tissue of rats115 and
humans,105 and exogenous ANP, BNP application onto human
adipocytes results in lipolysis, that is, lipid breakdown by
hydrolysis of TG into free fatty acids and glycerol.116 ANP and
BNP also induce expression of brown adipocyte markers,
including uncoupling protein-1 (UCP1), peroxisome prolifera-
tor-activated receptor gamma coactivator or PGC-1a
(PPARGC1A), cytochrome c (CYCS), and PRD1-BF1-RIZ1
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homologous domain containing 16 (PRDM16).76 Activation of
these factors indicates a “browning” of white fat to a
thermogenic tissue, because brown/beige fat increases
energy expenditure through uncoupled respiration. It also
suggests that the diseased heart may release ANP, BNP in an
attempt to provide itself with an increased energy supply in
the form of free fatty acids.

ANP, BNP ligand availability is determined by NPR-C
expression. NPR-C levels fluctuate based on nutrient availabil-
ity, and fasting mice have reduced NPR-C levels in adipose
tissue.117 In contrast to human adipocytes, rodent cells do not
activate lipolysis when exogenously treated with ANP and
BNP.118 Humans have lower NPR-C levels relative to NPR-A;
specifically, rodent NPR-C levels are 100-fold greater than in
humans.118,119 By comparing lipolysis in white adipocytes
cultured from Npr3+/+ and Npr3�/� animals, it was found that
cells lacking NPR-C could respond to ANP and initiate
lipolysis.76 These results indicate that NPR-C levels are a key
mediator of lipolytic response by regulating ligand availability
(ANP, BNP) in both rodent and human adipose tissue.

Clinical Relevance of Natriuretic Peptides to
Cardiovascular Health
Finally, genetic manipulation of this peptide system results in
cardiovascular stress or disease phenotypes in mice. Corin
deficiency results in cardiac hypertrophy and hypertension.120

ANP knockouts (Nppa�/�) have salt-sensitive hypertension,
elevated blood pressure, and cardiac hypertrophy at base-
line.121,122 BNP knockouts (Nppb�/�) have ventricular fibrotic
lesions at baseline, but no ventricular hypertrophy or systemic
hypertension.123 Cardiomyocyte-specific NPR-A knockout
results in hypertrophy and hypotension.124 NPR-C knockout
mice (Npr3�/�) have reduced blood pressure, reduced ability
to concentrate urine, and are called “long john” (lgj) stemming
from skeletal overgrowth resulting in a longer body.119,125

These genetic models underscore the importance of natri-
uretic peptide (ANP, BNP) secretion to maintain normal
cardiac structure and function during stress.

A combination of basic science and clinical testing of ANP
and BNP has yielded excellent data concerning plasma levels,
stable peptides to bioassay, as well as genetic abnormalities or
single-nucleotide polymorphisms, leading to altered plasma
levels of these peptides.126 In humans, elevated plasma levels
of both N-terminal (NT)-proANP and NT-proBNP correlate with
cardiovascular stress and mortality.127 Yet, ANP and BNP
plasma levels are differentially regulated in patients with
CVD,128 and NT-proBNP is considered a more robust
biomarker.129 BNP and NT-proBNP measurements are more
consistent than ANP because of a longer half-life (ANP half-life
is �2.5 minutes,130,131 BNP is �20 minutes, and NT-proBNP
is �24.8 minutes132). Patient BNP and NT-proBNP levels are

detected by commercially available antibody-based bioassays,
but a drawback is erroneous antibody binding, such as to other
BNP cleavage products, and results vary by manufacturer.133

Overall, agreement between these NT-proBNP immunoassays
is superior to BNP, as determined by the CardioOrmoCheck
study.134 Another drawback is elevated circulating levels of
BNP and NT-proBNP is not specific to CVD and elevated levels
are reported in: acute ischemic stroke,135 cancer patients
without volume overload,136 and end-stage renal disease.137

Overall, however, BNP and NT-proBNP levels are widely used
as a good prognostic marker in CVD and in biomarker-guided
therapy, where a BNP algorithm has been developed to aid in
clinical decision making, such as drug selection and dose.138

GDF-8 and GDF-15
GDF-8 and GDF-15 are members of the transforming growth
factor-b (TGF-b)/bone morphogenetic protein cytokine super-
family. TGF-b family members have diverse functions in
cellular proliferation, differentiation, growth, inflammation,
and extracellular matrix deposition. Activation of this signaling
pathway has contradictory effects on cardiovascular health,
and circulating levels of TGF-b can have cross-reactivity
issues with other TGF-b family members, thus limiting their
application as biomarkers. In this section, we discuss these
circulating factors and their diverse effects on systemic
metabolism, primarily focusing on GDF-8/myostatin.

GDF-8/Myostatin
The secreted factor myostatin is expressed in skeletal muscle
where it is a striking regulator of muscle mass. Elevated
skeletal myostatin levels reduce skeletal muscle hypertrophy
and hyperplasia, whereas decreased myostatin levels increase
skeletal muscle mass.139,140 Recently, low levels of myostatin
were reported in cardiac muscle. Surprisingly, this cardiac-
derived myostatin acts in an endocrine fashion on skeletal
muscle to reduce muscle mass.141 This finding is important in
HF, because an endpoint of many disorders is muscle wasting
and cachexia. Here, we discuss the significance of cardiac-
secreted myostatin for CVD treatments in the prevention of
cachexia.

Discovery of myostatin

Discovered in 1997, myostatin or GDF-8 is a member of the
TGF-b superfamily.142 Myostatin/GDF-8 is expressed from
the MSTN gene, primarily in skeletal muscle, but also at lower
levels in heart muscle and adipose tissue.142,143 Loss of
function Mstn mutations leads to a doubling of skeletal
muscle mass in the cattle breeds Belgian Blue and Piedmon-
tese.139,140 Mstn�/� mice have increased skeletal muscle
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mass and significantly reduced fat accumulation relative to
controls, whereas cardiac muscle mass is unaltered.140,144–
146 Humans with myostatin mutations are also exceptionally
strong and lean147 and/or capable of building greater muscle
mass with exercise.148 Myostatin level is therefore a key
determinant of skeletal muscle growth in multiple species.
Whether this increase in skeletal muscle mass stems from
hyperplasia or hypertrophy is a point of contention and may
result from a combination thereof.142,149,150 One hypothesis
posits the mechanism of skeletal growth is dependent on
myostatin protein levels, and Mstn�/� induces both hyper-
trophy and hyperplasia, whereas low-moderate levels of
myostatin induce hypertrophy.151

Maturation, receptor binding, and signaling

Myostatin is synthesized as a prepropeptide (376 aa) and
proteolytically cleaved by the Ca+2-dependent protease, furin,
a ubiquitously expressed proprotein convertase family mem-
ber localized to the trans-Golgi network.152 Myostatin forms a
dimer through its C-terminus that serves as the functional
ligand for heterodimeric activin receptors. The activin A
receptor type II B (ACTRIIB), encoded by the ACVR2B gene,
forms a stable complex with the type I receptor to activate
activin signaling. Receptor activation is antagonized by
binding myostatin propeptide or follistatin, an activin-binding
protein, among others. Follistatin transgenic mice and Acvr2b
dominant-negative mice are hypermuscular relative to con-
trols, similar to myostatin knockout mice.

Activation of ACTRIIB stimulates the small mothers of
decapentaplegic (Smad)-dependent TGF-b signaling pathway,
specifically Smad2/3. Afterward, downstream growth path-
ways, such as protein kinase B (Akt)/mammalian target of
rapamycin complex 1/p70S6K are suppressed, resulting in
inhibition of muscle cell differentiation and growth.153 Myo-
statin is also implicated in a TGF-b-independent pathway
during the induction of cachexia. Myostatin inhibits AKT
phosphorylation, resulting in forkhead box O1 upregulation of
ubiquitin proteasome genes.154

Clinical relevance of myostatin to cardiovascular health

Myostatin mRNA and protein levels are upregulated after
cardiac hypertrophy or injury. Humans with advanced heart
failure have increased cardiacmyostatin levels.155,156 Similar to
humans, myostatin synthesis and secretion is increased in
murine heart failure models. During late-stage heart failure,
whole-body metabolism favors catabolism, culminating in
cachexia. Because of the observed increase in myostatin after
cardiac stress, and its known functions regulating muscle
growth and differentiation, one hypothesis is that heart failure
increases cardiac-secreted myostatin to reduce peripheral
muscle mass, thus decreasing the cardiac burden. A recent

article by Heineke et al. tested this hypothesis. To model
cardiac-induced skeletal muscle atrophy, a long-term pressure
overload model was used. After this stress, circulating
myostatin levels were increased in wild-type mice, but not in
cardiomyocyte-specific myostatin knockout mice. Conversely,
cardiomyocyte-specific myostatin transgenic mice have a 3- to
4-fold increase in circulating myostatin that is sufficient to
reduce both skeletal and cardiac muscle mass. Together, these
data supports a role for cardiomyocyte-derived myostatin in
regulation of peripheral skeletal muscle mass.141

To prevent the loss of skeletal muscle mass, Heineke et al.
infused an antimyostatin antibody (JA-16) after onset of HF.
The goal was to inhibit binding of myostatin to ACTRIIB.
Whereas a 6-week JA-16 treatment (administered 8 weeks
post-TAC [transverse aortic constriction] or sham) success-
fully maintained muscle mass relative to controls, treatment
did not improve survival or cardiac performance. The authors
concluded the antibody intervention was not as effective as a
genetic deletion (Mstn�/�) model of myostatin; interestingly,
Mstn�/� mice lacked myostatin before TAC.141 These results
suggest earlier inhibition of myostatin for optimal therapy. In
humans, multiple myostatin inhibitory antibodies (MYO-
029157 and AMG 745) have been developed to increase
muscle mass in muscular dystrophy; however, their applica-
tion in the treatment of HF-induced cachexia is unknown.

Further mechanistic insight into what signaling cascades
induce the synthesis and secretion of myostatin in cardiomy-
ocytes may yield more-promising avenues for the prevention of
cachexia during progressive HF. Thus, the possible endocrine
functions of myostatin is an interesting new area of research
that warrants further investigation; however, as a cardiac
biomarker, myostatin is not ideal because it is not cardiac
specific, but may prove useful in a multimarker approach. For
example, coronary HF patients patients have increased plasma
myostatin concentrations correlating with NT-proBNP.158

GDF-15
GDF15 was cloned by multiple laboratories as early as 1997
and is known by many names, including macrophage
inhibitory cytokine 1,159 nonsteroidal anti-inflammatory
drug–activated gene-1,160 and placental bone morphogenetic
protein B.161 These diverse names are reflective of just a few
of GDF-15’s reported functions, including metabolism and
cardiovascular health.

Maturation, receptor binding, and signaling

GDF-15 is a divergent member of the TGF-b superfamily.159

Encoded by the GDF15 gene as an immature 308 aa,�34 kDa
protein, it is cleaved at N252-M253 into a �6 kDa C-terminal
fragment by membrane type 1 matrix metalloproteinase and a
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�30 kDa N-terminus that homodimerizes to form an active
peptide.162 GDF-15 binds activin receptor-like kinase type 1
receptors (1–7) and is involved in many cellular processes,
such as tumorigenesis, proliferation, differentiation, apoptosis,
and inflammation. As such, it is a circulating factor of particular
interest to many fields, including diabetes mellitus and CVD
research. Importantly, a sensitive immunoradiometric sand-
wich assay detects GDF-15 in patient blood with minimal
cross-reactivity with other TGF-b family members.163

Clinical relevance of GDF-15 to cardiovascular health

CVD patients with cardiac hypertrophy or chronic HF have
elevated, circulating GDF-15 levels correlating with disease
severity.164 Gdf15 is induced during cardiac stress and
released from the mouse myocardium; cardiac-specific
Gdf15 transgenic mice have some resistance to hypertrophy
induced by phenylephrine, angiotensin, and pressure over-
load. Conversely, Gdf15 null mice develop normally, but
increased hypertrophy occurs in response to TAC.165 These
results reinforce that GDF15 is an antihypertrophic factor.
Other studies indicate that GDF-15 is cardioprotective by
activating the phosphoinositide 3-kinase/AKT/endothelial
nitric oxide synthase/NO pathway.166 In general, TGF-b
signaling activation was previously viewed as detrimental to
cardiac function, resulting in cardiac remodeling, including
hypertrophy and fibrosis. However, GDF-15 downstream
pathway activation is through SMAD2/3165 and is antihyper-
trophic. Additional research is needed to clarify this discrep-
ancy; it is tempting to speculate that this avenue could yield
novel targets for drug treatment.

Screening of circulating GDF-15 levels is a promising
prognostic marker for metabolic disorders, including obesity,
insulin resistance, and type 2 diabetes mellitus (T2DM), where
its circulating levels are also increased.167,168 Using a global
Gdf15 transgenic mouse fed high-fat diet versus control, and
despite equivalent food intake, the transgenic mice have less
white and brown adipose tissue. These transgenics also have
improved glucose tolerance and lower insulin levels.169

Treatment of obese C57BL/6 mice with Gdf15 expressing
xenografts had less adipose tissue, with increased expression
of the lipolytic genes, adipose triglyceride lipase, and
hormone-sensitive lipase.169 Interestingly, circulating GDF-
15 levels are also being investigated for mitochondrial
disorders, where it is a promising biomarker.170 As a result
of these studies, GDF-15 is an emerging biomarker for both
cardiovascular and cardiometabolic disorders.

CTRP9
Newly recognized paralogs of adiponectin (APN), a major
adipokine, are the CTRPs, with CTRP9 having the greatest

degree of amino acid identity. CTRP9 is a recently identified
cardiokine (2009), and studies suggest that it regulates
prosurvival cardiac pathways. It also appears to affect
metabolism, given that its circulating levels are inversely
correlated with fasting glucose and insulin resistance.
Because of its recent discovery, many aspects of this
protein’s regulation and functions are uncharacterized.

Maturation, Receptor Binding, and Signaling
CTRP9 is encoded by the C1QTNF9 gene on chromosome 13
(human) or chromosome 14 (mouse). While highly expressed in
adipose tissue, it is also abundantly expressed in the heart.171

Emerging evidence suggests CTRP9 acts as a cardiokine rather
than specifically an adipokine like APN. The active form of
CTRP9 requires proteolysis of the full-length (fCTRP9) into a
globular domain isoform (gCTRP9). CTRP9 circulates and can be
measured in the plasma as gCTRP9. It has been shown that
cardiac tissues possess the ability to cleave fCTRP9 into
gCTRP9, thus releasing it into the circulation. The cardiokine
action of CTRP9 has been shown to be similar to that of APN.
Treated adult cardiomyocytes with gCTRP9 elicited the activa-
tion of survival pathways, including Akt, AMP-activated protein
kinase (AMPK), and eNOS.172

Clinical Relevance of CTRP9 to Cardiovascular
Health
Interestingly, Ctrp9 levels are decreased in diabetic ani-
mals173 and after an acute myocardial infarction.174 Admin-
istration of Ctrp9 in a mouse model of myocardial infarct led
to a decrease in myocyte apoptosis and activation of the
AMPK pathway.21 These findings open up the possible
therapeutic potential of CTRP9, and serum and plasma levels
of CTRP9 can be easily measured in humans. In a study
comparing human subjects with normal glucose tolerance
with prediabetic/T2DM serum, CTRP9 levels are lower in
older subjects with metabolically unhealthy profiles. Addition-
ally, serum CTRP9 levels are inversely correlated with age,
blood pressure, fasting glucose, insulin resistance, and APN
level.175 Serum CTRP9 levels also correlate with arterial
stiffness in T2DM patients.176 These studies identify CTRP9
as a novel cardiokine with roles in metabolic and CVDs.

Perspective: The Potential of Cardiokines for CVD
Research
This review began by emphasizing the need for new and
consistent biomarkers of CVD, in particular, cardiac-specific
factors. Because its origin is diverse, we focused on the
hypothesis that activation and/or perturbation of metabolic
pathways leads to CVD.
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Efforts to define cardiokines in the stressed heart led to
the discovery that they can have endocrine effects on the liver
and adipose tissue, thus altering systemic metabolism.
Although the highlighted cardiokines are not necessarily
cardiac specific, or secreted after significant damage has
occurred, these factors are beginning to refine our under-
standing of when and how the heart initiates communication
with peripheral organs. The rigorous testing of stress-induced
expression and processing of these cardiokines, and identi-
fication of target receptor expression, could aid in the
identification of novel pathways involved in CVD. Ideally,
cardiokines will be identified that are uniquely cardiac
specific, released at the earliest stages of CVD, and predict
disease progression for clinical application and prognosis.
Peripheral organs are, in turn, able to release their own
circulating factors to regulate cardiac function. Also, under-
standing reciprocal organ cross-talk during CVD could narrow
down potential biomarkers involved in its temporal progres-
sion.

As previously mentioned, key readouts of the stressed
heart are metabolic changes, particularly insulin resistance,
and mitochondrial abnormalities leading to altered substrate
preference, reduced ATP production, and reduced cardiac
contractility. Currently, cardiokines secreted in response to
stress, such as ischemia/reperfusion, hypoxia, myocardial
infarction, and TAC, in animal models are being defined as
they contribute to different etiologies of CVD. Again, these
cardiokines are listed in Table 2, and an extensive review of
cardiokines can be found elsewhere.177 Table 2 is intended as
a platform for novel biomarker discovery. Many of these
factors are inflammatory and not cardiac specific; however,
even these factors have potential for risk stratification. Efforts
to expand and refine this list are ongoing, and basic research
studies are pushing this field forward.

Multiple model systems are used in basic science research
to expedite the identification of novel cardiac-secreted factors
or cardiokines and define their effects on systemic metabo-
lism. Two commonly utilized approaches are cell culture and
conditional genetic mouse models. As previously discussed,
to test the effect of cardiokine secretion on peripheral organs,
animal models are ideal. Multiple Cre lines are available for
conditional genetic manipulation in cardiac tissue, and the
alpha-myosin heavy chain promoter is a popular cardiomy-
ocyte-specific Cre. Additional Cre lines for cardiovascular
research are reviewed elsewhere.178

Although animal models can be time-consuming and
costly, they are optimal for testing hypotheses related to
endocrine and paracrine factors. This approach has recently
yielded exciting data that could lead to the identification of a
novel cardiokine. MED13/THRAP1/TRAP240 is a subunit of
the Mediator complex that regulates transcription by bridging
transcription factors with the RNA polymerase II machinery. In

the heart, and other organs, thyroid hormone signaling is an
essential mediator of energy homeostasis. MED13 is hypoth-
esized to modulate thyroid-hormone–dependent transcription,
as reviewed here.179 Cardiac-specific Med13 transgenic mice
(MED13cTg) exposed to a high-fat diet are resistant to obesity
and show improved glucose tolerance.180 Conversely, Med13
knockout mice have increased susceptibility to high-fat-diet–
induced obesity. Heterotypic parabiosis experiments between
wild-type and MED13cTg mice strongly suggest that a
secreted factor promotes the lean phenotype.181 The target
organs for this suspected cardiokine are liver and adipose
tissue, given that lipid oxidation is increased in these tissues,
as well as their mitochondria number and metabolic gene
expression. Future experiments are aimed at identifying this
cardiokine and the receptor it binds.

As previously mentioned, cardiokines are synthesized and
secreted from multiple cell types in the heart, including
cardiomyocytes, fibroblasts, smooth muscle (aortic or blood-
derived progenitors), resident immune cells, and vascular
endothelial cells.182 Defining novel cardiokines by cell culture
is therefore advantageous because this approach uses
homogeneous cell populations that can be processed under
controlled conditions. However, because of these diverse
cellular interactions, a major drawback to this method is the
difficulty modeling mixed cellular interactions. Paracrine
interactions, particularly between cardiomyocytes and fibrob-
lasts, are key mediators of cardiac stress responses. For
example, cardiac fibroblasts secrete paracrine factors to
cardiomyocytes that reduce cardiac conduction velocity and
action potential upstroke velocity.183 Thus, cell-culture
approaches are ideal for modeling autocrine factors, not
necessarily paracrine or endocrine factors, although technical
issues are addressable and reviewed here.184

Finally, the secretomes of cardiac cells are being defined
under physiological and pathological conditions by multiple
approaches, including gene expression arrays and cloning.
Secreted proteins can enter classical (endoplasmic reticulum
[ER]-dependent) or nonclassical (ER-independent) routes in
cells. Regulated secretion is an active process that occurs in
healthy and stressed cells. Apoptotic or necrotic cells,
however, do not regulate protein secretion. Thus, although
cardiac troponins are excellent biomarkers, they are not
useful for mechanistic or pharmaceutical purposes.

Conclusions
Investigations into cardiac-specific regulation of metabolic
processes could expand our understanding of organ cross-talk
under physiological and pathological conditions. In addition to
defining novel cardiokines for mechanistic and biomarker
studies, future reports should address their biology including:
synthesis and secretion, receptor expression and ligand

DOI: 10.1161/JAHA.115.003101 Journal of the American Heart Association 9

Metabolism and the Heart Dewey et al
B
A
S
IC

S
C
IE

N
C
E

F
O
R

C
L
IN

IC
IA

N
S



binding, and activation of downstream signaling cascades.
The information in this review advocates for metabolic
intervention during CVD. Ultimately, the search for novel
cardiokines should reveal pharmacological targets at the level
of target tissues, including receptor expression studies, and at
the level of transcriptional regulation of stressed cardiac
tissue.
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