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Simple Summary: Cholangiocarcinoma is among the most challenging cancers to treat, associated
with poor prognosis both in the early and advanced setting. In the last decade, a deeper understanding
of disease biology and cholangiocarcinogenesis has led to an increasing awareness of the molecular
heterogeneity underpinning this disease and to the identification of several vulnerabilities to
be targeted. To this end, the therapeutic exploitation of IDH mutations is the first successful
example of precision medicine in cholangiocarcinoma. In the ClarIDHy trial, the small molecule
inhibitor Ivosidenib provided a survival advantage in pretreated patients with IDH1-mutant
cholangiocarcinoma, thus expanded the armamentarium against this molecular subtype of disease.

Abstract: Biliary tract cancers are anatomically distinct and genetically diverse tumors, evenly
characterized by poor response to standard treatments and a bleak outlook. The advent of
comprehensive genomic profiling using next-generation sequencing has unveiled a plethora of
potentially actionable aberrations, changing the view of biliary tract cancers from an “orphan”
to a “target-rich” disease. Recently, mutations in isocitrate dehydrogenase genes (IDH1/2) and
fusions of the fibroblast growth factor receptor have emerged as the most amenable to molecularly
targeted inhibition, with several compounds actively investigated in advanced-phase clinical trials.
Specifically, the IDH1 inhibitor ivosidenib has been the first targeted agent to show a survival benefit
in a randomized phase III trial of cholangiocarcinoma patients harboring IDH1 mutations. In this
review article, we will focus on the IDH1/IDH2 pathway, discussing the preclinical rationale of its
targeting as well as the promises and challenges of the clinical development of IDH inhibitors in
biliary tract cancers.

Keywords: biliary cancer; cholangiocarcinoma; gallbladder cancer; IDH; targeted therapy; precision
medicine; ivosidenib

1. Introduction

Biliary tract cancers (BTCs) consist of a heterogeneous group of aggressive malignancies arising
from different locations of the biliary tree within and outside the liver. Based on the updated
anatomical classification, BTCs encompass intrahepatic cholangiocarcinoma (iCCA), extrahepatic
cholangiocarcinoma (eCCA) (further divided into perihilar (pCCA) and distal cholangiocarcinoma
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(dCCA)), gallbladder cancer (GBC), and ampulla of Vater cancer (AVC), also reflecting differences in
epidemiology, aetiology, biology, prognosis, and therapeutic management (Figure 1) [1]. BTC is the
second most common primary liver cancer after hepatocellular carcinoma and constitutes approximately
3% of all gastrointestinal tumors [2]. Although considered a relatively rare entity, the overall incidence
of BTC has been steadily rising in the last decades, mainly as a result of improved diagnostic capabilities
and changes in disease classification [3]. Despite recent advances, the prognosis of BTC is still meager.
Indeed, only 10−20% of cases are amenable to curative-intent surgery, and, even in resected cases, the
5-year overall survival is less than 50%. On the other hand, the vast majority of patients diagnosed with
unresectable advanced disease are candidates to palliative chemotherapy aimed at prolonging survival
and maintaining an acceptable quality of life [4]. The combination of cisplatin and gemcitabine is the
standard-of-care first-line treatment based on the results of ABC-02 and BT22 trials with a median
overall survival (OS) inferior to 12 months [5,6]. Regarding later lines treatment, determining a role
for chemotherapy is a recent achievement, with the results of the ABC-06 trial showing an advantage
for the mFOLFOX6 regimen compared to active symptoms control, while beyond second-line, no
high-level evidence currently supports the use of systemic treatment in clinical practice [7].

Figure 1. Anatomical sub-classification of biliary tract cancers. Based on the anatomical site of origin
within the biliary tree, biliary tract cancers are subdivided into intrahepatic (iCCA) and extrahepatic
cholangiocarcinoma (eCCA) and gallbladder carcinoma (GBC).

Lately, the advent of massive parallel sequencing technologies has enabled an in-depth
understanding of the molecular landscape of BTC, unraveling several genomic vulnerabilities affecting
metabolic, mitogenic, chromatin remodeling, and DNA repair signaling pathways [8,9].

Specifically, tumor profiling studies have reported that nearly 40% of BTCs harbor potentially
actionable aberrations, among which are isocitrate dehydrogenase (IDH) 1/2 mutations (10%), fibroblast
growth factor receptor (FGFR) fusions (10%), HER2 amplifications/mutations (10−15%), BRAFV600E

mutation (3%), BRCA2 mutations (3%), and microsatellite instability (1%) [8,9]. To this end, IDH 1/2
mutations and FGFR 2 fusions are being clinically exploited as the most relevant therapeutic targets so
far, with several targeted agents showing unprecedented results in refractory disease settings [10,11].
In this article, we focused on the aberrant IDH signaling pathway, reviewing its biological relevance in
cancer together with the preclinical and clinical development of selective IDH inhibitors as well as
future perspectives in cholangiocarcinoma.

2. The Genomic Landscape of Cholangiocarcinoma

From a mutational standpoint, cholangiocarcinoma lies in the middle of the spectrum of
malignancies, with roughly the same genomic burden of aberrations between iCCA and eCCA,
showing a median of 39 and 35 non-synonymous mutations per tumor, respectively [12]. In recent years,
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integrative profiling studies have started disentangling the complex molecular landscape underpinning
CCA, thereby shedding initial light on the biological heterogeneity across anatomical subtypes. To this
end, IDH1/2 mutations (4.9–36%), FGFR 1–3 fusions, mutations and amplifications (11–45%), as well
as BAP-1 mutations (13%) have been reported to occur more frequently in iCCA, whereas KRAS
mutations (8.3–42%), SMAD4 mutations (21%), and ERBB2/3 amplifications (11–17%) have been
observed more commonly in eCCA [13–15]. Moreover, Nakamura and colleagues described how eCCA
was more specifically associated with previously unknown aberrations, such as ATP1B-PRKACA and
ATP1B-PRKACB fusions, along with mutations in ELF3 and ARID1B genes [16].

In addition, cholangiocarcinoma also displays genomic diversity according to aetiological risk
factor as demonstrated by the higher mutational burden found in liver fluke–driven tumors (median
4700 vs 3143 somatic mutations/tumor) and the enrichment for ERBB2 amplification and TP53
mutations. In contrast, non-liver fluke-associated cholangiocarcinoma has been shown to harbor
high copy-number aberrations, PD-1/PD-L1 expression, epigenetic mutations involving IDH1/2 and
BAP-1, and FGFR/PRKA-related gene rearrangement [8,17]. Based on the genomic complexity of
cholangiocarcinoma with high molecular heterogeneity and multiple deranged oncogenic networks
implicated, several efforts have been headed to subtype this disease at the molecular level in order
to obtain clinically relevant information to be exploited. One of such attempts was pursued by the
International Cancer Genome Consortium using a multiplatform approach on 489 cases coming from
10 different countries [8]. In this study, cholangiocarcinomas were stratified in four molecular subsets
(clusters 1 to 4), each characterized by distinct genomic, epigenomic, and clinico-pathological features
and a different prognostic impact. Interestingly, clusters 3 and 4 were associated with better survival
than clusters 1 and 2. This study provided an in-depth molecular characterization that went beyond the
site of origin of CCA as, for instance, the molecular clustering was replicated within each anatomical
site separately. Another study by The Cancer Genome Atlas employed an integrative approach looking
at somatic mutations, DNA methylation patterns, copy number alterations, and RNA expressions in
a series of iCCA-predominant tumors [18]. This study identified the presence of a distinct subtype
of IDH-mutant cholangiocarcinoma displaying upregulation of mitochondrial genes and DNA copy
number variations and downregulation of chromatin modifier genes.

3. IDH Signaling Pathway in Cancer

Isocitrate dehydrogenase is an essential metabolic enzyme for cellular respiration in the
tricarboxylic acid cycle. There are three main subtypes of IDH, with IDH1 and IDH2 being
the most relevant for catalyzing the NADP+-dependent oxidative decarboxylation of isocitrate to
α-ketoglutarate (α-KG) and CO2. IDH1 is localized in peroxisomes and cytosol, while IDH2 localizes
to the mitochondria [19]. Recurrent somatic mutations usually occur at a single amino acid residue
of both IDH1 (arginine 132) and IDH2 (arginine 172 or arginine 140) [20,21]. IDH mutations are
considered gain-of-function and lead to the disruption of the normal catalytic activity of IDH1/2,
ultimately resulting in increased conversion of α-KG to D-2-hydroxyglutarate (D-2HG), which acts
as an oncometabolite, promoting tumor proliferation and metastasis development through several
pathways, such as DNA methylation and activation of VEGFR [19,22,23] (Figure 2). Levels of
2-HG were found to be significantly higher in IDH1-mutant glioma and acute myeloid leukemia
cell lines than wild-type, causing epigenetic dysfunction and inducing a DNA hypermethylation
phenotype [22–25]. Furthermore, the D-2HG-induced dysregulation of histone and DNA methylation
inhibited normal cellular differentiation, promoting malignant transformation [26–28]. IDH1-mutant
creates a heterodimer with wild-type IDH1, silencing the wild-type activity and decreasing α-KG levels.
Lower levels of α-KG can inhibit the degradation of hypoxia-inducible factor 1α (HIF-1α) and enhance
angiogenesis and tumorigenesis [19,29,30]. This evidence suggests that the IDH-mutant-related
decrease of α-KG stabilizes HIF-1α and leads to aberrant cellular proliferation. IDH mutations are
prevalent in several rare malignancies, such as iCCA, glioma, acute myeloid leukemia, chondrosarcoma,
thyroid carcinoma, angioimmunoblastic T-cell lymphoma, and other cancers [31–36].
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Figure 2. Normal and deregulated isocitrate dehydrogenase (IDH) signaling in cancer. Abbreviations:
wt IDH1/2, wild-type isocitrate dehydrogenases 1 and 2; mut IDH1/2, mutant isocitrate dehydrogenases
1 and 2; TET, ten-eleven translocation.

4. Targeting IDH in Cancer

Based on this biological rationale, many research efforts have been established to identify
IDH-directed therapies and investigate them as potential anti-cancer drugs. Initial studies have
shown the in vitro efficacy of IDH inhibitors. In 2012, Popovici-Muller et al. developed an IDH1
inhibitor (AGI-5198) that provided up to 90% reduction of 2-HG in a U87 glioblastoma xenograft
mouse model [37]. Rohle et al. confirmed the efficacy of AG-5198 in inhibiting 2-HG production
in patient-derived glioma xenografts, also showing that it promoted the expression of markers for
differentiation and decreased cellular proliferation and histone methylation in the same cell line [38].
However, because of its suboptimal pharmacodynamic profile with a rapid metabolism and clearance,
the advancement in clinical trials of AGI-5198 has been precluded [39]. Another IDH1-mutant inhibitor
(BAY1436032) was tested in two preclinical experiments using different dosing regimens to treat
IDH1-mutated intracranial xenografts in BALB/c nude mice [40]. While a 150 mg/Kg daily dose
did not significantly reduce the size of intracranial xenografts, a significant decrease in intratumoral
D2HG and a statistically significant increase in animal survival was found in the treated group. In the
second experiment, investigators found that a twice-daily 70 mg/kg dose of the drug prolonged animal
survival. Two dose escalation and expansion phase I trials for both acute myeloid leukemia (AML) and
solid tumors (including glioma) are currently ongoing (ClinicalTrials.gov Identifier: NCT02746081).
The IDH1 inhibitor IDH305 has also shown significant 2HG reduction in IDH1-mutant colorectal
cancer cell lines and substantial brain penetrance in murine models [41]. It has been tested in humans
with IDH-mutant glioma, AML, and other solid tumors, and the first phase 1 first results in safety data
are promising [42]. To improve the pharmacodynamic profile of AGI-5198, the IDH1 inhibitor AG-120
(ivosidenib) was developed. Testing in animal models with an intact blood-brain barrier showed that
it had a low level of brain penetration [37]. However, its ability to modulate the oncogenic properties
of cancer cells and reducing 2HG has been demonstrated by the induction of cellular differentiation in
AML myeloblasts and through the inhibition of cell migration and invasion in a chondrosarcoma cell
line [43–45]. A phase I clinical trial showed promising results in objective response and a favorable
safety profile, making ivosidenib an orphan drug for glioma in 2018, and leading to its approval by the
FDA in July 2018 for adults with refractory or relapsed AML [46]. Furthermore, this drug is currently
under evaluation in many clinical trials, both in hematologic and solid tumors. The first IDH2 inhibitor
developed was AGI-6780, which induced thex differentiation of IDH2 mutated erythroleukemia and
primary human AML cells [47]. Unfortunately, further clinical development was blocked by the lack of
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in vivo evidence and the subsequent development of IDH2 inhibitor enasidenib. Yen et al. evaluated
the efficacy of the IDH2 inhibitor AG-221 (enasidenib) in an IDH2-mutant AML xenograft mouse model,
showing a significant decrease in the marrow, plasma, and urine 2-HG, along with a dose-dependent
survival benefit [48]. On this basis, the first-in-human phase 1 clinical trial investigated the safety
and tolerability of AG-221 in patients with relapsed or refractory IDH2-mutant AML [49]. Selecting a
100 mg/die dose based on the results of a phase 1 dose-escalation study, around 40% of patients had
an objective response, including 20% with a complete response. Treatment was well-tolerated, with
the most common adverse events being nausea, diarrhea, fatigue, and fever. Moreover, enasidenib
induced a considerable decrease in plasma 2-HG levels in most of the patients treated. This result led
to the FDA approval of enasidenib for relapsed or refractory IDH2-mutant AML in 2017 [50], and also
to the development of other trials evaluating this drug in various AML subpopulations and advanced
solid tumors. Finally, the pan-IDH inhibitor AG-881 (vorasidenib), an oral inhibitor of both IDH1 and
IDH2-mutant, has been evaluated for use in IDH-mutant solid and hematologic malignancies [51].
It was demonstrated that ex vivo treatment of primary human AML blasts with AG-881 induced
myeloid differentiation. It was also shown to fully penetrate the blood-brain barrier, implicating its
potential role in treating both IDH-mutant AML and glioma patients. For this reason, two multicenter
clinical trials investigating AG-881 in solid tumors and hematologic malignancies, respectively, are
currently ongoing [52,53].

Despite the promising data described, initial evidence on the mechanisms of acquired resistance to
these small molecule inhibitors have been reported, resulting in progressive disease with an increase in
plasma 2-HG concentration. In a first report, two patients with IDH2-mutant AML developed resistance
to the mutant IDH2 inhibitor enasidenib as a result of the emergence of second-site IDH2 mutations
in trans (Q316E, I319M) in the wild-type allele. This cooperated with the gain-of-function mutation
(R140Q) on the other allele in inducing resistance either by breaking up the hydrogen bond between the
IDH2 dimer and enasidenib or by hindrance of binding of the IDH2 dimer to enasidenib [54]. Similarly,
mechanisms of resistance to ivosidenib have been described. Receptor tyrosine kinase (RTK) pathway
mutations have been associated with primary resistance to this drug, while multiple mechanisms
contributed to acquired resistance, such as the development of RTK pathway mutations and 2-HG
restoring mutations. Furthermore, multiple concurrent mechanisms have been identified in single
patients [55].

5. IDH Mutations in Cholangiocarcinoma

The discovery of mutations in IDH isoforms (IDH1 and IDH2) has been a major breakthrough in
the translational research of cholangiocarcinoma. They have been reported to occur in approximately
15−20% of iCCA [56], while rarer evidence of these molecular alterations is present for both eCCA and
GBC [33,57]. IDH1 mutations are more common than mutations of IDH2, with IDH1 hotspots located
in the arginine 132 residue, IDH1-R132C (44%), and IDH1-R132G (14%) [56]. The prognostic value of
IDH mutations in cholangiocarcinoma remains controversial.

As previously mentioned, these mutations cause elevated levels of the oncometabolite
2-hydroxyglutarate (2-HG), which can be detected in tissue and blood as a surrogate biomarker
for IDH-mutant iCCA [57]. Elevation of 2-HG is associated with higher DNA CpG methylation and
altered histone methylation. Epigenetic changes cause blocks in the cellular differentiation of iCCA
cells. Moreover, IDH mutations cause alterations in the hypoxia signaling, collagen processing, and
activation of EMT via increased expression of ZEB1 and decreased levels of miR-200. In addition,
IDH1/2 mutations often interact with TK and MAPK-dependent signaling pathways [56]. Indeed, iCCA
cells often have higher levels of total ERK 1 and 2, phospho-ERK 1 and 2, and a downstream target,
phospho-CREB [58]. IDH1 and IDH2 mutations are mutually exclusive with NRAS/KRAS and FGFR
mutations and may co-exist with BAP1 mutations [56]. A recent series analyzed 149 tumor samples of
ctDNA from 104 patients. IDH1 mutations were found in 19.1% of cases. In particular, 17 patients had
IDH1 mutations, with 70.6% showing IDH1-R132C, 23.5% showing IDH1-R132L, and 5.9% showing
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IDH1-R132G. Concordance of findings for paired tissues and ctDNA was complete (100%). Therefore,
in cases of insufficient tumor tissue for molecular analysis, ctDNA-based approaches may be used
instead and allow the detection of known mutations as well.

6. Clinical Development of IDH Inhibitors in Cholangiocarcinoma

As discussed earlier in the text, multiple IDH-selective inhibitors have been developed so far.
AG-120 (ivosidenib, Agios) is the most developed IDH inhibitor for cholangiocarcinoma patients.
A cohort of 168 patients with IDH-1 mutated cholangiocarcinoma, chondrosarcoma, and glioma were
treated with ivosidenib in order to evaluate pharmacokinetic and pharmacodynamics profiles. The drug
demonstrated a good oral exposure at the ideal oral dose of 500 mg qd. Moreover, its half-life was
prolonged (mean 40−102 hours after a single dose). After multiple doses, the plasmatic levels of 2-HG
were reduced by up to 98% of normal values recorded in healthy controls. In a phase I dose-escalation
and expansion trial, 73 patients with IDH-1 mutations received AG-120. No dose-limiting toxicities
were reported, and a dose of 500 mg qd was selected for the expansion cohort. The most common
recorded toxicities were fatigue (42%), nausea (34%), diarrhea (32%), abdominal pain (27%), and
vomiting (23%). Grade ≥3 adverse events included fatigue (3%) and hypophosphatemia (1%). A total
of 6% of patients achieved a partial response, with 56% experiencing a stable disease [59,60]. Median
PFS was 3.8 months (95% CI 3.6−7.3) [61]. The recent phase III ClarIDHy trial randomized 230
patients with advanced pretreated IDH-1 mutated cholangiocarcinoma to ivosidenib or a placebo (2:1).
Ivosidenib/placebo was given at the dose of 500 mg qd in 28-days cycles. Crossover to ivosidenib
was permitted on radiological progression during the placebo. Median follow-up for PFS was 6.9
months (interquartile range 2.8−10.9). Ivosidenib showed an advantage in median PFS compared to
the placebo (2.7 vs 1.4 months, HR 0.37, 95% CI 0.25.0.54, p < 0.0001) [10]. The PFS rates at 6 and 12
months were superior for ivosidenib (32 and 21.9% vs 0% at both 6 and 12 months for placebo arm,
respectively). The median OS was significantly longer in the experimental arm, with 10.8 months for
ivosidenib and 6 months for the placebo (HR 0.46, p = 0.0008) after adjustment for crossover. The
response rate was 2.4% [61], and the most common recorded averse event in both treatment groups
was ascites (4/59, 7% for placebo and 9/121, 7% for ivosidenib) [10].

Many phase I and II trials are currently testing IDH1/2 inhibitors in cholangiocarcinoma and
are listed in Table 1. Among these compounds, FT-2102 (olutasidenib) is very promising. It is a
brain-penetrant IDH1-mutant inhibitor that reduces 2-HG production in xenograft IDH1R132H in vivo
models and has a good cell permeability [62]. It has been tested in ongoing phase I/II clinical trials in
patients with IDH1-mutated relapsed, refractory AML, and myelodysplastic syndrome (MDS), both in
monotherapy and combination with azacitidine. At present, FT-2102 is also under investigation for
advanced solid tumors and gliomas (NCT03684811). This trial is planned to be structured in two parts:
patients affected by iCCA will be enrolled in a phase I/II trial for dose determination, and the clinical
activity will be evaluated in the single-agent arm and/or in the gemcitabine/cisplatin combination arm.

Beyond selective IDH inhibitors, dasatinib, a multi-tyrosine kinase, was shown to be active against
the growth of IDH-mutant iCCA cells. Indeed, SRC is a target of dasatinib, and IDH mutated iCCA cells
are critically dependent on SRC activity for survival and proliferation [63]. Therefore, its use is being
explored in a phase II trial with patients affected by advanced iCCA (NCT02428855). The recruitment
for this trial was completed, and the results are awaited.
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Table 1. Selected clinical trials of IDH1/2 inhibitors in advanced cancers including cholangiocarcinoma.

Trial Number Compound Phase Setting Status

NCT02428855 Dasatinib II Advanced iCCA
IDH1/2 mut Completed

NCT04088188 Gem/Cis +
ivosidenib or pemigatinib I Advanced CCA Not yet recruiting

NCT03684811 FT2102 Ib/II Advanced iCCA
IDH1 mut

Active, not
recruiting

NCT02273739 Enasidenib I/II Advanced iCCA
IDH2 mut Completed

NCT02381886 IDH305 I Advanced tumours
IDH1 R132 mut

Active, not
recruiting

NCT02481154 AG-881 I Advanced tumours
IDH1/2 mut

Active, not
recruiting

NCT04056910 Ivosidenib + nivolumab II Advanced tumours
IDH1 mut Not yet recruiting

NCT04521686 LY3410738 I Advanced tumours
IDH1 R132 mut Recruiting

NCT02746081 BAY 1436032 II Advanced tumours
IDH1 R132X mut

Active, not
recruiting

NCT02073994 AG-120 I Advanced tumours
IDH1 mut

Active, not
recruiting

NCT03878095 Olaparib + ceralasertib II Advanced tumours
IDH1/2 mut Recruiting

CCA: cholangiocarcinoma; iCCA: intrahepatic cholangiocarcinoma; IDH: isocitrate dehydrogenase; mut: mutated.
Gem: gemcitabine; Cis: cisplatin.

7. Future Perspectives and Conclusions

Biliary tract cancer remains a challenging disease as recurrence rates are high after surgery, and
chemotherapy has a limited efficacy both in adjuvant and advanced settings. However, mounting
evidence is demonstrating a clinically meaningful advantage for a molecularly selected subset of BTC
treated with novel targeted therapies. Central to this is the IDH1 inhibitor ivosidenib, which has been
the first targeted agent to show a survival benefit in a randomized phase III trial of IDH1-mutant
cholangiocarcinoma patients. Beyond cytotoxic chemotherapy, this practice-changing approach is
paving the way for the personalized oncology era in BTC. Some challenges are still ahead of us:
more advanced multiplatform analyses are warranted to enhance the detection of novel actionable
molecular vulnerabilities in patients without exploitable alterations (roughly 50%). Primary and
acquired resistance to IDH1 inhibitors is also emerging, which results in treatment failure. Finally,
the implementation of multinational collaborative efforts along with next-generation clinical trials
using expansion platform design is desirable to better study this relatively rare disease characterized
by low-prevalence molecular hallmarks. In conclusion, though BTC research has historically lagged
behind other cancer types, precision oncology has begun to realize the potential of this hard-to-treat
tumor by changing conventional treatment algorithms, particularly in intrahepatic cholangiocarcinoma.
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