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Abstract

Background: Leptospirosis is a re-emerging zoonosis with protean clinical manifestations. Recently, the importance of
pulmonary hemorrhage as a lethal complication of this disease has been recognized. In the present study, five human
necropsies of leptospirosis (Weil‘s syndrome) with extensive pulmonary manifestations were analysed, and the antibodies
expressed in blood vessels and cells involved in ion and water transport were used, seeking to better understand the
pathophysiology of the lung injury associated with this disease.

Principal Findings: Prominent vascular damage was present in the lung microcirculation, with decreased CD34 and
preserved aquaporin 1 expression. At the periphery and even inside the extensive areas of edema and intraalveolar
hemorrhage, enlarged, apparently hypertrophic type I pneumocytes (PI) were detected and interpreted as a non-specific
attempt of clearence of the intraalveolar fluid, in which ionic transport, particularly of sodium, plays a predominant role, as
suggested by the apparently increased ENaC and aquaporin 5 expression. Connexin 43 was present in most pneumocytes,
and in the cytoplasm of the more preserved endothelial cells. The number of type II pneumocytes (PII) was slightly
decreased when compared to normal lungs and those of patients with septicemia from other causes, a fact that may
contribute to the progressively low PI count, resulting in deficient restoration after damage to the alveolar epithelial
integrity and, consequently, a poor outcome of the pulmonary edema and hemorrhage.

Conclusions: Pathogenesis of lung injury in human leptospirosis was discussed, and the possibility of primary non-
inflammatory vascular damage was considered, so far of undefinite etiopathogenesis, as the initial pathological
manifestation of the disease.
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Introduction

Leptospirosis, a reemerging zoonosis, is an acute febrile illness

occuring as large outbreaks throughout the world. It affects

humans and/or animals in both urban and rural areas. The

etiological agent is Leptospira interrogans, which can be transmitted

from animal hosts to humans. Epidemiological and clinical aspects

of the disease, as well as its pathogenesis and diagnostic methods,

have been previously reviewed [1] [2] [3].

The most common and mildest form of clinical leptospirosis is

anicteric, but an icterohemorrhagic presentation of the disease,

known as Weil’s syndrome, can be found in 5–10% of all patients,

leading to fatalities that typically arise from renal, cardiac and,

more recently, from respiratory failure [3] [4].

Mild pulmonary involvement has been reported in 20–70% of

leptospirosis patients, but this finding was often overshadowed by

renal manifestations, which are now being succesfully controlled.

Pulmonary hemorrhage, however, as cause of death in leptospi-

rosis, has been the subject chiefly of epidemiological and clinical

studies [4] [5] [6] [7] [8] and is now regarded as an important and

frequent manifestation of the disease.

Septicemia of different etiologies, including leptospirosis, usually

course with ionic dysfunction in the lung and kidney. Recently,

specialized studies have focused on, the study of such alterations

[9] [10] [11] [12] [13]. The aim of this work was to describe the

main pathophysiological changes commonly seen in the lungs of

leptospirotic patients, using antibodies expressed and detected by

immunohistochemistry against vessels and cells involved in

different electrolyte and water transport pathways, in an attempt

to better understand the pulmonary failure in this disease.
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Methods

1- Human Samples
Five consecutive autopsy cases of patients with clinical and

histological diagnosis of leptospirosis from a tertiary infectious

diseases hospital were studied. The work received approval of the

Ethics Committee from São Paulo University and all the

necropsies were performed after written consent from the families

or guardians, irrespective of the patients’ age, following the

established rules from the University Hospitals. This includes the

five patients whose lung fragments were used as controls.

The main clinico-epidemiological and laboratory data are

presented in Table 1. Except for patient 2, who was 81 years of

age, the average age was 29 years. The clinical and epidemiolog-

ical information were in agreement with those observed in fatal

leptospirosis (Weil’s syndrome). The average duration of illness

was five days. The autopsies were complete, and tissue fragments

were fixed in 10% neutral formalin, routinely embedded in

paraffin, and stained with hematoxylin-eosin. All patients exhib-

ited marked pulmonary involvement, as described in previous

studies [14] [15] [16]. Besides macro and microscopic findings

highly suggestive of leptospirosis, the immunohistochemical assay,

as previously described [17], was positive mainly in the liver, and

also in all the lung samples.

2- Immunohistochemical Assay
Immunohistochemistry to detect leptospiral antigen(s), pulmo-

nary microvasculature and different electrolytes and water

transport pathways was performed on paraffin sections using the

antibodies listed in Table 2, in a standard protocol as previously

described [17] [13]. Double immunohistochemical labelling and

diaminobenzidine (DAB) visualization enhanced with nickel

(DAB-Nickel) were also used in more representative slides.

Immunohistochemical controls: Antibodies were tested in lung

fragments of two non-leptospirotic patients dying of acute heart

failure without definite macro and microscopic abnormalities, and

also in three patients with terminal sepsis of different etiologies,

and related lung pathology, usually represented by pulmonary

edema and focal parenchymal hemorrhage. One patient, a

sixteen-year-old male, had a lymphoproliferative disease and

developed cavernous sinus thrombosis and terminal sepsis. The

second patient was a 66-year-old female with cholelithiasis,

relapsing acute and chronic cholecystitis, and sepsis. The third

patient was a 52-year-old female with hepatocarcinoma, and who

developed terminal sepsis after liver transplantation.

3- Quantification
Morphometric analysis was performed as previously reported

[18]. In summary, using a digital camera coupled to an optical

microscope, we acquired 30 pictures of lung samples per case –15

from the main edema/hemorrage region and 15 from the

peripheral area. The number of positive TTF-1 and AQP-5 cells

was counted in each picture and corrected by the tissue area,

measured using a 100-point grid (cells/tissue area), and expressed

as cells/mm2. All the quantifications were performed using the

software Image Pro Plus, Version 4.1 (MediaCybernetics, USA).

4- Confocal Laser Scanning Microscopy (CLSM)
Ten micrometer-thick paraffin sections of lung samples from

one normal control and two leptospirotic cases, randomly selected,

were applied to microscope slides and submitted to two-step

immunofluorescence labelling. The slides were incubated with

CD34 (dilution of 1:250) and Aquaporin 1/Cod ab 9566 (dilution

of 1:300) primary monoclonal antibodies for 48 hours at room

temperature following standard procedures [19]. The reactions

were developed using secondary antibody conjugated with green

fluorescent Alexa Fluor 488 (dilution of 1:400), and the nuclei

were counterstained with propidium iodide. The slides were

kept in a dark chamber until observation at 20x and 40x objective

magnifications, with water and oil immersion respectively, in a

confocal laser microscope (model Zeiss LSM 510 META/UV),

using LSM Image Examiner software (Carl Zeiss, Standort

Göttingen, Germany) at the Confocal ‘‘Rede Premium’’ Multi-

user Facility of the Heart Institute of São Paulo University.

Results

Clinicoepidemiological data of the five patients were highly

suggestive of leptospirosis. As expected in Weil’s syndrome, the

illness was of short duration and this, associated with the usually

delayed clinical diagnosis, contributed to the lack of important

laboratory tests. However, the histopathological findings, and in

particular, the immunohistochemistry, supported the diagnosis of

leptosirosis by revealing tissue antigen deposits, mostly in the liver

but also in all fragments of the lung.

Macroscopic pulmonary examination showed lungs with

markedly increased weight. The cut surface revealed either

nodular areas of hemorrhage, often confluent, or massive

hemorrhage involving the lobes or even the entire lung

parenchyma. A correlation between gross findings of the lung in

human leptospirosis, essentially similar to ours, and the chest

Table 1. Clinical data of leptospirosis patients.

Case number Sex/Age (years) Clinical and epidemiological information
Illness duration
(days)

1 m/20 Fever, muscular pain, jaundice, acute renal failure, bipalpebral edema, pulmonary hemorrhage,
epigastric pain and vomits. Low platelet count and leucocytosis.

4

2 f/81 Arterial hypertension, diabetes mellitus, muscular pain, jaundice, acute renal failure, acute
respiratory failure. Patient refers contact with rats at home.

3

3 m/27 Fever, muscular pain, hepatomegaly, leukocytosis. Diffuse abdominal pain, vomits, massive
pulmonary hemorrhage with hemoptisis. Acute renal failure. Positive serological tests for
leptospirosis and B hepatitis. Previous contact with flood waters.

11

4 m/42 Jaundice, hepatomegaly, muscular pain, renal failure, acute respiratory failure. X rays showed
micronodular interstitial infiltrate in both lungs. Leukocytosis.

4

5 m/27 Fever, muscular pain, jaundice, renal and pulmonary failure. Serological tests for leptospirosis,
positive. Patient also had mansonic schistosomiasis

5

doi:10.1371/journal.pone.0071743.t001
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radiographs, was found by Marchiori et al., in their state-of-the-art

review [16].

Histological findings showed septal congestion, multifocal

alveolar hemorrhage and edema, occasionally with focal fibrin

exudation. Macrophages were more numerous inside the alveolar

lumina. The alveolar contour was visible inside the edematous and

hemorrhagic regions, frequently enabling identification of the

constituent cells. It is worth mentioning that in the peripheral,

more preserved areas, the alveolar lining was made up of enlarged,

apparently hypertrophic pneumocytes, occasionally in an arrange-

ment resembling a glandular lining.

1- Immunohistochemistry
A- Leptospiral antigen(s) (LAg). LAg were present in all

cases, usually as small confluent dots, in the cytoplasm of few

pneumocytes (Figures 1A and 1B), macrophages, and in rare cases,

in the endothelial cells.

B- Epithelial cells. The TTF1 antibody was expressed in the

nuclei in normal lungs in PII, which appeared as isolated groups of

cells in their usual localization, in angles formed by the alveolar

septa. In leptospirosis, pneumocytes expressing the TTF1 antibody

were agreggated as small cellular groups or isolated cells, observed

at the periphery of the hemorrhagic and edematous regions. It is

notable that alveolar edema with septal widening was still

frequently present, and that isolated pneumocytes expressing

TTF1 could be observed inside and/or lining the alveolar spaces

in the hemorrhagic and edematous areas. As expected, TTF1

nuclear expression was not present in the increased and

occasionally hypertrophic macrophages scattered over the surface

of alveoli, and sometimes percolating into the interstitium. Clusters

of pigmented macrophages were also noted inside the air spaces.

The quantitative analysis was performed in leptospirosis at the

periphery of the microscopic slide, which showed either slight or

absence of prominent edema and/or hemorrhage and at the

central area where these findings were prominent. It showed a

slight decrease in the number of TTF-1 positive cells, chiefly in

leptospirosis, which was more severe when compared to the

peripheral areas of sepsis and the controls (Graph 1).

Epithelial sodium channel (ENaC) expression was discrete in the

cytoplasm of a few pneumocytes in normal lungs (Figure 1C). In

leptospirosis, enhanced expression was detected in the cytoplasm

and cell membrane of the cells of the alveolar lining, which were

enlarged, and apparently more numerous, making the morpho-

logical distinction between pneumocytes difficult. This aspect was

particularly apparent in the peripheral areas, where the cytological

profile was usually more easily discernible. However, in the

edematous and/or hemorrhagic areas, the outline of the alveolar

lining could often be recognized, and ENaC expression was still

apparently present in more preserved cells (Figure 1D).

The Aquaporin 5 expression in normal lung was found in the

cytoplasm of PI, which showed a typical endotheliform appear-

ance, lining the air spaces (Figures 1E and 1F). In leptospirosis PI

were usually enlarged, apparently hypertrophic, chiefly at the

periphery, but also frequently inside the edematous and/or

hemorrhagic areas (Figures 1G and 1H). Quantitative analysis,

as previously described for the TTF1 antibody, showed an

increased number of aquaporin 5 positive cells in both leptospi-

rosis and sepsis, but without significant difference from controls.

The lack of statistical significance should take into account the

limited number of cases included in this work (Graph 2).

C- Blood vessels (Figures 2A to 2H). The CD34 antibody,

due to its expression on the endothelial cell membrane, with or

without enhancement by nickel, demonstrates the pulmonary

alveolar microvasculature in normal lungs (Figure 2B). Expression

was also observed in the endothelial lining of small branches of the

pulmonary arteries. Similar expression was present with both

aquaporin 1 antibodies, which in humans are able to detect

endothelial cells (Figure 2D). In leptospirosis, the edematous and/

or hemorrhagic areas showed dilated capillaries of the microvas-

cular vasculature and extensive, but nevertheless focal areas with a

partial or total lack of CD34 expression. Focally reduced CD34

expression was particularly visible when DAB–Nickel was used

(Figure 2C). Gaps of different sizes were present, which might be

interpreted either as sections of twisted dilated capillaries, or

enlarged/disrupted endothelial cell junctions (Figures 3C and 3D).

More preserved endothelial cells were prominent, occasionally

with CD34 expression in the cytoplasm close to the cell nuclei and

on the surface of the cell membrane facing the alveolar space. The

CD34 expression was also either focally absent, or less expressed in

more preserved and/or edematous areas at the periphery, but

aquaporin 1 expression was still present and even apparently

enhanced. Aquaporin 1 expression was also more preserved in the

Table 2. Immunohistochemical protocols – essential data.

Primary antibody Clone Dilution Link Specificity

Anti-lepto Polyclonal 1:5.000 Envision System/AP DAKO Leptospiral antigens

TTF1 Monoclonal 1:500 Ultravision LP, Value Detection system,
Lab Vision Corporation

Pneumocytes type II and Clara cells

CD34 cod. NCL-END Monoclonal 1:500 NOVOCASTRA cod. NCL - EWO Glycoproteins of the endothelial cells
membrane

Alpha ENaC Novus Biologicals
cod NR p1 20097

Polyclonal 1:700 Ultravision LP, Value Detection system,
Lab Vision Corporation

Epithelial sodium channel

Anti-Connexin 43 C6219 Polyclonal 1:400–1:700 Ultravision LP,Value Detection System.
Lab Vision Corporation

Gap Junction Protein

Aquaporin 1 ab 9566 Monoclonal 1:1000 Ultravision LP,Value Detection System,
Lab Vision Corporation

Water channels in humans endothelial
cells

Aquaporin 1 ab 11023 Monoclonal 1:20.000 Ultravision LP, Value Detection System,
Lab Vision Corporation

Water channels in human endothelial
cells

Aquaporin 5 ab78486 Polyclonal 1:150 Ultravision LP, Value detection System,
Lab Vision Corporation

Water channels in pneumocytes type I

doi:10.1371/journal.pone.0071743.t002
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microvasculature of the alveolar spaces filled with hemorrhagic

and edema fluid (Figure 2E and 2F), a finding that was less

prominent as far as CD34 expression is concerned (Figures 2G and

2H). Expression of CD34 was partially absent in the endothelial

lining of few small branches of the pulmonary arteries, a finding

also seen less frequently with aquaporin 1. Overall, when

compared with aquaporin 1, the damage to the microvascular

bed of the lung appeared more severe when evaluated by CD34

expression.

Connexin 43 expression was present in most of the cells of the

alveolar lining (Figure 3A). It was also detected in cells inside areas

of edema and/or hemorrhage and even in the cytoplasm of more

preserved endothelial cells. It is worth noting that the alveolar

lining in leptospirosis may be discontinous in these regions, and

isolated pneumocytes, or groups of pneumocytes expressing

connexin 43, could be seen occupying part of the alveolar lumen

(Figures 3B, 3C and 3D).

2- Confocal Microscopy
When compared with controls, confocal laser microscopy

findings highlight a reduced endothelial membrane labelling of

CD34, suggesting focal areas of discontinuity of the capillary wall

(Figures 3E and 3F). Aquaporin 1 immunostaining was essentially

preserved and apparently expressed inside the cytoplasm of

endothelial cells, sometimes with a granular appearance

(Figures 3G and 3H).

3- Control Cases
Cases of septicemia exhibited less marked but essentially similar

findings of the lung in leptospirosis, except as far as the

microcirculation is concerned. There were focal areas of edema

and hemorrhage but these were less conspicuous when compared

to cases of leptospirosis. However, close to these areas, groups of PI

were also noted and transporters were similarly expressed. Also,

macrophages were apparently more numerous than in the normal

lung, but not as prominent as those observed in leptospirosis. The

main differential finding was represented by the microvasculature,

which was essentially similar to the normal lung except for a few

small areas close to the edematous and/or small hemorrhagic

areas, where foci of reduced and/or irregular CD34 expression

appeared to be present.

Discussion

Patterns of organ involvement and severity of leptospirosis are

more recently evolving to frequent extensive lung damage [1] [4]

[5]. The clinico-pathological finding that pulmonary hemorrhage

can be a unique and often fatal manifestation of the disease

received particular attention when in 1995, during the leptospi-

rosis outbreak in Nicaragua, when pulmonary hemorrhage was the

most frequent cause of death and, unlike classic icteric Weil’s

disease, renal failure and jaundice were not present [4]. It is also

important to emphasize that immunohistochemistry for the post-

mortem diagnosis of human leptospirosis proved to be an

extremely valuable and reliable tool during this particular

outbreak of leptospirosis [4] [6]. Furthermore, immunohistochem-

istry to detect leptospirosis in horses also proved to be more

sensitive and specific in tissue samples than serology using the

microscopic agglutination test [20].

The alveolar epithelium, which covers almost the whole of the

internal surface area of the lung, is composed of two cell types:

squamous cells (pneumocytes type I – PI), which line 95% of the

internal surface area of the lung, and granular or cuboidal cells

(pneumocytes II – PII), which synthesize and secrete surfactant

and cover the remaining 5% of the alveolus. PII are the

progenitors of PI, which are incapable of cell division, and should

proliferate after injury to restore alveolar epithelial integrity. Gas

exchange takes place across the cytoplasm of PI, which

incidentally also express aquaporin 5, a water channel that has

high osmotic water cell membrane permeability [21]. PII contain

ion channels, including the amiloride-sensitive epithelial Na+

channel (ENaC), Na+K+ ATPase and the cystic fibrosis trans-

membrane regulator [11] [22].

In pneumocytes, the Na-K-ATPase pump generates an osmotic

driving force favorable to the entrance of sodium from alveolar

lumen to the cell via ENaC channel situated at the lumen

membrane of the pneumocyte. The osmotic gradient between the

lumen and the interstitial space generated by sodium transport

promotes the movement of water via the paracellular pathway.

Water also crosses the cell via aquaporin 5 water channel [21]. An

electroneutral cotransporter (NKCC1) at the interstitial mem-

brane of the alveolar cells regulates the cellular volume. In

endothelial pulmonary cells, another water channel (aquaporin-1)

is responsible for water movement between the interstitium and

the lumen of the vessels [33].

Alveolar epithelial cells also express gap junction proteins

(connexins, Cx) involved in intercellular communication linking

the cytoplasmic compartments of adjacent cells. Four connexins

are expressed in cell culture, being Cx43 and Cx46 more

abundant when compared with Cx 26 and Cx32 [23]. Cx43

was expressed also in the cytoplasm of preserved endothelial cells

[23].

Leptospirosis may determine an acute lung injury that affects

multiple components of the alveolocapillary membrane. Enhanced

epithelial and endothelial permeability, the latter due to marked

non-inflammatory circulatory damage, associated with impaired

alveolar fluid clearance, induces prolonged respiratory failure and

higher mortality. Alveolar fluid clearance results chiefly from the

electroosmotic gradient created across the alveolar epithelium by

active Na+ transport [24].

The lung in leptospirosis exhibits an alveolar cell non-specific

reaction of PI, mainly at the periphery but also inside the large

areas of intraalveolar edema and hemorrhage, with secondary

focal disruption and occasional damage to the alveolar lining. PII

are the progenitors for type I cells, but their decrease in number in

leptospirosis, albeit slight, is probably associated with a compen-

satory enlargement, possibly hypertrophy, of PI that is visible at

the periphery and even inside areas of lung edema and

hemorrhage. We might speculate that the number of PI is

probably linked to an early proliferative stimulus of PII in the

Figure 1. Immunohistochemical analysis of leptospirotic lungs: A and B: Antigenic leptospiral deposits (LAg) in cells of the human
alveolar epithelium. The lumen is filled with plasma and red blood cells. Immunohistochemistry (IHC), alkalyne phosphatase. C: Normal human
lung. Expression of ENaC in PI. Group of PII with nuclei marked by TTF1 (long arrow) is seen inside the alveolar lumen, close to the epithelial cell lining
which exhibits few PII (short arrow). IHC, double labelling. D: Enlarged, possibly hypertrophic PI expressing ENaC made up mostly of the alveolar
epithelium in leptospirosis. Groups of PII with nuclei expressing TTF1 are also part of the alveolar lining. IHC, double labelling. E and F: Normal human
lung PI expressing aquaporin 5. The endothelial like shape of PI and the marked cytoplasmic expression of aquaporin 5 are present. IHC, DAB. G and
H: Many enlarged, apparently hypertrophic PI expressing aquaporin 5 covers alveoli filled with plasma and red blood cells. PII are also present as part
of the alveolar lining. IHC, 1G double labelling.
doi:10.1371/journal.pone.0071743.g001
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initial stages of the lung damage, which progressively decreases

when there is an unfavorable outcome of the disease. It is

important to note that alveolar hyperplasia of PII was found in

experimental models of septicemia, and endotoxin induction was

considered in its pathogenesis [25].

For many years, it was accepted that only PII transported Na+

and Cl- and that PI provided only a route for water absorption.

Recent experimental and human physiopathological data [22]

[26] presented evidence that PI contain functional epithelial Na+

channels (ENaC), as well as K+ channels and cystic fibrosis

transmembrane regulator. Therefore, besides a high osmotic water

permeability, attributable chiefly to its aquaporin 5 expression, PI

also participate in active sodium transport, and this is what

apparently is present in the lung in leptospirosis, as our

immunohistochemical data regarding the ENaC detection seems

to support.

Therefore, histopathological and immunohistochemical findings

for leptospirosis showed what was expected in a non-specific

attempt of alveolar edema clearance and the fundamental role of

electrolytic and water transport by the epithelial alveolar lining.

Furthermore, the preserved immunohistochemical findings of cells

of the alveolar lining, including those in areas of edema and

hemorrhage, suggests less pathophysiological damage than might

be expected in such circumstances.

Connexin 43 expression seen in the epithelial cells inside areas

of edema and hemorrhage might be interpreted as evidence of

cytoplasmic communication between apparently preserved and/or

less damaged cells, corroborating the above suggestion.

Leptospirosis can be regarded as a hemorrhagic septicemia,

therefore the main findings involving vessels are essential in its

pathogenesis. Discussion on the main pathogenetic mechanisms of

the lung in leptospirosis involves either the presence of a toxin-

mediated injury and/or an immune response of the host [3] [27].

However, in either of these possibilities, the microcirculatory role

is predominant.

Damage to the pulmonary endothelium occurs without

evidence of inflammation and/or disseminated intravascular

coagulation in human leptospirosis. Furthermore, neither throm-

bocytopenia nor the decrease in clotting factors, which can

occasionally be detected in leptospirosis patients, is sufficient to

account for the bleeding diathesis observed [27] [28].

Nally et al. [29], in a guinea pig model of leptospirosis, found

immunoglobulin and C3 deposited along the alveolar basement

membrane in a similar pattern to that seen in Goodpasture

syndrome. However, ultrastructural studies did not show the

deposition of immunoglobulins in the capillary alveolar basal

membrane, and histological examination of the kidneys did not

demonstrate any pathological finding of Goodpasture disease. In

any circumstance, the findings described suggested to the authors a

possible role for an immune-mediated associated process.

Croda et al. [27] found fibrin deposits over the alveolar surface

of human lungs in leptospirosis, and correlated these findings with

necrosis of PI and PII, with cell leakage and hemorrhage into the

alveolar lumen. They speculated that these might be the result of

an initial increase in vascular permeability due to endothelial

activation, which would permit leakage of immunoglobulins into

the alveolar space, with further damage to the epithelial lining.

Lung tissue in patients with leptospirosis usually shows a much

lower number of leptospires and antigen deposits, as detected by

immunohistochemistry, when compared to liver and kidney tissue,

suggesting that pulmonary abnormalities might be the result of

leptospiral circulating products; so-called toxin(s). Leptospires

and/or their antigen(s) appear to initiate cell injury by attaching

to the cell membranes, a finding that is particularly visible in

hepatocytes [16]. Leptospiral antigen was also detected by

immunohistochemistry in the human lung on the luminal surface

and cytoplasm of endothelial cells [28], a finding confirmed in the

present work. The specific substance responsible for inducing this

non inflammatory vascular injury remains unidentified, but

possibilities include leptospiral outer membrane proteins, glyco-

proteins, hemolysins and lypopolysaccharides [15] [3]. Experi-

mental data in guinea-pigs [30] and hamsters [31] also suggest

vascular injury as playing a major role in the pathology of

leptospirosis.

A recent work by Del Carlo Bernardi et al. [18], found, in

vessels of human lungs in leptospirotic patients dying of

hemorrhagic pneumopathy, an increased expression of intercellu-

lar adhesion molecule, vascular adhesion molecule, and Toll-like

receptor, compared with the normal lung. Therefore, there is

evidence that innate immune receptors and adhesion molecules

participate in the pathogenesis of lung hemorrhage in leptospirosis.

Our findings are also in agreement with the main involvement

of damaged microcirculation of the human lung in the pathogen-

esis of the pulmonary findings in leptospirosis. Leptospirosis

exhibits well-known alterations of the endothelium in different

tissues and organs, and it is attractive to suggest that the changed

endothelial expression of CD34, and possibly aquaporin 1, as seen

both by conventional and confocal microscopy, are part of a

primary non-inflammatory injury to the microcirculation of the

lung in leptospirosis. Altered expression of CD34, a heavily

glycosylated type 1 transmembrane protein [32], suggests struc-

tural modifications of at least glycoproteins of the cell membrane,

and possibly also of endothelial junctions, leading to alveolar

edema and/or hemorrhage.

Aquaporin 1 is a water channel protein that is widely expressed

in the human pulmonary vascular endothelium, particularly in

endothelial cells of the vascular plexus around the airways, where

it probably has a role in regulating the vascular permeability to

water in the lung [33]. Its more preserved expression is notable,

when compared to CD34 in the microvasculature of the

edematous and/or hemorrhagic lung areas in human leptospirosis.

Aquaporin 1 is also naturally present in red blood cells and in

many epithelial cells, where it has a major role in transcellular and

transepithelial water movement. It is overexpressed in cells of

certain histological types of human lung cancers, and it has been

speculated that this finding is probably related to the need of the

Figure 2. Gross feature and immunohistochemical analysis of microcirculation of leptospirotic lungs: A: Macroscopic aspect of the
hemorrhagic pneumopathy in leptospirosis. Confluent hemorrhagic areas are present in the lung parenchyma. B: Microcirculation of the
normal human lung. The capillary network is delineated in black, as well as the endothelium of a small branch of the pulmonary artery. IHC CD 34,
DAB-Nickel. C: Human lung in leptospirosis. The capillary vessels are frequently dilated, with small gaps and areas of reduced and/or absent
expression of CD 34. IHC CD 34, DAB-Nickel. D: Aquaporin 1 delineates the walls of the microcirculatory vessels in the normal human lung. It is also
expressed in the endothelium of a small branch of the pulmonary artery. IHC, DAB. E: Aquaporin 1 expression is mostly preserved in areas of edema
and apparent red blood cell deposits in human lung in leptospirosis. IHC Aquaporin 1, DAB. F: Capillaries of the pulmonary microcirculation express
aquaporin 1 both at the more preserved periphery and inside the area of intraalveolar edema and apparent red blood cells extravasate. IHC
Aquaporin 1. G and H: Both images were taken from similar regions of the slide. G shows CD34 reduced expression in areas of edema and
hemorrhage and H the relative preservation of capillary expression of aquaporin 1. IHC, DAB.
doi:10.1371/journal.pone.0071743.g002
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proliferating neoplastic cells to absorb water, using a minimal

amount of energy [34]. A similar overexpression, increasing cell

membrane water permeability, might be present in functionally

more preserved endothelial cells in the lung in leptospirosis,

accentuating the alveolar edema.

Macrophages are more numerous and hypertrophic in the

human lung in leptospirosis, and are responsible, together with

neutrophils, for the clearence of foreign bodies and microorgan-

isms including leptospira and/or their products. Apparently, they

do not have a major role in electrolytic or water transport. It is

worth mentioning, however, that NKCC1, which is expressed in

both epithelial and endothelial cells, is upregulated in the lung in

leptospirosis, serving multiple functions ranging from ion trans-

port, thus contributing to the pathology of pulmonary edema, to

regulation of macrophage activation and antimicrobial activity [9]

[10]. Additionally, PII may also act as immunoregulatory cells and

together with macrophages, express Toll-like receptor 2, making

them part of the innate immune defense mechanism [35].

The lungs of non leptospirotic patients dying of septicemia of

different etiologies exhibited a predominance of focal, occasionally

confluent areas of edema. Hemorrhage was usually less prominent

when compared to leptospirosis. Marked vascular damage, as

described in leptospirosis, was not present in the lungs of cases of

septicemia. As a whole, non-leptospirotic septicemia exhibited

milder, but similar findings as the ones found in leptospirosis.
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