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A B S T R A C T   

Objective: To discover candidate drugs to repurpose for COVID-19 using literature-derived knowledge and 
knowledge graph completion methods. 
Methods: We propose a novel, integrative, and neural network-based literature-based discovery (LBD) approach 
to identify drug candidates from PubMed and other COVID-19-focused research literature. Our approach relies 
on semantic triples extracted using SemRep (via SemMedDB). We identified an informative and accurate subset 
of semantic triples using filtering rules and an accuracy classifier developed on a BERT variant. We used this 
subset to construct a knowledge graph, and applied five state-of-the-art, neural knowledge graph completion 
algorithms (i.e., TransE, RotatE, DistMult, ComplEx, and STELP) to predict drug repurposing candidates. The 
models were trained and assessed using a time slicing approach and the predicted drugs were compared with a 
list of drugs reported in the literature and evaluated in clinical trials. These models were complemented by a 
discovery pattern-based approach. 
Results: Accuracy classifier based on PubMedBERT achieved the best performance (F1 = 0.854) in identifying 
accurate semantic predications. Among five knowledge graph completion models, TransE outperformed others 
(MR = 0.923, Hits@1 = 0.417). Some known drugs linked to COVID-19 in the literature were identified, as well 
as others that have not yet been studied. Discovery patterns enabled identification of additional candidate drugs 
and generation of plausible hypotheses regarding the links between the candidate drugs and COVID-19. Among 
them, five highly ranked and novel drugs (i.e., paclitaxel, SB 203580, alpha 2-antiplasmin, metoclopramide, and 
oxymatrine) and the mechanistic explanations for their potential use are further discussed. 
Conclusion: We showed that a LBD approach can be feasible not only for discovering drug candidates for COVID- 
19, but also for generating mechanistic explanations. Our approach can be generalized to other diseases as well 
as to other clinical questions. Source code and data are available at https://github.com/kilicogluh/lbd-covid.   

1. Introduction 

Coronavirus disease 2019 (COVID-19), caused by a novel coronavi-
rus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV- 
2; formerly 2019-nCoV), first emerged in China in late 2019, and was 
declared a global pandemic by the World Health Organization (WHO) 
on March 11, 2020. Since then, COVID-19 has disrupted human life 
across the globe, with enormous human, economic, and societal costs. At 
the time of writing, it shows no sign of abating [1,2], although the final 
months of 2020 have brought some good news. First, on October 22, 

2020, after the initial submission of this manuscript, the Food and Drug 
Administration (FDA) approved remdesivir for the treatment of COVID- 
19 requiring hospitalization [3]. Then, on November 9, 2020, Pfizer/ 
BioNTech announced the effectiveness of their coronavirus vaccine 
BNT162b2 and over a month later after the release of additional data, 
FDA granted it emergency use authorization [4]. A second vaccine, by 
Moderna, has also been authorized for emergency use on December 18, 
2020 [5]. 

Rapid development of effective vaccines for COVID-19 was by no 
means guaranteed, however. Moreover, de novo development and 
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approval of an effective antiviral therapy remains a risky, costly, and 
time-consuming process. In the absence of an effective vaccine or other 
therapies, there have been significant efforts in repurposing drugs 
approved for other diseases for COVID-19 treatment, some of which 
have been tested in clinical trials (e.g., dexamethasone [6], hydroxy-
chloroquine and lopinavir/ritonavir [7]) and one ultimately approved 
by FDA for treatment of patients hospitalized with COVID-19 (remde-
sivir [3,8]). 

Computational approaches to drug repurposing have also garnered 
much attention to accelerate discovery of therapies for COVID-19 
[9,10]. Common computational drug repurposing methods include 
drug signature matching, molecular docking, genome-wide association 
studies, and network analysis [11]. These data-driven approaches 
involve systematic analysis of various types of biological and clinical 
data (e.g., gene expression, chemical structure, genome and protein 
sequences, and electronic health records) to generate hypotheses 
regarding repurposed use of approved or investigational drugs [11]. The 
potential of recent advances in artificial intelligence (AI) and machine 
learning for COVID-19 drug repurposing has also been highlighted [12] 
and several studies using these techniques have reported promising re-
sults [13–16]. In particular, approaches leveraging network medicine 
[17] principles and biological knowledge graphs have been emphasized 
[12]. 

Most of the computational approaches to drug repurposing have 
focused on biological data, such as gene expression, protein-protein and 
drug-target interactions, and used SARS-CoV-2-related data. However, 
COVID-19-specific data is meaningful in the context of the larger body of 
diverse knowledge underpinning medicine and life sciences, a primary 
source of which is the biomedical literature. While some COVID-19 drug 
repurposing studies incorporated literature-based knowledge [13,16], 
their focus has remained largely COVID-19-specific. We argue that 
efficiently and safely repurposing drugs to treat COVID-19 requires more 
effective integration of literature-based knowledge with biological data 
collected via high-throughput methods. 

In this paper, we propose a novel literature-based discovery [18,19] 
approach for COVID-19 drug repurposing. Similar to related work [16], 
we cast drug repurposing as a task of knowledge graph completion (or 
link prediction). We use a large, literature-derived biomedical knowl-
edge graph constructed from SemMedDB [20] as well as COVID-19 
research literature [21], as our data source. We use several state-of- 
the-art, neural network-based algorithms [22–26] for the task, and 
also complement these approaches with an approach based on discovery 
patterns [27]. Furthermore, we highlight the role of discovery patterns 
in search of mechanistic explanations for candidate drugs. Unlike most 
approaches that focus on COVID-19-specific knowledge [13,16], we 
consider a larger body of biomedical knowledge, as captured in the 
PubMed bibliographic database as well as in the COVID-19 research 
literature. Our results show that our approach can identify known drugs 
that have been used for COVID-19 and discover other novel drugs that 
can potentially be repurposed for COVID-19. 

2. Related work 

2.1. COVID-19 computational drug repurposing 

Significant computational work has already been done to prioritize 
FDA-approved drugs for repurposing to treat COVID-19 [9,10]. For the 
most part, these studies can be categorized as molecular docking-based 
drug screening studies and network-based studies, the majority of them 
belonging to the former category. In molecular docking studies, small 
molecules in compound libraries are screened for effectiveness against 
the host proteins in the SARS-CoV-2 host interactome. Many studies of 
this kind have been reported, and some of the proposed drugs such as 
ritonavir, ribavirin, remdesivir, and oseltamivir have been used in 
practice and many are being evaluated in clinical trials [28–35]. 

While not as common as docking studies, network-based approaches 

to drug repurposing have also been explored. In one early study, a virus- 
related knowledge graph which consists of drug-target and protein- 
protein interactions and similarity networks from publicly available 
databases (e.g., DrugBank [36], ChEMBL [37], BioGRID [38]) was 
constructed and network-based machine learning and statistical analysis 
were used to predict an initial list of COVID-19 drug candidates. This list 
was narrowed down based on text mining from the literature and gene 
expression profiles from COVID-19 patients, and a poly-ADP-ribose 
polymerase 1 (PARP1) inhibitor CVL218, was proposed for therapeu-
tic use against COVID-19 [13]. Cava et al. [39] used gene expression 
profiles from public datasets to construct a protein-protein interaction 
network in conjunction with pathway enrichment analysis to identify 36 
potential drugs, including nimesulide, thiabendazole, and fluticasone 
propionate. In another study, network proximity analyses of drug targets 
and HCoV-host interactions in the human interactome were used to 
prioritize 16 potential repurposed drugs, including melatonin, mercap-
topurine, and sirolimus, which were validated by enrichment analyses of 
drug-gene signatures and transcriptome data in human cell lines [14]. 
Potentially useful drug combinations (e.g., melatonin plus mercapto-
purine) were also suggested. A follow-up study combined network 
medicine approaches based on human interactome with clinical patient 
data from a COVID-19 registry to show that melatonin was associated 
with reduced likelihood of a positive SARS-CoV-2 laboratory test [15]. 
The approach was further extended to explore deep learning [16]. A 
comprehensive knowledge graph of drugs, diseases, and proteins/genes 
(named CoV-KGE) was constructed by combining molecular interaction 
information from the literature with knowledge from DrugBank. A 
knowledge graph embedding model, named RotatE [23] was used to 
represent the entities and the relationships in the knowledge-based in 
low-dimensional vector space. Using the ongoing COVID-19 trial data as 
a validation set, 41 high-confidence repurposed drug candidates 
(including dexamethasone, indomethacin, niclosamine, and toremifene) 
were identified, and further validated via an enrichment analysis of gene 
expression and proteomics data in SARS-CoV-2-infected human cells. 
Another study used node2vec graph embeddings and variational graph 
autoencoders for the same purpose [40]. Gysi et al. [41] evaluated three 
algorithms (i.e., graph neural network, network proximity, and network 
diffusion) on a network of drug protein targets and disease-associated 
proteins for COVID-19 drug repurposing. While they obtained low cor-
relations across the three algorithms, an ensembling approach that 
combined the predictions of all algorithms was shown to outperform the 
individual methods, ranking ritonavir, chloroquine, and dexamethasone 
among the most promising candidates. Some limited literature knowl-
edge relevant to COVID-19 has been incorporated to network-based 
approaches; however, their focus has remained largely on structured 
molecular interaction information encoded in databases. 

2.2. Literature-based discovery 

Literature-based discovery (LBD) [18,19] is a method of automatic 
hypothesis generation pioneered by Swanson [42]. Based on the concept 
of “undiscovered public knowledge”, LBD seeks to uncover valuable 
hidden connections between disparate research literatures, and has been 
proposed as a potential solution for the problem of “research silos” (the 
view that scientific research areas are largely isolated from one another). 
The primary LBD paradigm is the so-called ABC model. In the open 
discovery form of this model, a relationship between two concepts A and 
B is known in one research area and another relationship between 
concepts B and C is known in another, and a potential relationship be-
tween concepts A and C is proposed. Conversely, in closed discovery, 
relationship AC is known, and a concept B is proposed as an explanation 
for the relationship AC. Extensions to ABC model have also been pro-
posed, such as discovery browsing model that aims to elucidate more 
complex relationship paths between biomedical concepts [43,44]. Most 
applications of LBD have been in the biomedical domain, beginning with 
Swanson’s discovery of fish oil as a treatment for Raynaud disease [42], 
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a hypothesis supported subsequently by clinical studies. While early LBD 
systems focused primarily on term co-occurrence [45,46], semantic re-
lations have been widely used in later years for representing scientific 
content of biomedical publications [27,47–49]. More recently, distrib-
uted vector representations based on term or semantic relation co- 
occurrence have been gaining popularity [50–52]. 

Drug repurposing has been one of the prominent applications of LBD 
[27,53–58]. For example, Hristovski et al. [27] used semantic discovery 
patterns following the ABC model to identify potential therapeutic uses 
for drugs. Zhang et al. [56] used discovery patterns and SemMedDB 
relations to identify potential prostate cancer drugs. Cohen et al. [55] 
used a vector representation approach based on semantic relations to 
predict a small number of active agents within a large library screened 
for activity against prostate cancer cells. 

2.3. Knowledge graph completion 

Knowledge graphs are represented as a collection of head entity- 
relation-tail entity triples (h, r, t), where entities correspond to nodes 
and relations to edges between them. Knowledge graph completion is 
the task of predicting unseen relations between two existing entities or 
to predict the tail entity given the head entity and the relation (or head 
entity given the tail entity and the relation). Recent approaches to 
knowledge graph completion rely on knowledge graph embedding 
methods [59], which learn a mapping from nodes and edges to contin-
uous vector space that preserve the proximity structure of the knowl-
edge graph and are amenable to application of machine learning 
methods. Such methods include translational models, which use 
distance-based scoring functions (e.g., TransE [22], TransH [60], RotatE 
[23]), and semantic matching models, which use similarity-based 
scoring functions (e.g., RESCAL [61], DistMult [24], ComplEx [25], 
and HolE [62]). Graph convolutional networks [63,64] as well as 
methods that use context-based encoding approach (e.g., KG-BERT [65], 
STELP [26]) have also been recently proposed. Knowledge graph 
embedding techniques based on a network of drug, disease, and gene/ 
protein entities have been used to support drug repurposing for rare 
diseases [66]. Graph convolutional networks were used to model drug 
side effects resulting from drug-drug interactions [67]. For this purpose, 
a multimodal graph of protein-protein, drug-protein target, and drug- 
drug interactions was constructed from publicly available datasets. 
Sang et al. [68] constructed low-dimensional knowledge graph em-
beddings from SemMedDB relations and trained a Long Short-Term 
Memory (LSTM) model using known drug therapies from Therapeutic 
Target Database [69] to propose potential drugs using the trained 
model. 

3. Materials and methods 

In this section, we first describe our data sources and the pre-
processing steps that were taken to construct a literature knowledge 
graph from these data sources. Next, we discuss the knowledge graph 
completion methods that we used to predict candidate drugs for COVID- 
19 as well as the discovery patterns used for providing mechanistic ex-
planations. Lastly, we detail various evaluation schemes that we used to 
validate our predictions. A workflow diagram illustrating our approach 
is provided in Fig. 1. Our source code and data are publicly available at 
https://github.com/kilicogluh/lbd-covid. 

3.1. Data 

We constructed our biomedical knowledge graph primarily from 
SemMedDB [20], a repository of semantic relations automatically 
extracted from biomedical literature using SemRep natural language 
processing (NLP) tool [70,71]. SemRep-extracted relations are in the 
form of subject-predicate-object triples (also called semantic predications) 
and are derived from unstructured text in PubMed citations (i.e., titles 

and abstracts). For example, the triples chloroquine-TREATS-Malaria 
and hydroxychloroquine-TREATS-Malaria are extracted from the 
fragment Chloroquine (CQ) and Hydroxychloroquine (HCQ) have been 
commonly used for the treatment and prevention of malaria (PMID: 
32910933). Subject and object arguments are normalized to concept 
unique identifiers (CUIs) in the UMLS (Unified Medical Language Sys-
tem) Metathesaurus [72,73]. Concepts are enriched with UMLS se-
mantic type information (Disease or Syndrome, Pharmacologic 
Substance, etc.) and the relations are linked to the supporting article and 
sentence. SemMedDB has supported a wide range of computational 
applications, ranging from gene regulatory network inference [74] to in 
silico screening for drug repurposing [55] and medical reasoning [75], 
and has also found widespread use for literature-based knowledge dis-
covery and hypothesis generation (e.g., [44,48,76–78]). In its most 
recent release (version 43, dated 8/28/2020),2 SemMedDB contains 
more than 107M relations from more than 31M PubMed citations and 
209M sentences. This release also includes COVID-19-related concepts 
and, thus, can serve as a knowledge graph for COVID-19 drug 
repurposing. 

COVID-19 literature has grown at an unprecedented rate. LitCovid, 
NCBI’s bibliographic database for COVID-19 literature [79] contains 
over 82K articles (as of 12/21/2020). An even richer dataset is the 
COVID-19 Open Research Dataset (CORD-19), which contains over 
200K articles (including historical research on coronaviruses) [21]. Not 
all of these articles are included in PubMed. To ensure that our knowl-
edge graph provides adequate coverage of COVID-19 knowledge, we 
included CORD-19 articles not included in PubMed, as well, and used 
SemRep to extract relations from titles and abstracts of these articles. We 
used CORD-19 release dated 09/25/2020. 

SemMedDB distribution contains 107,645,218 relations among 
339,638 concepts. CORD-19 dataset processed through SemRep con-
tains 505,968 relations among 41,609 concepts. 

3.2. Preprocessing 

In this work, we focused on a subset of semantic relations derived 
from the combination of PubMed and CORD-19 datasets, predicted to be 
accurate and informative for drug repurposing. 

First, we eliminated relations involving generic biomedical concepts 
(i.e., relations in which both subject and object were present in the 
GENERIC_CONCEPT table of SemMedDB such as Pharmaceutical 
Preparations) and relations with identical subject and object argu-
ments. Next, we excluded a subset of predicate types that were not ex-
pected to be useful for drug repurposing, such as PART_OF and PROCESS_OF. 
The predicate types we used are AFFECTS, ASSOCIATED_WITH, AUGMENTS, CAUSES, 
COEXISTS_WITH, COMPLICATES, DISRUPTS, INHIBITS, INTERACTS_WITH, MANIFESTATION_OF, 
PREDISPOSES, PREVENTS, PRODUCES, STIMULATES, and TREATS. Lastly, we also 
excluded the relations in which the subject or the object belongs to one 
of the following semantic groups: Activities & Behaviors, Concepts & 
Ideas, Objects, Occupations, Organizations, and Phenomena. The com-
bined knowledge graph (SemMedDB + CORD-19) consists of 331,427 
unique nodes and 20,017,236 relations. 

In the second step, we eliminated (i) high-degree concepts using 
network degree centrality and (ii) uninformative semantic relations 
using log-likelihood ratio. The adjacency matrix A of a knowledge graph 
(i.e., directed network with multiedges) with n nodes (i.e., concepts) has 
entries Aij = 1 if there is a relation from concept i to concept j. The in- 
and out-degrees of concept i can then be expressed as [80]: 

kin
i =

∑n

j=1
Aji and kout

i =
∑n

j=1
Aij 

2 https://ii.nlm.nih.gov/SemRep_SemMedDB_SKR/SemMedDB/SemMed 
DB_download.shtml. 
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To filter out uninformative links, we assigned each semantic relation a 
G2 score indicating how strongly the terms within a triple are associated 
with each other [81]. A high G2 score means that the observed and 
expected frequencies are significantly different, indicating that the triple 
is less likely to occur by chance. For computational purposes, we created 
two three-dimensional contingency tables with indices i, j, and k. The 
first table (OT) holds observed frequencies of a triple from the knowl-
edge graph and the second table (ET) contains the expected values 
assuming independence of terms in each triple. G2 was then calculated 
using the equation 

G2 = 2 ×
∑

i,j,k
nijk × log

(
nijk

mijk

)

, mijk =

∑

i
njk ×

∑

j
nik ×

∑

k
nij

T2 ,

where nijk is the cell i, j, k in OT, mijk is the cell i, j, k in ET, and T =
∑

nijk. 
Next, we normalized all three measures (G2,kin

i , and kout
i ) to the range 

[0, 1] and summed them up into a final score. The lower the score, the 
more specific and informative the relation is. For example, the relation 
Operative Surgical Procedures-TREATS-Woman which has a high 
score is more general than relation interleukin-6-AFFECTS-Autoim-
mune Diseases. We also kept all relations with biomedical concepts 
that refer to COVID-19 terms in the UMLS3:  

• C5203670:COVID19 (disease)  

• C5203671:Suspected COVID-19  

• C5203672:SARS-CoV-2 vaccination  

• C5203673:Antigen of SARS-CoV-2  

• C5203674:Antibody to SARS-CoV-2  

• C5203675:Exposure to SARS-CoV-2  

• C5203676:SARS-CoV-2 

We estimated that approximately 2.5M relations could be processed 
in reasonable amount of time with our GPU and eliminated relations 
with high final scores. At the end of the preprocessing stage, the 

knowledge graph consists of 131,355 nodes and 2,558,935 relations. 

3.2.1. Accuracy classification 
The precision of semantic predications generated by SemRep vary by 

domain (e.g., clinical relationships are more precise than molecular 
interactions). To improve the precision of the relations used for drug 
repurposing, we extended the SemRep accuracy classifiers previously 
proposed [82,83]. We fine-tuned a collection of transformer-based 
pretrained language models to classify semantic predications as cor-
rect vs. incorrect. These models include vanilla BERT (base size, cased 
and uncased) [84], BioBERT [85], BioClinicalBERT [86], BlueBERT 
[87], and PubMedBERT [88]. 

To extend the coverage of our existing classifiers, we used 6,492 
predications annotated as correct vs. incorrect with respect to their 
source sentences. We leveraged 6,000 annotations from a previous study 
[83] (Cohen’s κ = 0.80) and annotated 492 additional semantic predi-
cations. Annotation guidelines generated in the previous study was used. 
Two of the authors (HK and MF) and two health informatics graduate 
students annotated predications containing predicates of interest absent 
in the prior study (Fleiss’ κ = 0.41, indicating moderate agreement). 
Fleiss’ κ was used in this case, as more than two annotators were 
involved in annotation [89]. 

The resulting annotated set was split into 80/10/10 as training/ 
validation/test sets. Hyperparameters were determined empirically and 
the learning rate was set to 1× 10− 5, the batch size was 16, the 
maximum number of epochs was set to 10 but early stopping was 
employed. Optimization was done using the Adam optimizer [90] with 
decoupled weight decay regularization using betas (0.9, 0.999) and 
decay 0.01. The pooled output from the model was fed through a linear 
layer to produce logits that then underwent a softmax transformation to 
return class probabilities. A single Tesla V100 GPU was used to train the 
models. We compared the performance of various above-mentioned 
transformers. The best classifier was then used to filter incorrect se-
mantic predications. This resulted in 1,016,124 relations being kept for 
the knowledge graph completion methods. 

Fig. 1. Diagram illustrating the workflow of our approach.  

3 https://metamap.nlm.nih.gov/Covid19Terms.shtml. 
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3.3. Knowledge graph completion 

Consider a knowledge graph 𝒢 = (ℰ,ℛ,ℰ), where ℰ refers to a set of 
entities, ℛ denotes a set of possible relations, and 𝒯 stands for a set of 
triples in the form (h)ead-(r)elation-(t)ail, formally denoted as {(h,r,t)}⊂ 
ℰ × ℛ× ℰ. The aim of knowledge graph completion is to infer new tri-
ples (h′

, r′

, t′ ) such that h′

, t′ ∈ ℰ and r′ ∈ ℛ. In this setting, the knowl-
edge graph completion problem could be represented as a ranking task 
in which a prediction function ψ(h, r, t) : ℰ ×ℛ× ℰ ↦ R which gener-
ates higher scores for true triples and lower scores for false triples is 
learned. 

We explored three classes of knowledge graph completion methods: 
TransE [22] and RotatE [23] for translational models, DistMult [24] and 
ComplEx [25] for semantic matching models, and STELP [26] for 
context-based encoding. These methods differ in the way that they 
encode entities and relations in a knowledge graph into a low- 
dimensional vector space (i.e., knowledge graph embedding). Such 
distributed vector representations can be used for downstream 
reasoning and machine learning tasks. 

3.3.1. Translational models (TransE and RotatE) 
TransE [22] describes a triplet (h, r, t) as a translation between head 

entity h and tail entity t through relation r in a continuous vector space, i. 
e., h + r ≈ t, where h, r, t ∈ Rd is the embedding of h, r, and t, respec-
tively. To measure plausibility of relations, TransE employs a distance- 
based score function s(h, r, t) = ‖h + r − t‖. Either L1 or L2 norm can 
be employed. Fig. 2 illustrates TransE model with two-dimensional 
embedding. 

We choose TransE because of its simplicity and good prediction 
performance. However, TransE is able to model only one-to-one re-
lations and fails to embed one-to-many, many-to-one, and many-to- 
many relations. To solve this problem, several other solutions have 
been proposed including RotatE [23]. RotatE treats each relation in a 
complex vector space as a rotation from the head entity to the tail entity, 
i.e., s(h, r, t) =

⃒
⃒h∘r − t|l1 , where ∘ is a Hadamard product. We selected 

RotatE as a counterpart to TransE, as TransE reportedly does not 
perform well on some data sets (e.g., FB15k benchmark data set [22], 
commonly used in knowledge graph completion), which require 

symmetric pattern modeling. 

3.3.2. Semantic matching models (DistMult and ComplEx) 
DistMult [24] is the simplest approach among semantic matching 

models. Its scoring function is defined as s(h, r, t) = 〈h, r, t〉. However, 
DistMult is limited only to symmetric relations, generating same scores 
for triples (h, r, t) and (t, r, h). ComplEx [25] extends DistMult to the 
complex domain. Head and tail embeddings for the same entity are 
complex conjugates, enabling ComplEx to model asymmetric relations. 
Its score function is defined as s(h, r, t) = Re(〈h,r, t〉), where h, r, t ∈ Ck,

Re(⋅) is a real part of a complex vector, and k is dimension of an 
embedding. 

Hyperparameters for both sets of models were tuned using the grid 
search on the validation set for each prediction model. We tuned the 
learning rate η ∈ {0.001, 0.01, 0.1}, number of hidden dimensions k ∈

{50,100,250,400}, regularization coefficient λ ∈ {2× 10− 6,2× 10− 8}, 
negative adversarial sampling ∈ {True,False}, fixed margin γ ∈ {1,5,
10,20} for RotatE and norm d ∈ {L1, L2} for TransE model. 

3.3.3. Context-encoding models (STELP) 
Semantic Triple Encoder for Link Prediction (STELP) [26], is a 

context-based encoding approach to knowledge graph completion. At its 
core is a Siamese BERT model that leverages sharing one set of weights 
across two models to produce encoded, contextual representations of the 
relations that are then fed to either a multi-layer perceptron (MLP) for 
classification or a similarity function for contrasting. The STELP archi-
tecture uses two learning objectives for training: triple classification and 
triple contrasting. The final learning objective is a linear combination of 
the two. During training, STELP takes a single positive relation (h, r, t)
and produces five negative relations (h, r, t′) by corrupting the tail. The 
head context, (h, r) term, is sent into one BERT model while each tail, (t)
or (t′), is sent to the other BERT model that shares weights with the 
other. The classification objective seeks to classify (h, r, t) as 1 and each 
(h, r, t′) as 0 while the contrastive objective seeks to measure the distance 
between the contextual embedding of the head and tail portions in a 
learned semantic space (see Fig. 3). Formally, the classification loss and 
constrastive loss functions are as follows: 

ℒc =
− 1
|𝒟|

∑

tp∈𝒟

1
1 + |𝒩 (tp)|

(

logsc +
∑

tp′∈𝒩 (tp)

log

(

1 − sc′
))

ℒd =
1
|𝒟|

∑

tp∈𝒟

1
|𝒩 (tp)|

∑

tp′∈𝒩 (tp)

max

(

0, λ − sd + sd′
)

where 𝒟 is the set of correct triples, 𝒩(tp) is the set of corrupted triples 

Fig. 2. TransE models relations as translations on a low-dimensional embed-
ding of the entities. If (h, r, t) is true, the embedding of the tail entity t (i.e., 
COVID-19) should be close to the embedding of the head entity h (i.e., 
Metoclopramide) plus the vector that depends on the relationship r (i. 
e., TREATS). Fig. 3. Diagram for the high-level architecture of STELP.  
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for given positive triple tp, sc and (1 − sc′ ) are the positive class proba-
bility for tp and negative class probability for tp′, respectively, λ is the 
margin size, sd and sd′ are the negative Euclidean distances between the 
contextual embeddings for the head and tail portions of the triple. The 
complete multi-objective loss function then is: 

ℒ = ℒc + γℒd  

where γ is a scaling factor for the contribution of the contrastive loss. 
At inference, STELP considers every entity-context combination for a 

given partial relation, (h, r) to find (t) or (r, t) to find (h), and ranks every 
pair using the sum of the positive class probability and the scaled 
negative Euclidean distance. 

We replaced the vanilla base BERT model proposed in the STELP 
paper with BioBERT, trained on biomedical literature corpora. The 
1,016,124 unique relations remaining after preprocessing were each 
corrupted to produce five negative relations for a total of 5,080,620 
negative relations and a grand total of 6,096,744 relations. The hyper-
parameters were set to the same values as in the original STELP paper 
and the learning rate was set to 1× 10− 5, the batch size was 16, the 
contrastive loss scaling factor was 1.0. Optimization was done using 
Adam with decoupled weight decay with betas (0.9, 0.999) and decay 
0.01. Training was run for 190,523 training iterations. Ranking was 
done by adding the scaled contrast score to the positive class probability 
and entities ordered in descending rank order. 

3.3.4. Implementation of neural network models 
All preprocessing was done using custom Bash and Python scripts. 

TransE, RotatE, DistMult, and ComplEx link prediction models were 
implemented in PyTorch using the DGL-KE package [91] for learning 
large-scale knowledge graph embeddings. The BERT models were based 
on HuggingFace BERT implementations using PyTorch. Pre-trained 
weights for BioBERT (BioBERT-Base v1.1 (+ PubMed 1 M)),4 Bio-
ClinicalBERT,5 PubMedBERT6 and BlueBERT (BlueBERT-Base, Uncased, 
PubMed + MIMIC-III)7 came from various sources associated with each 
paper. We implemented STELP ourselves using a combination of a 
HuggingFace BERT model and PyTorch. 

3.4. Discovery patterns 

Discovery patterns are defined as a set of constraints that need to be 
satisfied for the discovery of new relations between concepts [27]. 
Herein, we used discovery patterns for two purposes. First, we explored 
an open discovery pattern to identify drugs that can be repurposed for 
COVID-19. Second, we used the same pattern in closed discovery to 
propose plausible mechanisms for drugs identified via knowledge graph 
completion methods described above. Discovery patterns are expressed 
in terms of predication pairs (or predication chains). In particular, we 
focused on the following discovery pattern: 

DrugA-INHIBITS|INTERACTS_WITH-ConceptB AND 

ConceptB-AFFECTS|CAUSES|PREDISPOSES|ASSOCIATED_WITH-COVIDConcept 
AND NOT (DrugA-TREATS-COVIDConcept) 

where DrugA is a drug concept with the semantic type Pharmaco-
logic Substance and COVIDConcept refers to one of the following UMLS 
concepts (C5203670: COVID-19, C5203676: 2019 novel corona-
virus, C5203671: suspected covid 19). ConceptB can be any 
concept, and | indicates logical OR. When DrugA is unknown, this cor-
responds to an open discovery pattern. We used a Neo4j graph database 
of semantic relations and browser front-end for our exploration. 

3.5. Evaluation 

3.5.1. Ground truth generation 
We semi-automatically generated a ground truth drug list, similar to 

the approach in other computational drug repurposing studies for 
COVID-19 [16]. We downloaded the interventions used in COVID-19 
drug trials from clinicaltrials.gov using the following query: https://c 
linicaltrials.gov/ct2/results?cond=COVID-19&term=EXPAND[Term]+
COVER[FullMatch]+AREA[InterventionType]+%22Drug%22. 

This search yielded a set of 1167 clinical trials. We extracted all the 
interventions used in these studies and mapped the intervention terms to 
UMLS CUIs using MetaMap (v2016) [92] and filtered the resulting 
concepts by their semantic groups [93], keeping only those concepts 
with the semantic group Chemicals & Drugs. Additionally, we consid-
ered the semantic types Therapeutic Procedure and Gene or Genome, 
which also appeared for some concepts in intervention lists. We removed 
the duplicates from the resulting concept list and some general concepts 
(e.g., Therapeutic procedure, Placebo) as well as incorrect map-
pings. Drug concepts that only differ in their dosage or mode of 
administration were grouped together and considered a single element 
in the ground truth. For example, concepts ruxolitinib, rux-
olitinib Oral Tablet, and ruxolitinib 5 MG were clustered 
together. This pruning and clustering process resulted in a final list of 
283 concept clusters. The automatic evaluation described below was 
performed against this set. 

3.5.2. Time slicing 
Time slicing is an evaluation technique often used in LBD and link 

prediction tasks [18]. The idea is to train models on data prior to a 
specific date and test them on data after that date and evaluate whether 
links that formed only after the cutoff date can be predicted from the 
trained model. In this study, we trained our models on semantic re-
lations extracted from publications dated 03/11/2020 or earlier and 
tested whether they can predict the drugs that have been proposed for 
COVID-19 since then or have been evaluated in clinical trials. This date 
was selected as cutoff, as it is the date on which WHO declared COVID- 
19 a pandemic. It is also a date by which enough biological knowledge 
about SARS-CoV-2 had accumulated, although COVID-19 therapies 
were still in their infancy, making it a suitable cutoff for time slicing 
experiments. 

All five knowledge graph completion models were automatically 
assessed using an evaluation protocol proposed by Bordes et al. [22]. 
Suppose that 𝒳 is a set of triples, ΘE be the embeddings of entities ℰ, and 
ΘR be the embeddings of relations ℛ. In the first, corruption step, we go 
through a set of triples and for each triple x = (h, r, t) ∈ 𝒳 replace its 
head and tail with all other entities in ℰ. Each triple is corrupted exactly 
2|ℰ| − 1 times. Formally, the corrupted triple is defined as: 

x̃ =
⋃

h′ ∈ℰ

(

h
′

, r, t
)

∪
⋃

t′ ∈ℰ

(

h, r, t
′

)

,

where h′

∕= h and t′ ∕= t. We employ the filtered setting protocol not 
taking into account any corrupted triple that already appears in the 
knowledge graph. In the second, scoring phase, original and corrupted 
triples are tested using the constructed classifier ψ. Intuition behind this 
is that the model will assign a higher score to the original triple and a 
lower score to the corrupted triple. In the third, evaluation phase, the 
proposed models are assessed using three measures: mean rank (MR), 
mean reciprocal rank (MRR), and Hits@k measure. MR is an average 
rank assigned to the true relation, over all relations in a test set: 

MR =
1

2|𝒯 |

∑|𝒯 |

i=1

(
rankh

i + rankt
i

)

where rankh
i and rankt

i denote the rank position: 

4 https://github.com/naver/biobert-pretrained.  
5 https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT.  
6 https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased 

-abstract.  
7 https://github.com/ncbi-nlp/bluebert. 
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rankh
i = 1 +

∑

x̃i∈𝒞
h(xi)⧹𝒢

I[ψ(xi) < ψ(x̃i)]

rankt
i = 1 +

∑

x̃i∈𝒞
h(xi)⧹𝒢

I[ψ(xi) < ψ(x̃i)],

where the indicator function I[P] is 1 iff P is true, and 0 otherwise. 
MRR is the average inverse rank for all test triples and is formally 

computed as: 

MRR =
1

2|𝒯 |

∑

xi∈𝒯

1
rankh

i
+

1
rankt

i 

Hits@k measures the percentage of relations in which the true triple 
appears in the top k ranked triples, where k ∈ {1,3,10}; formally: 

Hits@k =
100
2|𝒯 |

∑

xi∈𝒯

I
[
rankh

i ⩽k
]
+ I
[
rankt

i⩽k
]

Our aim was to achieve low MR and high MRR and Hits@k. 

3.5.3. Qualitative evaluation 
We also performed a qualitative evaluation. One of the authors (MF, 

MD with a PhD in medical informatics) used Neo4j browser to assess the 
plausibility of some of the drugs highly ranked by the knowledge 
completion models, guided by literature search and review, using closed 
discovery. We also evaluated discovery patterns directly using open 
discovery. For this purpose, we issued a query for fifty drugs ranked on 
the number of intermediate ConceptB concepts between the drug and 
COVIDConcept. Then, MF assessed a subset of the candidate drugs for 
plausibility. 

3.5.4. Comparison of candidate drug lists 
We compared the drug lists proposed by our methods to each other, 

as well as to drug lists reported in three prior studies [14,16,94]. For 
TransE, which performed best, we identified a subset of plausible drugs 
from its top 150 candidate drug predictions. We used top 50 predictions 
from other knowledge graph completion methods as well as the top 50 
drugs generated using the discovery pattern in open discovery mode. 

4. Results 

We report the performance of the semantic relation accuracy clas-
sifier as well as the knowledge graph completion methods in this section. 
We also provide a comparison of the drug lists proposed in previous 
studies and identified by our methods. 

4.1. Accuracy classifier 

The full table of results for the comparison of various BERT models 
for the accuracy classifier is included below (Table 1). The chosen 
model, PubMedBERT, obtained an F1 score of 0.854 (recall = 0.895; 
precision = 0.816). 

The best model (i.e., PubMedBERT) was then applied to the 
2,558,935 predications. Of those, 1,907,717 (74.9%) were classified as 
correct predications and retained for use in the training of the down-
stream models. 

This preprocessing yielded 115,451 unique biomedical concepts and 
1,907,717 relations among them. The distribution of these predications 
are listed in Table 2. 

4.2. Knowledge graph completion 

The knowledge graph completion results for all employed models are 
presented in Table 2. For MR, a lower score is considered better; for all 
others, a higher score is considered better. The score for each method is 
the mean value over all triplets in the testing set. 

On average, TransE outperforms all counterparts on all performance 
measures. Optimal TransE configuration was achieved with k = 400 
hidden dimensions, L1 norm, learning rate η = 0.01 and regularization 
coefficient λ = 2× 10− 8. Model training was limited to 20,000 epochs. 
Relatively small number of relations (15) ensure that all entities and 
relations can be smoothly embedded into the same vector space. 

4.3. Embedding representation of knowledge graph 

Next, we used t-SNE (t-distributed stochastic neighbor embedding) 
[95] algorithm to graphically represent embeddings of computed con-
cepts in a two-dimensional space (Fig. 4). t-SNE algorithm enables 
reduction of high-dimensional data into a low-dimensional space such 
that similar concepts are presented by nearby points. The plot demon-
strates relatively good co-localization of selected concepts, especially for 
Suspected COVID-19 and paclitaxel. 

4.4. Comparison of proposed drug lists 

Thirty-three drugs (out of top 150) identified by TransE were deemed 
plausible after manual analysis (Table 3). Comparing this set to the 
repurposing proposals from three recently published papers [14,16,94], 
we find that there is one drug in common (estradiol) with the list in Zeng 
et al. [16]. On the other hand, Singh et al. [94] and Zeng et al. [16] have 
eight drugs in common and Zhou et al. [14] and Zeng et al. [16] have 
three. TransE predictions tended to contain more general drug classes (e. 
g., anthelmintics, antiplatelet agents), which were not specifically 
excluded, in contrast to previous methods. On the other hand, it is worth 
noting that specific drugs in some of these classes have been proposed in 
other studies. For example, TransE predicted anthelmintics as a candi-
date, while some of the drugs in this class (e.g., ivermectin, levamisole, 
nitazoxanide) have been proposed by others and tested in clinical 
studies. The same can be said about other drug classes, such as mTOR 
inhibitors and neuraminidase inhibitors. 

Table 1 
Results of SemMedDB semantic relation classification using biomedical BERT 
variants.   

Vanilla BERT BioBERTa BioClinical 
BERT 

PubMed 
BERTb 

BlueBERTc  

Uncased Cased Cased Cased Uncased Uncased 

Validation set      
Rec 0.815 0.767 0.861 0.822 0.896 0.822 
Pre 0.695 0.723 0.762 0.685 0.693 0.700 
F1 0.743 0.744 0.808 0.748 0.781 0.756 

Test set      
Rec 0.815 0.782 0.842 0.832 0.895 0.845 
Pre 0.795 0.815 0.838 0.804 0.816 0.782 
F1 0.805 0.798 0.840 0.818 0.854 0.812 

Note: Rec = recall, Pre = precision. Results highlighted in bold are the best for 
each method. 

a Trained on PubMed 1 M 
b Trained on Abstracts + Full text 
c Trained on PubMed + MIMIC 

Table 2 
Distribution of semantic predications after filtering.  

Predicate Count (%) Predicate Count (%) 

TREATS 518,267 (27.2%) PRODUCES 38,602 (2.0%) 
COEXISTS_WITH 420,633 (22.1%) AUGMENTS 37,887 (2.0%) 

INTERACTS_WITH 224,809 (11.8%) PREVENTS 25,103 (1.3%) 
CAUSES 205,441 (10.8%) STIMULATES 24,734 (1.3%) 
AFFECTS 192,092 (10.1%) PREDISPOSES 18,613 (1.0%) 

ASSOCIATED_WITH 106,418 (5.6%) COMPLICATES 1,479 (0.1%) 
INHIBITS 52,518 (2.8%) MANIFESTATION_OF 1,156 (0.1%) 
DISRUPTS 39,960 (2.1%)    
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Comparison of the 33 plausible drugs from TransE with the top 50 
predictions from the other four knowledge graph completion methods 
revealed one common drug class between TransE and STELP (5-alpha 
reductase inhibitors) and five drugs between RotatE and STELP. Dis-
tMult and ComplEx did not share any predictions with the other 
methods. 

Interestingly, using the discovery pattern in open discovery mode, 
we identified several drugs common with other methods: estradiol with 
TransE, paclitaxel with RotatE, as well as hydrocortisone and indo-
methacin with Zeng et al. [16]. Table 4 lists the overlapping candidate 
drugs from different methods and other studies. 

5. Discussion 

5.1. Knowledge graph completion models 

Thus far, the following classes of drugs have been used for the 
management of COVID-19: antivirals, monoclonal antibodies, anti- 
inflammatory agents, immunomodulators, anticoagulants, and adju-
vants [96,97]. In addition, several trials have studied antimalarials and 
antiparasites. 

The knowledge graph completion models predicted drugs in all these 

classes, although they did not always rank them highly. For example, 
TransE predicted ribavirin (antiviral), trastuzumab (monoclonal anti-
body), indomethacin (anti-inflammatory), interferon beta-1b (immu-
nomodulator), heparin (anticoagulant), vitamin D (adjuvant), 
metronidazole (antiparasite), and artemisone (antimalarial). Dexa-
methasone, one of the drugs considered most effective for reducing 
mortality in hospitalized patients, was the highest ranking drug from the 
RotatE model. Results from TransE and RotatE were a mix of individual 
drugs and drug classes (with little overlap), whereas STELP predictions 
were largely limited to very specific drugs and also included natural 
substances such as bioflavonoid quercetin and riboflavin (vitamin B2). 
While the quantitative evaluation against clinical trial data suggests 

MR MRR Hits@1 Hits@3 Hits@10 

TransE 9.223 0.525 0.417 0.585 0.699 
DistMult 11.639 0.325 0.216 0.340 0.515 
ComplEx 11.045 0.332 0.216 0.352 0.553 
RotatE 10.864 0.377 0.246 0.428 0.633 
STELP 22.960 0.073 0.000 0.027 0.234 

Note: MR = mean rank, MRR = mean reciprocal rank. Results highlighted in bold 
are the best for each method. 

Fig. 4. Visualization of biomedical concepts learned 
by t-SNE (t-distributed stochastic neighbor embed-
ding) algorithm and embedded in a two- 
dimensional space. We highlighted five drugs iden-
tified as potential new drugs to treat COVID-19. 
Color refers to semantic type of a particular 
concept; note that only the eight most frequent se-
mantic types are presented. aapp: Amino Acid, 
Peptide, or Protein; dsyn: Disease or Syndrome; 
fndg: Finding, gngm: Gene or Genome; neop: 
Neoplastic Process; orch: Organic Chemical; phsu: 
Pharmacologic Substance; topp: Therapeutic or 
Preventive Procedure. (For interpretation of the 
references to color in this figure legend, the reader is 
referred to the web version of this article.)   

Table 3 
Thirty-three candidate drugs highly ranked by TransE and deemed plausible in 
manual analysis.  

Metoclopramide Trilostane 
Oxymatrine Cyproterone Acetate 

Mitogen-Activated- 
Protein Kinase Inhibitor 

Nucleoside Reverse- 
Transcriptase Inhibitors 

Oxophenylarsine Methyltrienolone 
5-Alpha reductase inhibitor Bosentan 

Folic acid Estramustine 
Anthelmintics Allicin 

Sildenafil Proteasome inhibitors 
Furosemide Antiplatelet Agents 

Beclomethasone Fibrinolytic Agents 
Cangrelor Contraceptive Agents 

Gymnemic acid Neuraminidase inhibitor 
Estradiol Vitamin D Analogue 

mTOR Inhibitor Tyrosine kinase inhibitor 
Clobetasol propionate Mometasone furoate 

Carbenoxolone Vasopressin Antagonist 
Anti-Retroviral Agents   
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TransE as the best-performing model, it is worth noting that this only 
measures how well a method predicts drugs that are currently being 
trialed. It is difficult to assess the ultimate clinical effectiveness of the 
proposed drugs, and it is possible that models that do not perform as well 
quantitatively yield results that prove more promising (as in the case of 
RotatE and dexamethasone). Despite these issues, qualitative assessment 
of knowledge graph completion models showed that all methods could 
identify useful repurposing candidates. 

The results indicate that more complex knowledge graph completion 
models might not be very efficient in drug repurposing tasks. Due to its 
relative simplicity, it might be expected that TransE be outperformed by 
its successors [23–25]. However, it showed efficiency in embedding a 
large-scale complex biomedical knowledge graph, such as the extended 
SemMedDB used here. On the other hand, differences in performances 
among DistMult, ComplEx, and RotatE were relatively small. All three 
models achieved low performance on MRR, Hits@1, and Hits@3 mea-
sures, and moderate score on Hits@10. Empirical evidence shows that 
DistMult and ComplEx usually perform well for high-degree entities, but 
fails with low-degree entities [98]. Because we eliminated highly 
frequent concepts due to their lack of informativeness, it is possible that 
this is reflected in lower performance of both models. 

The context-encoding model, STELP, showed rather poor perfor-
mance in evaluation. One possibility is that the model was only able to 
learn high-level groupings for the predicates. This is likely the case as it 
was observed the model produced much higher scores (MR = 3.740,
MRR = 0.867, Hits@1 = 0.792, Hits@10 = 0.969) when evaluating a 
mix of corrupted triples containing other predicates in addition to TREATS. 
Thus, it may be the case that while the model can discriminate between 
what subjects are feasible for TREATS-COVID-19 versus AFFECTS-COVID- 
19 etc., it did not learn more granular features that allow it to differ-
entiate between subjects within the context of TREATS-COVID-19. How-
ever, analysis of the t-SNE embedding and the qualitative evaluation 
show that the model mostly clustered the ground truth drugs into a 
couple of large clusters. 

To further compare the drug rankings between TransE and STELP, 
we performed the Wilcoxon signed-rank test, which shows no correla-
tion between how the two models were ranking novel relations (p =

0.846). Spearman’s rank correlation between the novel relation rank-
ings for both models was found to be − 0.004, which further supports the 

results of the Wilcoxon test. Table 5 and Table 6 show that there is very 
little agreement between TransE and STELP, particularly in the top 1000 
rankings for each model. It is worth noting that there were 47 items in 
common in the top 1000 rankings for both models. 

5.1.1. Computational efficiency 
The TransE and RotatE are much faster to train than the STELP model 

(approximately 15 min vs. 5 days on our dataset). Due to the size of 
BERT, which lies at the core of the architecture, STELP is a computa-
tionally expensive model which makes hyperparameter tuning difficult. 
This difficulty is compounded on the link prediction task which requires 
STELP to perform, just for inference, ℴ((L/2)2

⃒
⃒
⃒𝒱

⃒
⃒
⃒(1+

⃒
⃒
⃒ℰ

⃒
⃒
⃒)) steps, where L 

is the sequence length, 𝒱 the number of vertices, and ℰ the number of 
edges. As the base BERT model contains 110 million parameters, adding 
in the scale of the link prediction may make the STELP and similar 
context-encoding based models infeasible for limited resource settings. 
TransE and RotatE demonstrate good results at a small fraction of the 
required computing power and time compared to the STELP model. Due 
to their reduced required computation time, it can be possible to explore 
larger graphs than that explored in this work. On the other hand, with 
adequately large computational resources, it may be possible to opti-
mize STELP hyperparameters and train over multiple random seeds to 
generate a model that obtains better results than TransE or RotatE, 
which are limited by their smaller representational capacity. 

5.2. Discovery patterns 

Discovery patterns based on semantic relations provide an intuitive 
way of exploring potential mechanistic links between biological phe-
nomena. Neo4j and its query language, Cypher, are powerful tools that 
complement semantic relations nicely in quickly pinpointing promising 
research directions, although massive graphs present some challenges 
for effective query and retrieval. In addition, a human expert is needed 
to sort out the noise in semantic relations (some of it obvious) due to NLP 
errors. However, given that predictions made by the knowledge 
completion models above are largely opaque, a human-in-the-loop dis-
covery browsing approach based on patterns [43,44] remains an effec-
tive alternative to these more complex approaches, and also 
complements them by providing potential explanations. Given the size 
of the graph and time constraints, we limited ourselves to a single dis-
covery pattern in this study and were able to both identify promising 
drugs (open discovery) and generate potential explanations for drugs 
predicted by the knowledge graph completion methods (closed 
discovery). 

Using the open discovery pattern approach, we identified five 
promising drugs that were ranked highly and were not, to our knowl-
edge, discussed in the literature (paclitaxel, SB 203580, alpha 2-anti-
plasmin, pyrrolidine dithiocarbamate, and butylated hydroxytoluene). 
The same approach also ranked highly some drugs and substances 
evaluated in clinical trials (e.g., quercetin, melatonin, vitamin D, 
estradiol, and simvastatin). We discuss below in more detail three that 

Table 4 
Comparison of drug overlap between methods and studies.  

Methods Common Drugs 

Zeng et al. [16] 
TransE 

Discovery Patterns 

Estradiol 

Zeng et al. [16] 
Singh et al. [94] 

RotatE 

Dexamethasone 

Zeng et al. [16] 
Discovery Patterns 

Hydrocortisone 
Indomethacin 

Zeng et al. [16] 
STELP 

Zidovudine 

TransE 
STELP 

5-alpha Reductase Inhibitors 

RotatE 
STELP 

Pibrentasvir 
Anti-ILDR2 Monoclonal- 
Antibody BAY 1905254 

Mood Stabilizer 
Opium alkaloids and- 

derivative combination- 
cough suppressants 

Valoctocogene roxaparvovec 
RotatE 

Discovery Patterns 
Paclitaxel 

Note: Drugs are from the top 50 ranked drugs from RotatE, STELP, the 33 
drugs from TransE identified by MF as plausible, and the drugs specified in 
Zeng et al. [16], Zhou et al. [14], and Singh et al. [94]. We also use top 50 
drugs identified using the discovery pattern in open discovery mode. 

Table 5 
Statistics for absolute differences of TransE and STELP rankings.   

Median Mean Standard Deviation 

Top 1000 TransE Rankings 10789.0 10567.140 6128.881 
Top 1000 STELP Rankings 10224.0 10420.0 6002.522 

All Rankings 6342.0 7207.910 5070.927 

Note: The values for the first two rows are calculated by taking the top 1000 
ranked triples for the specified model, calculating the absolute difference be-
tween the rankings from the two models for each of those triples, and calculating 
the statistics. For example, the triples that TransE ranked as the top 1000 triples 
were gathered, the absolute differences of rankings between TransE and STELP 
for those 1000 triples were calculated, and the statistics were calculated from 
those differences. 
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have not been proposed for COVID-19 (i.e., paclitaxel, SB 203580, and 
alpha 2-antiplasmin). Notably, paclitaxel as well as quercetin, mela-
tonin, vitamin D, estradiol, and simvastatin were predicted by the 
knowledge graph completion models. Fig. 5 shows a network resulting 
from the aforementioned discovery pattern generated by Neo4j browser. 

We also used discovery patterns to generate mechanistic explana-
tions for two other drugs ranked highly by TransE and deemed plausible. 

These drugs are metoclopramide and oxymatrine, which are also dis-
cussed in more detail below. 

5.2.1. Paclitaxel 
Paclitaxel is used to treat several cancer types, including ovarian 

cancer, breast cancer, lung cancer, cervical cancer, and pancreatic 
cancer. It stabilizes the microtubule polymer and protects it from 
disassembly, rendering chromosomes unable to achieve a metaphase 
spindle configuration. This blocks the progression of mitosis and pro-
longed activation of the mitotic checkpoint triggers apoptosis or rever-
sion to the G0-phase of the cell cycle without cell division [99]. The 
following patterns support the paclitaxel discovery:  

1. paclitaxel-INHIBITS-interleukin-6-CAUSES-COVID-19  
2. paclitaxel-INHIBITS-NF-kappa B-ASSOCIATED_WITH-COVID-19  
3. paclitaxel-INHIBITS-interleukin-1, beta-ASSOCIATED_WITH- 

COVID-19  

4. paclitaxel-INHIBITS-Granulocyte Colony-Stimulating 

Factor-ASSOCIATED_WITH-COVID-19  
5. paclitaxel-INHIBITS-interleukin-10-PREDISPOSES-COVID-19  
6. paclitaxel-INHIBITS-interleukin-8-PREDISPOSES-COVID-19  
7. paclitaxel-INHIBITS-Thromboplastin-ASSOCIATED_WITH-COVID-19  
8. paclitaxel-INTERACTS_WITH-TLR4-CAUSES-COVID-19 

The first six patterns support a role for paclitaxel in alleviating the 

Table 6 
Summary of absolute differences for TransE and STELP rankings. Semantic types 
are aapp: Amino Acid, Peptide, or Protein; gngm: Gene or Genome; orch: 
Organic Chemical; sosy: Sign or Symptom; topp: Therapeutic or Preventive 
Procedure.  

Max Absolute Difference Count (%) Top 3 Most Common Semantic Types 

0 1 (0.005%) aapp 
1 1 (0.005%) aapp 
3 5 (0.023%) orch, topp, aapp 
10 15 (0.070%) gngm, aapp, orch 
100 189 (0.877%) gngm, aapp, orch 
500 973 (4.516%) gngm, aapp, orch 
1000 1937 (8.990%) gngm, aapp, orch 

Note: Count column represents the number of triples where the two models 
rankings differed by at most the corresponding value in the Max Absolute Dif-
ference column. For example, there were 4 triples where both models rankings 
for those triples differed by at most 3. 

Fig. 5. Drug repurposing for COVID-19 with the open discovery pattern DrugA-INHIBITS|INTERACTS_WITH-ConceptB AND ConceptB- 
AFFECTS|ASSOCIATED_WITH|CAUSES|PREDISPOSES-COVID-19. The directionality is from the periphery (the predicted drugs) through the intermediate concepts to COVID-19 in 
the center. 
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cytokine storm of COVID-19, triggered by dysfunctional immune 
response and mediating widespread lung inflammation. Paclitaxel may 
plausibly help as an immunosuppressive therapy to immunomediated 
damage in COVID-19 [100]. Thromboplastin (pattern 7) is a complex 
enzyme found in brain, lung, and other tissues and especially in blood 
platelets and functions in the conversion of prothrombin to thrombin in 
the clotting of blood and may be elevated in patients with COVID-19. As 
pulmonary microvascular thrombosis plays an important role in pro-
gressive lung failure in COVID-19 patients, paclitaxel may reduce the 
state of hypercoagulability by acting as an inhibitor of thromboplastin 
[101]. The final pattern involves the interaction of paclitaxel with TLR4. 
Paclitaxel is known to have high affinity for TLR4 receptors. SARS-CoV- 
2 Spike protein binds with human innate immune receptors, mainly 
TLR4, increasing secretion of IL-6 and TNF-α and neuroimmune 
response. This suggests that paclitaxel may dislocate SARS-CoV-2 Spike 
proteins [102,103]. 

We note that paclitaxel, as a chemotherapy drug, is associated with 
adverse effects, some serious, such as neutropenia, leukopenia, alopecia, 
arthralgia, myalgia, and peripheral neuropathy [104]. 

5.2.2. SB 203580 
SB 203580 is a specific inhibitor of p38α, which suppresses down-

stream activation of MAPKAP kinase-2, involved in many cellular pro-
cesses including stress and inflammatory responses and cell 
proliferation. The following patterns support the SB 203580 discovery:  

1. SB 203580-INHIBITS-interleukin-6 -CAUSES-COVID-19  
2. SB 203580-INHIBITS-TNF protein, human-ASSOCIATED_WITH-COVID- 

19  

3. SB 203580-INHIBITS-interleukin-1, beta-ASSOCIATED_WITH- 
COVID-19  

4. SB 203580-INHIBITS-interleukin-8-PREDISPOSES-COVID-19  
5. SB 203580-INHIBITS-NF-kappa B-ASSOCIATED_WITH-COVID-19  
6. SB 203580-INHIBITS-Interleukin-1-CAUSES-COVID-19  
7. SB 203580-INHIBITS-Granulocyte-Macrophage Colony- 

Stimulating Factor -ASSOCIATED_WITH-COVID-19  
8. SB 203580-INHIBITS-Interleukin-17-ASSOCIATED_WITH-COVID-19  
9. SB 203580-INHIBITS-Macrophage Colony-Stimulating Factor- 

ASSOCIATED_WITH-COVID-19 

Similarly to paclixatel, all patterns involving SB 203580 point to a 
potential inhibition of the hyperinflammatory response in COVID-19. 
According to Gaestel [105], “the role of the protein kinases p38α in 
inflammation and innate immunity was found when the compound SB 
203580 suppressed tumor necrosis factor (TNF) production in mono-
cytes, and this resulted in inhibition of septic (inflammatory) shock.” 

5.2.3. Alpha 2-antiplasmin 
Alpha 2-antiplasmin is a serine protease inhibitor responsible for 

inactivating plasmin. Elevated plasmin is a common risk factor for 
COVID-19 susceptibility, especially in patients with comorbidities such 
as hypertension, diabetes, and coronary heart disease [106]. The 
following patterns support the alpha 2-antiplasmin discovery:  

1. Alpha 2-antiplasmin-INHIBITS-plasmin-PREDISPOSES-COVID-19  
2. Alpha 2-antiplasmin-INHIBITS-fibrinogen-ASSOCIATED_WITH- 

COVID-19  

3. Alpha 2-antiplasmin-INTERACTS_WITH-IgY-ASSOCIATED_WITH-COVID- 
19 

More specifically, plasmin may cleave a newly inserted furin site in 
the S protein of SARS-CoV-2, which increases its infectivity and viru-
lence in COVID-19. In addition, fibrinogen levels are higher in COVID- 
19 patients and may contribute to hypercoagulability [106]. By inhib-
iting plasmin and fibrinogen (first two patterns), alpha 2-antiplasmin 
may confer protection to COVID-19. In addition, pattern 3 suggests a 

mechanism of protection via immunoglobulin Y (IgY). In the immu-
nology field, IgY against acute respiratory tract infection has been 
developed for more than 20 years. Several IgY applications have been 
effectively confirmed in both human and animal health. IgY antibodies 
extracted from chicken eggs have been used in bacterial and viral 
infection therapy. IgY production has been proposed as immunization as 
an adjuvant therapy in viral respiratory infection caused by COVID-19 
infection [107]. Chicken immunized with alpha 2-antiplasmin and the 
peptide-specific antibody (IgY) was isolated from the egg yolks of hens 
that could be used as potential protections for COVID-19 patients [108]. 

5.2.4. Metoclopramide 
Metoclopramide is used to relieve symptoms such as nausea, vom-

iting, and heartburn, caused by gastroesophageal reflux disease or dia-
betic gastroparesis. Metoclopramide is, mostly, a dopamine D2 
antagonist but acts on many other neurotransmitters and proteins. Using 
our discovery pattern, we identified two pathways through which 
metoclopramide may protect against COVID-19. 

1. metoclopramide-INTERACTS_WITH-cholinergic system-ASSOCIA-

TED_WITH-COVID-19  
2. metoclopramide-INHIBITS-TNF protein, human-ASSOCIATED_WITH- 

COVID-19 

The first pattern suggests a cholinergic pathway for the protective 
effect of metoclopramide. The first relation of this pattern is extracted 
from a study which suggests that metoclopramide activates the sympa-
thetic nervous system by mediating the central cholinergic system in 
humans [109]. The second piece of the evidence is based on a paper that 
explains how a cholinergic anti-inflammatory pathway acting through 
acetylcholine receptors can inhibit the production of pro-inflammatory 
cytokines [110]. Therefore, by activating the cholinergic pathway, 
metaclopropamide may prevent the inflammatory cytokine storm 
associated with COVID-19. 

The second potential link is via tumor necrosis factor-α (TNF-α), a 
cytokine used by the immune system for cell signaling. The inhibitory 
effect of metoclopramide on TNF-α is suggested by a study on anti- 
inflammatory properties of benzamides, a class of drugs to which 
metoclopramide belongs (“Our data have shown that metoclopramide 
…gave dose dependent inhibition of TNFα” [111]). The second piece of 
the link comes from a paper that studies the role of TNF-α as a key driver 
of inflammatory macrophage response in severe COVID-19 and proposes 
anti-cytokine (especially, anti-TNF) treatment for COVID-19 [112]. 

5.2.5. Oxymatrine 
Oxymatrine is a quinazine alkaloid with organ- and tissue-protective 

effects, primarily related to its anti-inflammatory, anti-oxidative stress, 
anti- or pro-apoptotic, anti-fibrotic, metabolism-regulating, and anti- 
nociceptive functions [113]. In addition, a variety of signal pathways, 
cells, and molecules are influenced by oxymatrine. 

The following patterns support the repurposing of oxymatrine:  

1. oxymatrine-INHIBITS-interleukin-6-PREDISPOSES-COVID-19  
2. oxymatrine-INHIBITS-TNF protein, human-ASSOCIATED_WITH- 

COVID-19  

3. oxymatrine-INHIBITS-interleukin-1, beta-ASSOCIATED_WITH- 
COVID-19  

4. oxymatrine-INHIBITS-NF-kappa B-ASSOCIATED_WITH-COVID-19  
5. oxymatrine-INTERACTS_WITH-interleukin-10-PREDISPOSES-COVID- 

19  

6. oxymatrine-INHIBITS-TLR4 gene-ASSOCIATED_WITH-COVID-19 

The first five patterns illustrate the effect of oxymatrine on proin-
flammatory cytokine and chemokine production induced by SARS-CoV- 
2. The first piece of the evidence is often an inhibitory relationship, as 
stated in Huang et al. [114]: “Oxymatrine at 120 mg/kg significantly 
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suppressed gene expressions of TLR-4 and NF-κB, decreased levels of 
TNF-α, interleukin-1beta and interleukin-6”. The relationship between 
cytokine response and COVID-19 is well-established, for example as 
stated in Chi et al. [115]: “IL-6, IL-7, IL-10, …were found to be associ-
ated with the severity of COVID-19”. Furthermore, the authors of the 
latter article propose that immunomodulatory treatment to regulate the 
cytokine responses could be an effective therapeutic strategy for SARS- 
CoV-2 infection. Oxymatrine could be one such candidate. 

The relevance of TLR4 (Toll-like receptor 4) (pattern 6) for COVID- 
19, on the other hand, can be gleaned from Choudhury et al. [116], 
which states that “TLR4 may have a crucial role in the virus-induced 
inflammatory consequences associated with COVID-19.” The authors 
further make the point that TLR4 antagonists (such as oxymatrine) could 
pave the way for COVID-19 treatment. 

5.3. Error analysis 

As error analysis, we manually examined the top 150 predictions by 
the best-performing model, TransE, for plausibility. 99 of these were 
deemed implausible, as they were drug classes that were considered too 
general. Examples of such classes include C0003205: Anti- 

Infective Agents, C0003367: Antilipemic Agents, and 
C0010858: Cytostatic Agents. As noted above, some members of 
these classes may indeed be plausible; however, the classes themselves 
were considered errors. A more systematic approach to exclude drug 
classes (e.g., by using MeSH concept hierarchy) could help reduce such 
errors. A more fine-grained evaluation could also consider such cases as 
partially correct, although this is unlikely to be useful for drug 
repurposing. 

The other 18 candidates in the list that were deemed implausible are 
those that were classified as pharmacologic substances in UMLS, but 
were not drugs. These include C0279328: hyperbaric oxygen, 
C1618233: husk and C1443923: Oral rehydration, among others. 
It may be possible to leverage drug knowledge resources, such as 
DrugBank, to exclude such concepts and reduce errors. 

5.4. Limitations and future work 

Our approach relies on accuracy of the predications extracted by 
SemRep. SemRep precision is about 0.70 and its recall around 0.42 [71]. 
While the accuracy classifier helped us improve the accuracy of the 
predications used, the remaining errors were still significant, impacting 
the knowledge graph completion task. 

In addition, despite aggressive filtering, the graph formed by the 
relations in extended SemMedDB is very large, making it difficult to 
apply computationally intensive models like STELP. In this study, we 
examined a sub-graph which, inevitably, results in a loss of information 
available to knowledge graph completion techniques. While we were 
still able to apply modeling techniques to a fairly large sub-graph 
focusing on drug repurposing, there exists a larger, complementary 
sub-graph that may provide further drug candidates. 

As noted above, the TransE model benefited from hyperparameter 
tuning using a grid search method to find an optimal configuration. 
Similarly, STELP would likely benefit from a similar tuning to find an 
optimal configuration. For example, a single linear layer was used on the 
pooled output from the BioBERT model to produce the logits while 
increasing the representational capacity of the linear layer, by depth or 
width, might allow for STELP to develop a richer model of the under-
lying space formed by the BioBERT contextualized embeddings. 

Our methods were limited to knowledge from the literature. Other 
types of biological data (e.g., protein-protein interactions, drug-target 
interactions, gene/protein sequences, pharmacogenomic and pharma-
cokinetic data) are likely to benefit identification of drug candidates, as 
shown to some extent by other studies [12], as well as our prior work 
[53]. However, the computational resources needed for training models 
based on such massive data can be prohibitive. TransE and similar 

methods seem more promising in that respect. 
Lastly, with our in silico approach, we can of course only propose 

drug candidates for repurposing. To evaluate whether these drugs could 
indeed act as effective treatments for COVID-19, wet lab experiments 
and clinical studies are needed. However, the fact that we were able to 
identify drugs known to have some benefit for COVID-19 (e.g., dexa-
methasone) via purely computational methods that rely only on auto-
matically extracted literature knowledge is encouraging. Moreover, the 
use of discovery patterns to explain why a particular drug or substance 
can be repurposed may be beneficial in prioritizing the most promising 
candidates for clinical studies. 

6. Conclusion 

In this study, we proposed an approach that combines literature- 
based discovery and knowledge graph completion for COVID-19 drug 
repurposing. Unlike similar efforts that largely focused on COVID-19- 
specific knowledge, we incorporated knowledge from a wider range of 
biomedical literature. We used state-of-the-art knowledge graph 
completion models as well as simple but effective discovery patterns to 
identify candidate drugs. We also demonstrated the use of these patterns 
for generating plausible mechanistic explanations, showing the com-
plementary nature of both methods. 

The approach proposed here is not specific to COVID-19 and can be 
used to repurpose drugs for other diseases. It can also be generalized to 
answer other clinical questions, such as discovering drug-drug in-
teractions or identifying drug adverse effects. 

As COVID-19 pandemic continues its spread and disruption around 
the globe, we are reminded how the spread of infectious diseases is 
increasingly common and future pandemics are ever more likely. 
Innovative computational methods leveraging existing biomedical 
knowledge and infrastructure could help us plan for, respond to, and 
mitigate the effects of such global health crises. Drug repurposing is a 
key piece of this response, and our approach provides an efficient 
computational method to facilitate this goal. 
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