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Abstract
Background: The mammalian OAS/RNASEL pathway plays an important role in antiviral host
defense. A premature stop-codon within the murine Oas1b gene results in the increased
susceptibility of mice to a number of flaviviruses, including West Nile virus (WNV). Mutations in
either the OAS1 or RNASEL genes may also modulate the outcome of WNV-induced disease or
other viral infections in horses. Polymorphisms in the human OAS gene cluster have been
previously utilized for case-control analysis of virus-induced disease in humans. No polymorphisms
have yet been identified in either the equine OAS1 or RNASEL genes for use in similar case-control
studies.

Results: Genomic sequence for equine OAS1 was obtained from a contig assembly generated from
a shotgun subclone library of CHORI-241 BAC 100I10. Specific amplification of regions of the OAS1
gene from 13 horses of various breeds identified 33 single nucleotide polymorphisms (SNP) and
two microsatellites. RNASEL cDNA sequences were determined for 8 mammals and utilized in a
phylogenetic analysis. The chromosomal location of the RNASEL gene was assigned by FISH to
ECA5p17-p16 using two selected CHORI-241 BAC clones. The horse genomic RNASEL sequence
was assembled. Specific amplification of regions of the RNASEL gene from 13 horses identified 31
SNPs.

Conclusion: In this report, two dinucleotide microsatellites and 64 single nucleotide
polymorphisms within the equine OAS1 and RNASEL genes were identified. These polymorphisms
are the first to be reported for these genes and will facilitate future case-control studies of horse
susceptibility to infectious diseases.
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Background
The innate immune responses are the first line of host
defense against a virus infection. An important compo-
nent of the intracellular antiviral response is mediated by
the 2'-5' oligoadenylate synthetase (OAS)/ribonuclease L
(RNase L) pathway. OAS genes are interferon-inducible
and activated by binding to double-stranded RNA
(dsRNA). dsRNA, present in virus infected cells, activates
OAS proteins to catalyze the oligomerization of ATP to
form 2',5' -linked oligoadenylate chains (pppA(2'p5'A)n)
[1-3]. Originally discovered as a low molecular weight
inhibitor of protein synthesis, pppA(2'p5'A)n induces the
activation of the latent endoribonuclease, RNase L, which
degrades both cellular and viral RNA in a non-preferential
manner [1,4-6]. The OAS/RNASEL pathway has also been
implicated in the induction of apoptosis [7-11].

The murine flavivirus resistance gene, Flv, was positionally
cloned and identified as Oas1b [12]. A cDNA sequence
comparison among susceptible and resistant strains of
mice identified a single nucleotide substitution that
causes a premature stop codon in the Oas1b transcripts of
susceptible mice [12,13].

The human OAS gene cluster, consisting of genes OAS1,
OAS3 and OAS2, is located on chromosome 12q24.2
[14]. The small synthetases are transcribed from the OAS1
gene while the medium and large synthetases are encoded
by the OAS2 and OAS3 genes, respectively. Alternative
splicing was previously reported in both OAS1 and OAS2
transcripts [15,16]. For example, the human OAS1 tran-
script E16 corresponds to the p42 protein, which is trans-
lated from a 1.6 kilobase (kb) mRNA, while the
alternatively spliced E18 transcript encoding the p46 pro-
tein is about 1.8 kb [17]. Both p42 and p46 proteins are
identical in their first 346 N-terminal amino acids but dif-
fer at the C-terminus [18]. Variations in the human OAS1
gene that may be relevant to the outcome of virus infec-
tions have been reported [19-23].

The human RNASEL gene maps to chromosome 1q25
[24]. The 741 amino acid, 83,539 Dalton protein is trans-
lated from a ~2.8 kb transcript [25,26]. The RNase L pro-
tein consists of three domains: 1) an N-terminal domain
of ankyrin repeats with P-loop motifs between the seventh
and eighth repeat, 2) a serine/threonine protein kinase
domain, and 3) a C-terminal ribonuclease domain [27].
RNase L activation requires binding of a single 2-5A mol-
ecule to the N-terminal ankyrin repeats 2–4 [28,29]. 2-5A
binding reverses the naturally repressive state of the RNase
L ankyrin repeats, ultimately producing a functional
homodimer with ribonuclease activity [27,29-31].

Previously, the equine OAS gene cluster was mapped to
horse (Equus caballus; ECA) chromosome 8p15 and

shown to have an organization similar to that in the
human genome: OAS1-OAS3-OAS2 [32]. Two clones were
identified from segment 1 of the CHORI-241 equine BAC
library, 77F4 (~200 kb) and 100I10 (~130 kb), that con-
tain complete OAS1 and OAS3 sequences. BAC clone
77F4 also contains nine 5'-terminal exons of OAS2 [32].

In this report, a subclone library generated from CHORI-
241 BAC 100I10 was sequenced and then used to con-
struct a contig assembly spanning the OAS1 gene. The
equine RNASEL gene was identified in multiple BAC
clones of the CHORI-241 library and was FISH mapped
on metaphase spreads to ECA5p17-p16. Equine RNASEL
genomic sequence was obtained from BAC clone 159N12
and an assembly similar to that for OAS1 was constructed.
Full-length RNASEL cDNA from 8 species were deter-
mined and compared in a phylogenetic analysis. Re-
sequencing of genomic DNA from multiple horses of dif-
ferent breeds identified a total of 64 SNPs and 2 microsat-
ellites within the OAS1 and RNASEL genes.

Results
BAC 100I10 sequencing and OAS1 contig assembly
A shotgun subclone library was constructed from sheared
fragments of CHORI-241 BAC 100I10. Nine hundred sub-
clones were bi-directionally sequenced, resulting in
513,390 bases with quality scores > 15, providing 3.95X
coverage. The individual chromatogram files were ana-
lyzed by Phred, Phrap and Consed [33-37] and individual
contigs were scaffolded on the human genome sequence
using BLAST. The scaffold was further validated by the
addition of multiple sequences from TraceDB [38]
retrieved via BLAST searches using full length equine
OAS1 mRNA [GenBank: AY321355]. The scaffold con-
tained four genomic contigs spanning a substantial part of
the equine OAS1 gene, including 4.5 kb of promoter
sequence upstream of exon 1 and 1.6 kb of sequence
downstream of exon 6, and was submitted to GenBank
under accession number DQ536887. The genomic assem-
bly also included sequence for the downstream equine
OAS3 gene as well as an upstream gene orthologous to
human RPH3A (data not shown). This assembly com-
pletely overlaps two whole genome shotgun sequences,
AAWR01028567 (55,475 bp) and AAWR01028568
(31,407 bp), that were recently submitted to GenBank
from the Broad Institute.

Identification of OAS1 microsatellites
The genomic sequence assembly identified two microsat-
ellites, one located within the promoter and the other
downstream of exon 6. The promoter GT-microsatellite is
located 575 bp upstream of the ATG translation initiation
site. A shorter GT-microsatellite is in the same relative
position in the human OAS1 promoter and the flanking
regions were well conserved between the two sequences
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(Figure 1). This microsatellite may affect the functions of
flanking regulatory elements. Sequencing the OAS1 pro-
moter regions of 13 horses established that this promoter
microsatellite is polymorphic in length. The second poly-
morphic microsatellite was a GT-dinucleotide repeat
located 43 bp downstream of exon 6 within the 3' UTR. It
has previously been reported that a 3' UTR microsatellite
can alter the level of synthesis of a mRNA. [39].

OAS1 SNP identification
The assembled OAS1 scaffold was aligned to the full
length, 1.6 kb cDNA equine transcript [GenBank:
AY321355] to delineate individual exons and flanking
intron sequences from the genomic contigs. Genomic
primers were designed within flanking intron sequences
as well as for the proximal promoter (Table 1).

Sequence data obtained from the screening population
and from CHORI BAC 100I10 were analyzed using Phred,
Phrap and Consed programs [33-37]. Both visual analysis

Local alignment of human and horse OAS1 promotersFigure 1
Local alignment of human and horse OAS1 promoters. BLAST2 alignment of the 1000 bp upstream of the transcription 
start for human OAS1 and equine OAS1 genes. The following BLAST parameters were used: a mismatch penalty of -1 and word 
size of 7. Lower case masking of repeats was used. The alignment shows that the sequence from ~800 bp to ~-350 bp in the 
horse promoter is similar to a region of the human promoter interrupted by a 200 bp Alu repeat (~-811 bp ~-590 bp). The 
horse microsatellite is shown in underlined bold and corresponds to a smaller dinucleotide repeat in the human sequence. 
Numbering shown in the alignments is from the translation ATG start sites.
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of the chromatogram data to identify heterozygotes and
computer analysis using the Consed visualization tool
identified 33 single nucleotide substitutions within the
proximal promoter and exons of OAS1 (Table 2). Of
these, 11 were within coding regions, 9 within non-cod-
ing regions and the remaining 13 within the proximal
promoter upstream of exon 1. Four of the 9 non-coding
polymorphisms were located within the 5' and 3' untrans-
lated regions (UTR). Of the 11 coding polymorphisms, 4
were synonymous and 7 were non-synonymous. Five of
the 7 non-synonymous SNPs resulted in substitutions of
amino acids with different properties. Interestingly, the
amino acids encoded by the major alleles of 4 of the 7
non-synonymous mutations were identical to the corre-
sponding amino acids in the human OAS1 protein [Uni-
ProtKB: P00973]. The genotypes of each individual were
used to identify potential haplotypes within equine OAS1
using PHASE v2.1 software [40,41]. Only those SNPs ver-
ified within multiple individuals were used for the haplo-
type analysis (minor allele frequency = 0.08). The best
reconstruction produced 15 haplotypes from the 33 dial-
lelic SNPs (Table 3). The polymorphic microsatellites
were not included in the analysis.

Assembling full-length RNASEL mRNA sequences of 
cattle, dog, horse, cat, domestic pig, Guinea pig, elephant 
and opossum
A limited number of mammalian RNASEL mRNA
sequences were previously deposited to GenBank and
some of these sequences were predicted from whole
genome annotations. However, this GenBank informa-
tion was not sufficient to identify evolutionarily con-
served regions in mammalian RNASEL sequences that

could be used to design PCR primers to amplify equine
RNASEL fragments. The predicted sequences of cattle
[GenBank: XM_597290] and dog [GenBank:
XM_547430] RNASEL ORFs were amplified from com-
mercial cDNA (BioChain, Hayward, CA), directly
sequenced and extended to full-length cDNA sequences
by DNA walking. The full-length cattle and dog RNASEL
sequences were submitted to GenBank under accession
numbers DQ497162 and DQ497163, respectively. These
two sequences as well as the human full-length RNASEL
sequence NM_021133 were aligned and degenerate prim-
ers were designed from conserved regions (Table 4) and
used to amplify the middle portions of equine RNASEL
cDNA. This partial sequence was extended to the full-
length sequence by DNA walking and submitted to Gen-
Bank under accession number DQ497159.

Several additional mammalian RNASEL sequences were
also determined and subsequently used to perform a phy-
logenetic analysis. The GenBank feline Whole Genome
Sequence (WGS) database was searched with the canine
RNASEL sequence [GenBank: DQ497163]. Four genomic
contigs, AANG01026257, AANG01026302,
AANG01630549 and AANG01026248, were detected.
These contigs contain the first, second and third, as well as
the fifth and sixth feline RNASEL coding exons, respec-
tively. No contigs containing the fourth coding exon of
the feline RNASEL gene were found in GenBank. Two
primers were designed based on the 3'- end
AANG01026302 sequence and the 5'-end
AANG01630549 sequence (Table 4) and used to amplify
and sequence this region from a commercial cat genomic
DNA (Novagen, Madison, Wisconsin). The sequence of

Table 1: Primers used to detect equine polymorphisms

Gene Region Forward Primer Reverse Primer

OAS1 Promoter AACCCACAGAATAAACACCACA GTCGATGGCTTCTCGGAC
Exon 1 CCAGACTCAGGCAACGTAAG GTTTTGCTCTCTCCCTTCCT
Exon 2 GTGATTGTTGTCTGGTGATGG AAACTGTGGGAGATTTCTGCT
Exon 3 GTAACTTGGTTGTGTCCGTGG AGACTGGATGGAGGGCCATA
Exon 4 AGCGTGAAAACCACCACAGA TCCCACATCCTCCATTTCC
Exon 5 CACTGGGCTGGTCCTCCT CCTCCAAACGGGGTCAAA
Exon 6 GCAGGTGGCACGTCACAG GGCACTGTGCCCTGAAGTTAA

RNASEL Exon 1 CATCTCCCTTCTCCGTCCTCG TGCAATGGATGAGTCCTGGT
Exon 2 CAAAGTACTTCTCTCATCCCCAG TCCGAAGAGCATGGAACAAA
Exon 2 AAGATCCTCCTTGATGAGATGG GGCCTTTCCTATCTGCAATG
Exon 3 AAATGTAAGTCCTGCTCTTGGC CAAGCAACTCCACACCAACC
Exon 4 CTCGTAGCCTGCACCACAC CACGGTAGATCGCGGAACTT
Exon 5 CCATGTTAATTCTCTCATCTTCAG TCTCTCACCTCTTGGTAGGGC
Exon 6 GCTCCTACATTTTTGCGTAATG GTTCTTCCCATCAAATAGCAGA
Exon 7 ATCTCTGGAACCGGGTGCT CACTACCAAATGGCCCTGAG
Exon 7 CTCTGGGTGGCTCATTCATT TCCCAGCTCTTCCCATTACA

Forward and reverse primers for amplification of the OAS1 promoter and individual exons of equine OAS1 and RNASEL.
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Table 2: Equine OAS1 single nucleotide polymorphisms and microsatellites

Region Accession 
DQ536887

Alleles Residue Amino Acid 
Type

Frequency Polymorphism

- 3640 C - - 0.25 Transition
T 0.75

- 3687 G - - 0.65 Transversion
T 0.35

- 3718 A - - 0.65 Transition
G 0.35

- 3724 C - - 0.65 Transition
T 0.35

- 3825 C - - 0.35 Transition
T 0.65

- 3830 A - - 0.85 Transversion
T 0.15

- 3973 C - - 0.65 Transition
T 0.35

- 4032–4063 - - - - GT repeat
- 4234 C - - 0.65 Transition

T 0.35
- 4333 C - - 0.35 Transition

T 0.65
- 4455 C - - 0.08 Transversion

G 0.92
- 4487 C - - 0.88 Transition

T 0.12
- 4501 C - - 0.65 Transition

T 0.35
- 4531 A - - 0.08 Transition

G 0.92
5' UTR 4598 C - - 0.65 Transversion

G 0.35
5' UTR 4625 A - - 0.35 Transversion

C 0.65
Exon 1 4690 A 18Tyr Uncharged Polar 0.85 Transition

G 18Cys Uncharged Polar 0.15
Exon 1 4783 C 49Ala Nonpolar 0.35 Transition

T 49Val Nonpolar 0.65
Intron 1 5609 C - - 0.67 Transition

T 0.33
Exon 2 5701 C 77Leu Nonpolar 0.64 Transition

T 77Leu 0.36
Exon 2 5743 C 91Phe Nonpolar 0.33 Transition

T 91Phe 0.67
Exon 2 5765 A 99Lys Basic Polar 0.65 Transition

G 99Glu Acidic Polar 0.35
Exon 2 5776 A 102Arg Basic Polar 0.38 Transition

G 102Arg 0.62
Exon 2 5786 A 106Lys Basic Polar 0.38 Transition

G 106Glu Acidic Polar 0.62
Exon 2 5920 G 150Pro Nonpolar 0.08 Transversion

T 150Pro 0.92
Exon 3 9374 C 209Arg Basic Polar 0.85 Transition

T 209Cys Uncharged Polar 0.15
Exon 4 12714 C 264Asn Uncharged Polar 0.59 Transversion

G 264Lys Basic Polar 0.41
Intron 4 12810 C - - 0.64 Transition

T 0.36
Intron 4 12853 A - - 0.55 Transition

G 0.45
Intron 5 13628 A - - 0.55 Transversion

T 0.45
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this exon was submitted to GenBank under accession
number EF062998. Using this sequence as well as the
other exon sequences derived from GenBank (see above),
the predicted full-length mRNA sequence of the feline
RNASEL gene was assembled.

The TIGR porcine database [42] was searched using the
cattle sequence [GenBank: DQ497162] and five partial
RNASEL sequences were found. The TC212507 and
TC212872 sequences correspond to the 5'-end of porcine
RNASEL mRNA, while the TC218317, TC237301, and
TC236970 sequences represent the 3'-end. An additional

5'-end cDNA sequence, 20060611S-038813, was detected
in the Pig EST Data Explorer [43]. A pair of primers were
designed based on the partial sequence (Table 4) and used
to amplify pooled cDNA (kindly provided by Dr.
Jonathan E. Beever, University of Illinois at Urbana-
Champaign). The middle portions of the porcine RNASEL
cDNA were directly sequenced. The partial sequence was
then extended to the full-length sequence by DNA walk-
ing and submitted to GenBank under accession number
DQ497160.

Table 3: Equine OAS1 and RNASEL haplotypes

Gene Haplotype Sequence Count Frequency

OAS1 CTGTCATTCGCTGGAACCCTAGGTCGTAACCTT 0.08
CTGTCTTTCGCTGGAACCCTAGGTCCCATGCGT 0.04
CTGTCTTTCGCTGGAACCCTAGGTCCCGTGCGT 0.08
CTGTCTTTCGCTGGAACCCTAAGTCCCGTGCGT 0.04
TGACTACCTGCCGCCATCCTAGGTCGTAACCTT 0.19
TGACTACCTGCCGCCATCCTAGGTCGTAAGCTT 0.04
TGACTACCTGCCGCCATCCTAGGTCGCAACCTT 0.04
TGACTACCTGCCGCCATCCTAGGGCGTAACCTT 0.04
TGACTACCTGCCGCCATTTCGAATCCCGTGTGT 0.11
TGACTACCTGCCGCCGTTTCGAATCCCAACCGT 0.08
TGACTACCTGTCGCCGTTTCGAATCCCGACCGG 0.08
TGACTACCTCCCACCATTTCGAATCCCGTGTGT 0.04
TGACTACCTCCCACCATTTCGAAGCCCGTGTGT 0.04
TTGTCATTCGCTGGAACCCTAGGTTCCGTGTGG 0.08
TTGTCATTCGTTGGCACCCTAGGTTCCGTGTGG 0.04

RNASEL GACTGCAAAGGGAGCGCTGGGCAGTTTCTTT 0.07
GATCGCAAGGACGGCGCTGGGCACACCCCCC 0.04
GATCGCAAGGACGGCGCTGGGCACACCTCCC 0.12
GATCTCACAGGGAGCGCTGGGCAGATTCTTC 0.12
GATCTCACAGGGAATAACAAGTGGACCCCCC 0.12
GATCTAGAGGACGGCGCTAGGCAGATTCTTC 0.07
GCCCGCAAGGGCGGCGCTAGGCAGATTCTTC 0.23
GCCCGAAAGGGGAATAACAAGTAGATTCTTC 0.07
GCCCGAAAGTGGAGCGCTGGGCAGTTTCTTT 0.04
CCCCGAAAGTGGAGCGCTAGACAGACCCCCC 0.12

Haplotypes were assembled using PHASE v2.1 [40, 41] under default settings. The haplotypes identified from the best reconstruction are shown 
with their corresponding frequencies among the 13 horses screened for both OAS1 and RNASEL SNPs. Both OAS1 microsatellites were omitted 
from the haplotype reconstruction.

Intron 5 13649 C - - 0.46 Transversion
G 0.54

Exon 6 15320 C 370Arg Basic Polar 0.75 Transition
T 370Trp Nonpolar 0.25

3' UTR 15410 G - - 0.62 Transversion
T 0.38

3' UTR 15537 G - - 0.19 Transversion
T 0.81

- 15798–15855 - - - - GT repeat

SNPs and microsatellites identified from sequencing the OAS1 proximal promoter and exons from 13 equine individuals and CHORI BAC 100I10. 
Positions are identified from the genomic consensus sequence submitted to GenBank [GenBank: DQ536887].

Table 2: Equine OAS1 single nucleotide polymorphisms and microsatellites (Continued)
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The GenBank Guinea Pig whole genome sequence data-
base was searched using both mouse [GenBank:
NM_011882] and rat [GenBank: NM_182673] full-length
RNASEL sequences. Two Guinea pig sequences,
AAKN01052053 and AAKN01424676, showed significant
similarity to the 5' and 3' regions of the rodent RNASEL
sequences, respectively. These two sequences were used to
design primers (Table 4) to amplify commercial cDNA
(BioChain, Hayward, CA) and directly sequence the mid-
dle portions of Guinea pig RNASEL cDNA. This partial
sequence was extended to the full-length sequence by
DNA walking, and submitted to GenBank under accession
number DQ497161.

Cattle, dog, horse and pig RNASEL sequences were used to
search the GenBank elephant genome trace archive using
the discontiguous Mega BLAST program. The same
sequences were also used to search the GenBank elephant
whole genome sequence database using the BLASTN pro-
gram. The sequences for all potential exons of the ele-
phant RNASEL gene were identified. Based on these
sequences, five primer pairs (Table 4) were designed to
amplify genomic DNA (kindly provided by Drs. Alfred L.
Roca and Stephen J. O'Brien, National Cancer Institute)
and directly sequence each of the elephant RNASEL exons.
The resulting sequence was submitted to GenBank under
accession number DQ497164.

The RNASEL ORF sequence of the laboratory opossum
(Monodelphis domestica) was predicted by searching the
UCSC genome browser [44] using the BLAT program. No
sequence traces similar to RNASEL were detected in frog
(Xenopus tropicalis) or several fish species (Danio rerio, Tak-
ifugu rubripes and Tetraodon nigroviridis).

Phylogenetic analysis of vertebrate RNASEL gene 
sequences
Only sequences of human and mouse RNASEL genes were
previously reported [26]. Sequences of orthologous rat
(GenBank: AY262823) and chicken (GenBank:

AM0492248) genes were recently submitted to GenBank
but have not been reported in any publications. In addi-
tion, annotations of chimpanzee, orangutan and rhesus
macaque genomes using a GNOMON method resulted in
predicted RNASEL sequences in these three species. Pri-
mate, rodent and avian RNASEL sequences were down-
loaded from GenBank and aligned to orthologous
sequences described above to build a phylogenetic tree
(Figure 2). Rodents showed the highest rate of nucleotide
substitutions, while primates showed the lowest rate of
evolution. Evolution rates were found to be fairly uniform
in the three different RNase L domains: ankyrin repeats,
serine/threonine protein kinase domain, and ribonucle-
ase domain. The percent identity between the RNASEL
ORFs of horse and the other species compared is shown in
Table 5.

Assignment of the RNASEL gene to horse chromosome 
ECA5p17-p16
The horse CHORI-241 BAC library was searched with a
probe derived from the partial equine RNASEL cDNA frag-
ment. Twelve positive clones were identified and two of
them, 108P15 and 189I19, were FISH mapped to assign
the RNASEL gene to the horse chromosomal location
ECA5p17-p16 (Figure 3).

Exon/intron structures of vertebrate RNASEL genes
Partial sequence for the equine RNASEL gene was
obtained by sequencing PCR fragments of BAC 159N12.
The mRNA sequence [GenBank: DQ497159] was used as
a reference for determining intron/exon junctions. Suffi-
cient genomic sequence was obtained to build a scaffold
as described for the equine OAS1 gene. The scaffold was
verified using sequences from TraceDB [38] and submit-
ted to GenBank under accession number EF070193. This
scaffold completely overlaps the whole genome shotgun
sequence AAWR01030439 (193510 bp) that was recently
submitted to GenBank from the Broad Institute. Compar-
ison of genomic and mRNA sequences revealed six coding
and one 5'-terminal non-coding exon in the equine RNA-

Table 4: RNASEL primers

Species Forward primer Reverse primer

Cat CAGGCATCCAGAAGGGAGAC CAGAGGCAGCCAATCTCTCC
Cattle/Dog GCTGGTCACCTTTGCATAATGC CCCAACTCCAAAAGAAGGGATG

Domestic pig ATGGAGACCAAGCGCCATAACA TGTTCTCCCAAGTTCCGGATGA
Elephant ATATCCCTACTAGCCTGACGAG TTGCCTTGACACCCCCAATTCT

AGCTGTAGGATGTAACTCTCACT GATTAGAGGAACCACTGAGAGG
GCGGTACCTCATTGTGGTTTTG CCTCTGTATCTTCATGGTCTGG
TGCCTTTGAATTGTGGTGTTGGT CCATGTGGTGGATTCATTATAGG
GTTGAGGTGTCAGGATCTGCAT GGGGTAACACTGGAACTGTTTC

Guinea pig TAATGGTCTGGACCATTCCTCC GTTTGAGGAAAGTGCCTTGCGT
Horse TTCACRGCYTTCATGGAAGC CYTTKATCAAAATCTGCCAG

Primers used to assemble the full-length RNASEL mRNA sequences of cattle, dog, horse, cat, domestic pig, Guinea pig, elephant and opossum.
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Phylogenetic tree of RNASEL genesFigure 2
Phylogenetic tree of RNASEL genes. RNASEL ORF 
sequences from 15 vertebrate species were aligned and the 
njtree program was used for tree construction.

FISH mapping of equine RNASELFigure 3
FISH mapping of equine RNASEL. FISH map position 
ECA5p17-p16 of horse RNASEL gene (orange) on DAPI 
counterstained metaphase chromosomes (blue).

Table 5: Lengths of coding exons (bp) within the ORFs of vertebrate RNASEL genes and percent identity between horse and other 
species RNASEL ORFs

Species Exon A Exon B Exon C Exon D Exon E Exon F Identity

Horse 1480 86 206 133 134 130 100.0
Cat 1477 86 206 133 134 139 83.0
Dog 1477 86 206 133 134 139 81.1
Cattle 1474 86 206 130 131 145 79.2
Elephant 1510 86 206 133 137 187 75.1
Human 1480 86 206 133 134 187 81.9
Chimpanzee 1480 86 206 133 134 187 79.7
Orangutan 1480 86 206 133 134 187 81.2
Rhesus 1480 86 206 133 134 187 79.7
Mouse 1474 86 206 133 137 172 66.3
Rat 1489 86 206 133 131 172 65.5
Guinea Pig 1462 86 206 133 134 187 69.7
Opossum 1453 86 206 129 131 139 56.5
Chicken 1402 89 191 124 122 136 37.3
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SEL gene. This exonic composition is similar to that of a
number of other mammalian RNASEL genes. However,
two and three 5'-terminal non-coding exons were found
in the chicken and mouse RNASEL genes, respectively.
The coding vertebrate RNASEL exons were designated A
through F. Comparison of the genomic and mRNA
sequences of vertebrate RNASEL genes revealed significant
length variation in both the 5'- (1402–1510 bp) and 3'-
terminal (130–187 bp) coding exons (Table 5).

SNP identification in the horse RNASEL gene
After identification of the equine RNASEL introns, exon-
specific genomic primers were designed (Table 1). Exon-
specific sequencing of DNA from the screening popula-
tion identified 31 SNPs within the RNASEL gene (Table
6). Of the 10 non-coding polymorphisms, one was within
the second intron and the others were located in the 5'
and 3' UTRs. Seventeen of the 31 SNPs were located
within the ankyrin repeat-encoding exon 2, 13 of which
are non-synonymous, with 10 resulting in substitutions of
amino acids with different properties. Three non-synony-
mous polymorphisms were identified within exons 3 and
5. The remaining exons, including the non-coding exon 1
were invariant among these horses. The amino acids
encoded by the major allele of 11 of the 16 non-synony-
mous mutations were identical to the corresponding
human RNase L amino acid [UniProtKB: Q05823]. Using
MOTIF Search [45] to identify putative transcription fac-
tor binding motifs in the TRANSFAC database, the pro-
moter SNP was found to be located within a potential
cAMP-response element binding site (Score: 90) upstream
of the first exon. Haplotypes were assembled in the same
manner as for the equine OAS1 gene. The best reconstruc-
tion from Phase analysis produced 10 haplotypes among
the 31 verified diallelic SNPs with minor allele frequen-
cies = 0.08 (Table 3). As with OAS1, only good quality,
unambiguous resequencing data were used for the haplo-
type analysis.

Identifying single nucleotide polymorphisms by sequenc-
ing DNA from multiple individuals enhances the possibil-
ity of artifacts either from PCR or sequencing error. The 64
SNPs identified from the equine OAS1 and RNASEL genes
were considered valid if each allele was identified in at
least two individuals. Eight additional SNPs were identi-
fied but could not be verified in more than one individual
(minor allele frequency < 0.08). Within the 3,864 and
5,406 base pairs re-sequenced during the SNP identifica-
tion for OAS1 and RNASEL, respectively, equine OAS1
contained an average of one polymorphism per 117
bases, while equine RNASEL averaged one polymorphism
per 174 bases.

Discussion
Sequence characterization of the horse OAS1 gene in
CHORI-241 BAC 100I10 enabled a partial genomic
sequence assembly [GenBank: DQ536887] and compari-
son among multiple equine individuals. We identified 2
polymorphic microsatellites and 33 single nucleotide pol-
ymorphisms from a group of 13 individuals and CHORI-
241 BAC 100I10 (Table 2). In an attempt to identify
potential structural and/or functional consequences of the
coding non-synonymous SNPs, each was analyzed using
PolyPhen software [46-48]. Each polymorphic variant
identified in equine OAS1 was predicted to cause benign
effects at their respective residue position. However, the
single mutation resulting in an Arg209Cys substitution
may significantly change OAS1 enzymatic activity. Arg209
in the equine OAS1 protein corresponds to Arg544 in the
human OAS2 protein, which is located in the donor bind-
ing domain. Substitution of Arg544 with either Ala or Tyr
significantly decreased enzymatic activity of the OAS2
protein [49]. In addition, the equine OAS1 promoter SNP
at position 4531 is located in an interferon stimulating
response element [29]. Inactivation of this regulatory ele-
ment by a single nucleotide substitution may alter expres-
sion of the equine OAS1 gene.

RNASEL enzymatic activity was previously reported in
reptiles, birds, and mammals [50]. However, no RNASEL
genes have been found for amphibians or fishes to date.
Interestingly, the same classes of vertebrates also do not
have OAS genes[51].

The horse RNASEL gene was FISH mapped to chromo-
somal location ECA5p17-p16. Orthologous genes are
located on primate chromosome 1 (human, chimpanzee
and rhesus macaque), cattle chromosome 16, dog chro-
mosome 7, mouse chromosome 1, rat chromosome 13
and chicken chromosome 8 [52]. Using comparative
chromosome painting (Zoo-FISH), similarities between
human chromosome 1 and horse chromosome 5 [53],
mouse chromosome 1, rat chromosome 13 [54], dog
chromosome 7 [55,56] and cattle chromosome 16 [57]
were previously established. Our results further confirm
the conservation of RNASEL-containing syntenic chromo-
somal segments in horses.

Thirty one SNPs were identified for equine RNASEL
(Table 6). Interestingly, all but three of the 20 coding
SNPs identified are located within exon 2. The RNase L
protein contains 9 N-terminal ankyrin repeats responsible
for binding 2-5A molecules that are essential for activa-
tion [27]. Exon 2 of the human RNASEL gene encodes the
entire ankyrin repeat region (amino acid 24 to 329). The
high frequency of non-synonymous polymorphisms
within exon 2 suggests that a single SNP or haplotype
could ablate 2-5A binding and/or other RNase L interac-
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Table 6: Equine RNASEL single nucleotide polymorphisms

Region Accession 
EF070193

Alleles Residue Amino Acid 
Type

Frequency Polymorphism

- 143 C - - 0.12 Transversion
G 0.88

5' UTR 1857 A - - 0.55 Transversion
C 0.45

Exon 2 1991 C 27His Basic Polar 0.54 Transition
T 27Tyr Uncharged Polar 0.46

Exon 2 2020 C 36Gly Uncharged Polar 0.92 Transition
T 36Gly 0.08

Exon 2 2021 G 37Asp Acidic Polar 0.69 Transversion
T 37Tyr Uncharged Polar 0.31

Exon 2 2118 A 69Asn Uncharged Polar 0.29 Transversion
C 69Thr Uncharged Polar 0.71

Exon 2 2121 A 70Tyr Uncharged Polar 0.92 Transition
G 70Cys Uncharged Polar 0.08

Exon 2 2316 A 135Lys Basic Polar 0.75 Transversion
C 135Thr Uncharged Polar 0.25

Exon 2 2332 A 140Ala Nonpolar 0.35 Transition
G 140Ala 0.65

Exon 2 2374 G 154Arg Basic Polar 0.83 Transversion
T 154Ser Uncharged Polar 0.17

Exon 2 2635 A 241Thr Uncharged Polar 0.21 Transition
G 241Thr 0.79

Exon 2 2680 C 256Ser Uncharged Polar 0.43 Transversion
G 256Ser 0.57

Exon 2 2771 A 287Lys Basic Polar 0.57 Transition
G 287Glu Acidic Polar 0.43

Exon 2 3144 A 411Asn Uncharged Polar 0.19 Transition
G 411Ser Uncharged Polar 0.81

Exon 2 3152 C 414Arg Basic Polar 0.81 Transition
T 414Cys Uncharged Polar 0.19

Exon 2 3281 A 457Lys Basic Polar 0.19 Transition
G 457Glu Acidic Polar 0.81

Exon 2 3301 A 463Lys Basic Polar 0.19 Transversion
C 463Asn Uncharged Polar 0.81

Exon 2 3311 C 467Pro Nonpolar 0.19 Transition
T 467Ser Uncharged Polar 0.81

Exon 2 3372 A 487Gln Uncharged Polar 0.58 Transition
G 487Arg Basic Polar 0.42

Intron 2 3404 A - - 0.19 Transition
G 0.81

Exon 3 5108 A 513Lys Basic Polar 0.11 Transition
G 513Glu Acidic Polar 0.89

Exon 3 5111 C 514Pro Nonpolar 0.82 Transition
T 514Ser Uncharged Polar 0.18

Exon 5 7314 A 598Asn Uncharged Polar 0.87 Transition
G 598Asp Acidic Polar 0.13

3' UTR 9994 C - - 0.15 Transversion
G 0.85

3' UTR 9999 A - - 0.88 Transversion
T 0.12

3' UTR 10247 C - - 0.31 Transition
T 0.69

3' UTR 10914 C - - 0.38 Transition
T 0.62

3' UTR 11105 C - - 0.88 Transition
T 0.12

3' UTR 11146 C - - 0.35 Transition
T 0.65

3' UTR 11184 C - - 0.35 Transition
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tions. As well, the SNP identified within the promoter
upstream of the first exon is located within a potential
cAMP-response element binding site. Mutations within
this promoter element have been shown to affect gene
expression [58-60]. PolyPhen analysis was also conducted
on the non-synonymous coding SNPs identified within
equine RNASEL. All but 4 of the RNase L SNPs were pre-
dicted to have benign effects. However, the SNP at residue
287 was predicted to change hydrophobicity at a buried
site within the RNase L protein and the effect of this on
protein function is unknown. The predictions provided by
PolyPhen analysis are based on functional effects identi-
fied using human nsSNPs and may differ for the horse
RNase L. Four SNPs within the ankyrin repeat region in
exon 2 (residues 414, 463, 467 and 487) were predicted
to have a negative effect on function. These data support
our hypothesis that a single SNP or haplotype could affect
2-5A binding within the equine RNase L ankyrin repeats.

A number of SNPs were detected within the 3'UTR region
of the equine RNASEL gene. Of the eight SNPs found
within this region, six result in transitions. The 3'UTR
regions of mRNAs contain regulatory regions capable of
protein and microRNA binding that control mRNA stabil-
ity, translation and localization. A simple analysis of
octamer motifs containing equine 3' UTR SNPs identified
SNP 10247 as being within a human miRNA target site
[61]. If this target site is conserved in horses, this SNP
could significantly affect the synthesis of RNase L. How-
ever, this particular octamer motif was not found in
human or rodent RNASEL 3'UTRs. Furthermore, cross-
species sequence comparison using mVISTA[62,63] also
revealed no significant longer range conservation in this
region between species (data not shown).

Genotype analysis using PHASE v2.1 [40,41] identified 15
and 10 haplotypes among equine OAS1 and RNASEL
genes, respectively, and suggested the existence of haplo-
type blocks spanning most of each gene (Table 3). Even if
efforts to show an association between viral-induced dis-
ease susceptibility and OAS1 and/or RNASEL SNPs are
successful, it may prove difficult to unambiguously iden-
tify a single causal SNP because of potential linkage dise-
quilibrium at these loci. As determined from our
screening population, a single haplotype occurred more
frequently than any other, with a frequency of 0.19 and
0.23 in OAS1 and RNASEL, respectively (Table 3).

The frequency of SNP identification in this study in two
equine genes was high considering the previously esti-
mated equine SNP frequency of 1 per 1500 bp [64]. In
dogs, the estimated SNP rate is ~1 per 1600 bp (based on
entire genome re-sequencing), but a higher frequency of
~1 per 900 bp was estimated between breeds [65]. Re-
sequencing of specific genes in several breeds of the
domestic dog identified polymorphisms at frequencies
comparable to our estimates, with 1 SNP per ~250–330
bp [S. Canterbury, personal communication]. Further-
more, re-sequencing within an Elk (Cervus elaphus nelsoni)
putative promoter region, which is highly conserved
between mule deer, cow and sheep, detected an average
SNP frequency of 1 per 69 bp [unpublished data].

The microsatellite identified within the promoter region
in this study may also alter expression of the equine OAS1
gene. The alleles observed to date indicate that dinucle-
otide repeat lengths of 9 and 18 may represent the major
alleles at this locus. The over-representation of these alle-
les may be due to the fact that they correspond to one
complete rotation of the DNA helix. If this microsatellite
separates cis-regulatory elements, alterations in its length
could affect the binding of transcriptional regulators to
these elements and significantly alter gene expression [66-
71]. In support of this hypothesis, there is a high degree of
conservation between human and horse OAS1 promoters
in the regions flanking the microsatellite (Figure 1). As
well, recent micro-array data provide evidence of an
inverse relationship between gene expression and dinu-
cleotide microsatellite length, supporting the significantly
higher frequency with which we identified the (GT)9 allele
within the individuals screened[66]

Conclusion
We report the genomic sequences of the equine OAS1 and
RNASEL genes and identify 64 single nucleotide polymor-
phisms and 2 polymorphic microsatellites in these genes.
On the basis of the allelic variants characterized, we con-
clude that a number of these are plausible candidates for
regulatory or structural mutations which may influence
transcription or enzymatic activity of OAS1 and RNase L
proteins. Also, RNASEL cDNA sequences were determined
for 8 mammals and utilized in a phylogenetic analysis.
The chromosomal location of the RNASEL gene was
assigned by FISH to ECA5p17-p16.

T 0.65
3' UTR 11228 C - - 0.83 Transition

T 0.17

SNPs identified from sequencing RNASEL exons from 13 equine individuals, CHORI BAC 159N12 and the reference transcript sequence. Positions 
are identified from the genomic consensus sequence submitted to GenBank [GenBank: EF070193].

Table 6: Equine RNASEL single nucleotide polymorphisms (Continued)
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Methods
RNASEL cDNA and FISH
Preparation of horse cDNA was described previously [32].
Partial RNASEL sequences were extended using a DNA
Walking SpeedUp Kit (Seegene USA, Del Mar, CA) accord-
ing to the manufacturer's protocol. Four high-density fil-
ters for segment 1 of the CHORI-241 equine genomic BAC
library were purchased from the Children's Hospital Oak-
land Research Institute (CHORI), Oakland, CA. These fil-
ters were screened using a P32-labeled equine RNASEL
cDNA probe according to the supplier's protocol. Two
positive equine BAC clones were purchased from CHORI.
Each of these BAC clones was grown individually in 500
mL of LB media. BAC DNA was isolated using the Nucle-
oBond BAC Maxi Kit (BD Biosciences Clontech, Palo Alto,
CA) and used as the template for direct partial sequencing
with a BigDye terminator v1.1 Cycle Sequencing Kit on an
ABI 3100 Genetic Analyzer according to the manufac-
turer's recommendations. DNA from equine BAC clones
108P15 and 189I19 was FISH mapped as described previ-
ously [67]. International cytogenetic nomenclature of the
domestic horse [68] was used to identify individual horse
chromosomes.

The njtree program was used to construct a phylogenetic
tree as described previously [51] and tree topology was
inferred by the Neighbor-Joining algorithm. The boot-
strap algorithm with 1000 replications was used to esti-
mate the confidence of each node. The njtree program is
available upon request.

Construction of subclone library
BAC clone 100I10 was isolated from segment 1 of the
CHORI-241 equine BAC library at Texas A&M University
and confirmed by PCR as containing OAS1. The colony-
isolated clone was cultured and BAC DNA was isolated by
standard alkaline/lysis miniprep using Millipore Solu-
tions and treated with Plasmid-Safe ATP-dependent
DNAse (Epicentre, Madison, WI). BAC DNA was frag-
mented using a HydroShear® DNA Shearing Device (Gen-
eMachine, San Carlos, CA) at Speed Code 8 for an
estimated fragment size of 2.5 kb. The fragmented prod-
uct was analyzed by agarose gel electrophoresis stained
with ethidium bromide and gel extracted using the
QIAquick Gel Extraction Kit (Qiagen, Valencia, CA).
Extractions were eluted in water according to the manu-
facturer's protocol. Purified fragments were cloned into
vector pCR® 4Blunt-TOPO® using the TOPO® Shotgun Sub-
cloning Kit (Invitrogen, Carlsbad, CA) following the man-
ufacturer's protocol. Ligation reactions were incubated 30
minutes at room temperature and electroporated into E.
coli. Colonies were screened for lack of β-galactosidase
activity and selected for ampicillin resistance on LB-agar-
ose plates containing 50 µg/mL ampicillin. White colo-
nies were cultured and screened for appropriate insert size

by PCR using vector-sequence M13 primer sites flanking
the cloned insert, prior to sequencing.

Sequencing of clones
Individual OAS1 inserts were amplified directly from indi-
vidual colonies by PCR using vector-sequence M13 primer
sites flanking the cloned insert. Amplification products
were purified by centrifugation with the PSI-Clone PCR
96 kit (Princeton Separations, Adelphia, NJ) according to
manufacturer's protocol. Purified products were
sequenced in separate reactions with each M13 primer
using a cycle sequence of 96C, 10 sec; 50C, 5 sec; 60C, 4
min with BigDye® Terminator Mix v1.1 (Applied Biosys-
tems, Foster City, CA). Sequencing reactions were ana-
lyzed using an ABI Prism 3100 Genetic Analyzer (Applied
Biosystems, Foster City, CA).

Primers were designed to amplify the immediate pro-
moter and exons of OAS1 and RNASEL genes from 13
individual horses by PCR (Table 1). Sequencing was car-
ried out in the same manner as used for the library sub-
clones. Sequences obtained were compared between
individuals to identify SNPs within the amplified regions.

Sequence analysis and contig assembly
Sequences were assembled and analyzed using Phrap
assembly software [33,34,37] and viewed with the
Consed visualization tool [35-37]. Contig and singleton
reads were assembled by scaffolding onto the human
genome using BLASTN [69-71].

Additional sequences were added to the assembly data
and re-analyzed with Phrap and BLAST until the consen-
sus sequence spanned the genes from the promoter to the
3' UTR. The genomic equine consensus sequence was con-
firmed using data from the Equine Genome Sequencing
Project (2x) [38] and intron/exon boundaries were
assigned by local alignment to the full-length equine
OAS1 [GenBank: AY321355] and RNASEL [GenBank:
DQ497159] cDNAs. The equine genomic sequences of
OAS1 and RNASEL were submitted to GenBank and
assigned the accession numbers DQ536887 and
EF070193, respectively.

Genotyping population
Blood samples were collected at the Texas A&M University
Equestrian Center in accordance with ethical standards.
The sampled set used for screening consisted of 13 horses,
including 10 geldings/stallions and 3 mares, ranging in
age from 21 months to 20 years. Breeds represented
include American Quarter Horse (9), Arabian (1), Ameri-
can Paint Horse (1), Appaloosa (1) and Thoroughbred
(1).
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