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Background: In meta-analyses of diagnostic test accuracy, routinely only one pair of sensitivity and specificity per
study is used. However, for tests based on a biomarker or a questionnaire often more than one threshold and the
corresponding values of true positives, true negatives, false positives and false negatives are known.

Methods: We present a new meta-analysis approach using this additional information. It is based on the idea of
estimating the distribution functions of the underlying biomarker or questionnaire within the non-diseased and
diseased individuals. Assuming a normal or logistic distribution, we estimate the distribution parameters in both
groups applying a linear mixed effects model to the transformed data. The model accounts for across-study
heterogeneity and dependence of sensitivity and specificity. In addition, a simulation study is presented.

Results: We obtain a summary receiver operating characteristic (SROC) curve as well as the pooled sensitivity and
specificity at every specific threshold. Furthermore, the determination of an optimal threshold across studies is
possible through maximization of the Youden index. We demonstrate our approach using two meta-analyses of B
type natriuretic peptide in heart failure and procalcitonin as a marker for sepsis.

Conclusions: Our approach uses all the available information and results in an estimation not only of the
performance of the biomarker but also of the threshold at which the optimal performance can be expected.

Keywords: Diagnostic accuracy study, Meta-analysis, Biomarker, Threshold, ROC curve

Background

Systematic reviews of diagnostic test accuracy (DTA)
studies give an overview of the performance of a diag-
nostic test, e.g. based on a biomarker or a questionnaire.
Meta-analysis of DTA studies is traditionally based on
one pair of sensitivity and specificity (Se, Sp) per study.
Thus each study contributes a two by two table, con-
taining the numbers of true positives (TP), false positives
(FP), true negatives (TN) and false negatives (FN). The
aims are twofold: On the one hand, one wants to esti-
mate the pooled sensitivity and specificity with confidence
regions. The assumption here is that all studies used
similar thresholds for the biomarker underlying the test.
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On the other hand, if varying thresholds were used in
the studies, a summary receiver operating characteris-
tic (SROC) curve is estimated to describe the change in
sensitivity and specificity while varying the threshold [1].

There are a number of published systematic reviews
where several studies reported more than one threshold
and the corresponding values of sensitivity and specificity,
and also the thresholds were provided (see for example
[2-6]). When using the standard bivariate meta-analysis
model, however, one threshold value per study must be
selected, and the additional information is ignored. In
many cases the selected threshold is optimal with respect
to the Youden index, which may lead to a too optimistic
evaluation of the biomarker [5, 7, 8]. Thus, it is advan-
tageous to use all the available data. As Leeflang et al.
noted, ‘At present, the routinely used models for DTA
meta-analysis utilise data on a single sensitivity and speci-
ficity pair for each study. Hence, current models do not
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fully utilise all of the available data. Some progress has
been made in this area [9], but more general and robust
methods are required’ [10].

Our motivation to work on a new approach is also due
to our experience that clinicians often ask at which thresh-
old of the biomarker the diagnostic test performs best.
They expect meta-analysis to answer this question. There-
fore methods to determine such an optimal threshold
across all studies are urgently awaited. We note that meth-
ods focussing on ROC curves, ignoring the underlying
biomarker, are not appropriate to answer this question.

There are already existing approaches which make use
of more than one pair of sensitivity and specificity per
study. An early approach was by Dukic and Gatsonis
who used ordinal regression accounting for varying num-
ber of thresholds [11], including a Bayesian hierarchical
approach. The multivariate random effects approach pro-
posed by Hamza et al. [9] is a generalization of the stan-
dard bivariate model, which assumes an equal number of
thresholds per study. Putter et al. [12], showing a case with
common thresholds, used methods from survival analysis,
modelling the marker distributions using a Poisson cor-
related gamma frailty model. Martinez-Camblor [13] sug-
gested a non-parametric approach directly averaging the
within-study ROC curves. Riley and coauthors also pro-
posed two multivariate regression models, both in a diag-
nostic and in a prognostic context. One of these (option
(ii) in [14], subsection 3.2 in [15]) models a functional rela-
tionship and is related to our approach. The problem of
incomplete reporting of thresholds is discussed in [8].

We present a new approach for meta-analyses of DTA
studies adapted to this more extensive type of data. It leads
to pooled estimates of sensitivity and specificity as well
as to an SROC curve. Furthermore, an optimal threshold
across studies can be determined. The fundamental idea
is to estimate the distribution functions of the biomarker
within the diseased and non-diseased individuals using a
linear mixed effects model.

The article is structured as follows. In the next section,
after reviewing the standard models, we present our new
approach, including determination of an SROC curve and
finding an optimal threshold. In the results section we
describe the results of a simulation study and apply our
approach to two meta-analyses from the literature. After
the discussion section we end with conclusions.

Methods

Standard models for meta-analysis of DTA studies

The hierarchical model was originally presented in a
Bayesian framework [16, 17]. The parameters in the hier-
archical model are ® and A, together with their variances,
and a shape parameter 8 which is related to the variance
ratio of the two distributions. ® represents the aver-
age logit probability of a positive test result (‘positivity’
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[16, 18]) across all studies and groups of patients. The 6s
for the studies are drawn from a normal distribution with
mean © and model differences in ‘positivity’ which are
due to different thresholds across studies. A is the average
difference of the expectations of the distributions on the
logit scale, that is, a log diagnostic odds ratio, and models
accuracy.

Another widely used approach for meta-analysis of DTA
studies is the bivariate model [19, 20], a random effects
model focussing on the joint normal distribution of the
logit-transformed sensitivity and specificity. The bivari-
ate model has two levels and aims to pool sensitivity and
specificity. At the study level, the numbers TP and FP of
individuals with a positive test result from study s, s =
1,...,m, are assumed to be independent and to follow
binomial distributions

TP, ~ Binomial(#ys, Sey),

FPs ~ Binomial(ros, 1 — Spy),

where index s indicates study s and nj; and ng are
the number of diseased and non-diseased individuals
in study s. Throughout this article diseased individuals
will always be denoted by 1 and non-diseased by 0. At
the between-study level, logit-transformed sensitivity and
1—specificity are assumed to follow a bivariate normal
distribution:

logit(Se;) I 2 T1o
~ N ,
logit(1 — Sp,) o T10 702

Thus the two-dimensional nature of the data is pre-
served and the variability between the studies is taken
into account with random effects. It has been shown that
in case of no covariates, the hierarchical model and the
bivariate model are equivalent [18, 21].

These standard models are based on the assumption
that each study in a meta-analysis contributes only one
pair of sensitivity and specificity. This leads to the prob-
lem of a not uniquely defined SROC curve, as there are
many different ways to define the straight line in logit
space [21]. Furthermore, the SROC curve might be over-
estimated as most studies will report a kind of optimal pair
of sensitivity and specificity [7]. If studies present more
than one threshold, the meta-analyst needs to reduce the
data and select a threshold. This procedure does not use
the full information [10] and also may lead to bias. As the
underlying threshold is ignored in the models, no optimal
threshold can be determined.

New parametric approach based on several thresholds per
study

The novel approach we want to present is characterized by
the estimation of the cumulative distribution functions of
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the biomarker the test is based on within the non-diseased
and diseased individuals, respectively [22]. This approach
is applicable if several studies of a meta-analysis report
more than one threshold and the corresponding values
of sensitivity and specificity. More specifically, for each
threshold reported by a study to be included in the meta-
analysis, we need the threshold and the numbers of TP, FP,
TN and FN.

We consider a continuous biomarker that is observed
in each individual of two groups, non-diseased and dis-
eased. Given a fixed threshold of the biomarker, without
loss of generality, a test result is defined as positive if
the observed value exceeds the threshold. We focus on
the probability of negative test results within the non-
diseased individuals (specificity) and within the diseased
(1—sensitivity). Specificity and 1—sensitivity are inter-
preted as functions of the threshold x: the specificities
provide data points of the cumulative distribution func-
tion (cdf) of the biomarker for the non-diseased individ-
uals, the 1—sensitivities provide data points of the cdf
for the diseased individuals. We make some distribu-
tional assumption for the biomarker, for example, we may
assume a normal or logistic distribution. In parentheses,
we note that we could as well, equivalently, model the ‘sur-
vival’ functions instead of the cdfs, which would mean
to focus at 1—specificity and sensitivity, like in the ROC
curve.

For each study, an arbitrary number of thresholds (not
necessarily equal across studies) and the numbers of TP,
FP, FN and TN for each threshold are assumed to be
known. With this data we aim to estimate the parameters
of the distribution functions of the biomarker within the
non-diseased and diseased, respectively.

Transforming sensitivity and specificity so that they are
linear in the threshold enables us to use a linear model to
fit the data. We chose an appropriate transformation, that
is, a function /, for example, # = ®~! (normal model; ®~!
denotes the inverse of the standard normal distribution)
or i = logit (logistic distribution model). Let (uo,ag)
be the mean and variance parameters of the biomarker
distribution for the non-diseased individuals and (u1, 012)
the parameters for the diseased. Let x be a threshold. We
obtain the linear equations

h(Sp) = = ;0” 0 (1)
h(1 - Se(x)) =~ ;1’“, )

where 7 is the transformation.

In the following, we want to fit the transformed data.
To account for the clear hierarchical structure and the
heterogeneity of the studies, we consider the studies as
randomly chosen out of the overall study population and
regress the data with a linear mixed effects model with
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study as grouping factor. We want to explain the trans-
formed proportions of negative test results, with TN;/nos
being the proportion of negative test results of the non-
diseased of studys,s = 1, ..., m and the threshold indexed
by i,i = 1,...,ks, and FNy;/ns the one of the diseased,
in dependence of the thresholds xs. To obtain differ-
ent location and dispersion parameters of the biomarker
distributions within both groups, we estimate separate
regression lines for the non-diseased and diseased, respec-
tively. We consider a class of weighted linear mixed
effects regression models, with fixed effects for group
and threshold and their interaction and different random
effects. The most general linear mixed model contains
four fixed effects (ag, o1, Bo, B1) and four random effects
(aos, a1s, bos, b1s). The random effects are assumed to fol-
low a multivariate normal distribution with mean zero and
a completely general variance matrix. The model is given
by

TNg;
h ( p SL) =g +aogs +(Bo +bos)xsi + esi;, (MODEL % DIDS)
Os

FNg;
h ( . Sl) = a1 +ais + (B1 + bi)xsi + fs
1s

(ﬂ()s, Aals; bOS! bls)

qu P170aTla  P2T0aTob  P3T0aT1b
~Nlo P170aT1a 7124 P4T1aT0b  P5T1aTlb
7 2 b
P2T0aTob  P4T1aTO0b Tob P6TobT1b
2
P3T0aT1b P5T1aTib  P6T0LT1H b
2
14
€si ™ N (0’ ) )
Wsi
y2
]’siNN(O,>, s=1,....,m i=1,...,k
Vsi

where o and «; are the fixed intercepts and By and B;
the fixed slopes for the non-diseased and diseased, respec-
tively. The explanatory variable x; is the i" threshold
of study s. The independent error terms of the non-
diseased are denoted with ey, the ones of the diseased
with f;; for the i threshold of study s. They are both
mean zero normally distributed with variances y2/wy; and
¥2/vsi, respectively, where y is an unknown scale param-
eter (which is estimated) and wg; and vg; are given prior
weights. As prior weights we propose either sample size
or inverse variance scaled to mean one.

The random intercepts of non-diseased and diseased
individuals are denoted aos and ajs respectively, and
the random slopes of non-diseased and diseased indi-
viduals bgs and by, respectively. Whereas diseased and
non-diseased individuals within the same study are not
correlated, the across-study correlation must be modeled
(parameters pi, ..., ps). The residual errors ey; and f;; are
independent of the random intercepts and slopes.
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The model described above is named *DIDS, Different
random Intercept and Different random Slope. As the
total number of parameters to estimate is quite large, a lot
of data is needed to enable use of model *DIDS for esti-
mation. To reduce the model we want to either consider
fewer random effects or equalize random effects within
the non-diseased and diseased but will not restrict the cor-
relation matrix (see Table 1). For all of these models there
is a simplified variant which forces the fixed effect slopes
for the diseased and non-diseased individuals into being
equal, i.e., Bo = p1. To distinguish them from the general
models, we mark the general models with “*’ Thus, in total
we obtain 16 different models.

To choose between models, we first decided on using
either the simplified models or the general ones. Then, we
applied the REML (restricted maximum likelihood) crite-
rion [23, 24], which selects the most suitable model of a
range of models with same fixed effects and differing ran-
dom effects. Finally, the model with the smallest REML
criterion was selected.

Back-transforming the model equation using #~! (e.g.,
® in the normal case or logit™! if a logistic distribu-
tion is assumed) provides the model-based distribution
functions of the biomarker for non-diseased and diseased
individuals. For example, in the normal case, the estimated
distribution parameters fi;, 6;,j = 0, 1, are provided by the
fixed effects parameters (see Egs. (1), (2)) by

)

-, i =0,1).
5 Y )

=

Table 1 Linear mixed effects models listed according to their
random effects structure

Model Specification
DIDS Different random intercepts and different random slopes
CIDS Common random intercept and different random slopes,
dos = d1s = ds
DICS Different random intercepts and common random slope,
bOs = bh = bs
clcs Common random intercept and common slope,
dos = d1s = ds, bos = bys = bs
DS Different random slopes,
dos = a5 =0
(@) Common random slope,
dos = a1s = 0, bos = bys = by
3] Different random intercepts,
bOs = bWs =0
cl Common random intercept,

dos = d15 = ds, bos = b1s =0
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Thus, it is necessary that the g; (j = 0,1) are posi-
tive to obtain positive dispersions. That means specificity
and 1—sensitivity, i.e. the probabilities of having a nega-
tive test result, should increase with increasing thresholds
within both groups over all studies. If a logistic distri-
bution assumption is used, the 6; (j = 0,1) have to be
multiplied with 7/+/3 to obtain standard deviations. As
we can see, if one fixes B9 = p1 in the linear regres-
sion models, one assumes that the distributions of the
biomarker of non-diseased and diseased individuals have
equal variances.

For estimation we used the Imer() function in R [25]
with REML estimation and inverse variance weights
scaled to mean one [26]. To avoid problems with zero
values, we added a continuity correction of 0.5 to the
numbers TNg;, TPy, FNg; and FPg. In case of the logit
transformation, the Delta method (with continuity cor-
rection) leads to the variance estimates (TNg; + 0.5)~! +
(FP;; + 0.5)7! (disease-free) and (TP; + 0.5) "1 + (ENy; +
0.5)~! (diseased) and the corresponding inverse variance
weights. For the probit transformation & = @1, the
Delta method leads to analogous weights, see the R code
provided in Additional file 1.

To demonstrate our models on examples, we used only
models of the general form, i.e. where the fixed slopes of
non-diseased and diseased individuals may differ, because
these models performed better in the simulation study
(models indicated by *). To choose one model of this
range, we selected the one with the smallest REML crite-
rion. We used a weighting parameter A,, of 0.5, meaning
that sensitivity and specificity were equally weighted.

SROC curve and optimal threshold

Once the model parameters are estimated, the underlying
distribution functions are determined. From these, one
can read off the pooled sensitivity and specificity values
at every threshold and also specify confidence regions. A
SROC curve and an optimal threshold are also derived.

Sensitivity, specificity, confidence regions We derived
confidence intervals as follows. From the given Imer()
object, we extracted the estimates (hats omitted) of wy,
a1, Bo, B1, Var(ap), Var(ay), Var(Bo), Var(B1), Cov(ao, Bo),
Cov(ai, B1)-

Given a threshold x, specificity and sensitivity were
obtained by back-transforming the linear regression esti-
mates using 7! :

Sp(x) = h™ (e + Box)
Se(x) =1 —h (a1 + pr1x)

The sampling variances for the transformed specificities
and sensitivities, conditional on the threshold «, are
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Var(ag + Box) = Var(ag) + x2 Var(Bo) + 2x Cov(ag, Bo)
Var(oy + f1x) = Var(oy) + x> Var(B1) + 2x Cov(ay, 1)

Confidence bands were obtained by adding/subtracting
the standard errors times the normal quantile zg 975 to the
transformed estimates and back-transforming the confi-
dence limits using 7~ !.

SROC curve The SROC curve naturally follows from the
distributions by

ROC(t) =1- Fﬂlyﬂl (F;Iol,ao (1 - t)) ’ 0 <t=< 1:

where F), ; is the distribution function with location and
scaling parameters u and o, e.g., ®,, under normal
assumption with mean p and standard deviation o [1].

Youden index The weighted Youden index Y, for a
threshold « is defined by

Yi(x) =2 (A - Se(x) + (1 — Aw) - Sp(x)) — 1,

where 1, €[0,1] is a weighting parameter [7]. To equally
weight sensitivity and specificity a A, of 0.5 is chosen. To
emphasize sensitivity, a higher value of A,, and to empha-
size specificity, a lower value is chosen. We can write the
estimated weighted Youden index ¥, for a threshold x as

V(1) = A (1 —op! (x - ﬁ“))
61
+(1 =) (2h1 (xj ’”AL°> — 1).
60

The optimal threshold x¢ is defined as the threshold
which maximises the Youden index Y, (x). Under normal
assumption, it can be estimated for 69 # 61 by setting

A /\2 A I\2

A HoO7] — U10y
X0 = ~2 ~2
091 — 9%

\/636% (267 6) (10g 2 — logit(h)) + (11 — 10)?)

~2 _ A2
01 — 9

J’_

(see [27]). For 69 = 61 =: G, X is given by

. 62logit(Ay) + 3 (23 — A2)
0 = ~ ~ .
Mo — M1

For the logistic distribution assumption of the
biomarker, no analytical solution of the maximization
problem of the Youden index has been found. Thus we
implemented a fixed point iteration to compute the opti-
mal threshold. For a discrete ordinal scale, the maximum
can be found by maximizing the Youden index on the
finite set of possible thresholds. For the normal distribu-
tion assumption, we also derived a confidence interval
for the optimal threshold using the delta method which
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is implemented in our R code, see Additional file 1 (for
details of the derivation, see (§3.3.6.3 [22])).

Simulation study

To evaluate the performance of our method, we con-
ducted a simulation study. We aimed to investigate how
precisely the new approach can estimate the parameters
of the true distributions of diseased and non-diseased
individuals. Furthermore, we examined if the model is a
suitable approach to estimate the pooled sensitivity and
specificity and the optimal threshold in a meta-analysis.
Therefore we considered 384 scenarios with 1000 runs
each. Data was simulated mimicking roughly the example
data. The values were drawn from the specified distribu-
tions or sets.

e Number of studies: 10, 20, 30
e True overall normal distributions of the biomarker:

— Mean: 0/2.5 [non-diseased/diseased]
— Standard deviation: 1.5/1.5 (‘same’), 1/2
(‘different’) [non-diseased/diseased]

¢ Random noise:
To obtain study-specific distributions, random noise
was added to the true overall distributions. The
extent of the random noise was determined by a
visual comparison with the examples.

— To mean: N(0,72), T = 0 (‘no heterogeneity’),
0.5 (‘moderate heterogeneity’), 1 (‘large
heterogeneity’) or 1.5 (‘huge heterogeneity’),
symmetrically truncated so that the mean of
the study-specific distribution of the diseased
individuals was greater than that of the
non-diseased

— To standard deviation: N(0,t2), T =0, 0.3, 0.4
or 0.5 likewise, symmetrically truncated in
order to guarantee non-negative study-specific
standard deviations

e Total number of individuals per study:
Lognormal(5, 1)

e Proportion of diseased individuals: N (0.5,0.04)
truncated to the interval (0.2, 0.8)

e Number of thresholds per study: Pois(A = 1.3 or 2),
rejecting zeros, or fixed to 5

e Values of thresholds: spaced equidistantly between
the 40 % quantile of the study-specific distribution of
the non-diseased individuals and the 60 % quantile of
the study-specific distribution of the diseased
individuals

e True sensitivity and specificity: Once the
distributions were fixed, the true sensitivity and the
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true specificity were derived as the areas under the
respective curves to both sides of the threshold.
Sensitivity and specificity were equally weighted.

e True optimal threshold: The point where the
densities cut was defined as the true optimal
threshold. That is, we defined the optimal threshold
as the point where the Youden index was maximized,
weighting sensitivity and specificity equally.

e Models: CI, DS, CICS, CIDS, *CIL, *DS, *CICS, *CIDS

We did not include the most complex models DIDS
and *DIDS because there was mostly insufficient data. For
the computational implementation of the linear random
effect models we used the Imer() function of the R package
Ime4_1.1-7 with REML estimation. For weighting of the
studies we used inverse variance weights scaled to mean
one.

We investigated bias, mean squared error (MSE) and
coverage of the distribution parameters g, £1, 00 and o}
and of sensitivity and specificity at three points: at 0,
at the true optimal threshold and at 2.5. Furthermore,
we investigated bias and MSE for the optimal threshold.
In addition, we documented how often error messages
occurred, particularly how often a negative slope was
observed (making model estimation impossible), and the
percentage of runs where a warning message signaled that
convergence could not be achieved.

Results

Results of the simulation study

Sensitivity and specificity: bias and mean squared
error The bias of sensitivity and specificity increased
with increasing heterogeneity (see Fig. 1 at threshold 0
and at the true optimal threshold, both with a Poisson
distribution parameter A = 1.3 for the number of thresh-
olds). At the true optimal threshold the bias was markedly
smaller than at the points 0 and 2.5, not overpassing an
absolute value of 0.12 and almost always underestimating
the values. At threshold 0 sensitivity was underestimated
and specificity was overestimated, at threshold 2.5 this
held vice versa (not shown). Thus, small values of sensi-
tivity and specificity were overestimated and large ones
underestimated. In the case of no heterogeneity there was
nearly no bias for data with same standard deviations
(SD), whereas for different SD (upper rows of the plots in
Fig. 1) the models assuming same SD (the ones without *’)
led to bias. An explanation could be that the data is quite
perfect, as there is no heterogeneity, but the slopes of the
two straight lines to be estimated are forced to be equal
and thus all parameters suffer. This phenomenon vanished
with more heterogeneity. The bias in the case of differ-
ent SD was slightly larger than in the case of same SD at
the point 0 and the true optimal threshold and slightly
smaller at point 2.5. The bias decreased with an increasing
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number of thresholds at points 0 and 2.5. At the true opti-
mal threshold there was no impact. With more thresholds
we observe a zigzag pattern, with the highest bias result-
ing from model DS and *DS and the lowest from CIDS
and *CIDS (not shown). The mean squared error behaved
similarly to the bias and thus will not be discussed.

Sensitivity and specificity: coverage of 95 %
confidence intervals The coverage of sensitivity and
specificity was decreasing with increasing heterogeneity,
being smaller in the case of different SD (see the top
panel in Fig. 2 at the true optimal threshold with a Pois-
son distribution parameter A = 1.3 for the number of
thresholds). In case of no heterogeneity and different
SD, models which force equal fixed slopes led to smaller
coverage. This may be explained by a small confidence
interval due to no heterogeneity and existing bias. The
coverage did not improve with an increasing number of
thresholds per study.

Distribution parameters The results of the estimation
of the distribution parameters will not be discussed in
detail, as the results were very similar to the ones of
sensitivity and specificity and it is the primary goal to
estimate correct sensitivity and specificity. There were
outliers of bias of the distribution parameters reaching
values up to 100 for few thresholds per study, but gener-
ally the bias decreased markedly with increasing number

of thresholds.

Optimal threshold In the meta-analysis an overall opti-
mal threshold was estimated. The bias of this optimal
threshold was small but slightly increasing with increas-
ing heterogeneity (see the bottom panel of Fig. 2 with a
Poisson distribution parameter A = 1.3 for the number
of thresholds). It was smaller in the case of same standard
deviations (plots at the bottom) than in the case of differ-
ent standard deviations. There the bias of models forcing
equal slopes was markedly higher than the one of models
allowing for different slopes. With increasing number of
thresholds per study the bias was decreasing (not shown).
The MSE behaved similar to the bias and thus will not be
discussed.

Problems with negative slope and non-convergence
Figure 3 shows the proportion of errors (left) and warn-
ings (right) in 1000 simulation runs with varying number
of thresholds, distribution parameters and random noise,
separated by model. The boxplots and black circles in the
left figure represent the total number of error messages,
the red circles the number of error messages due to a
negative regression slope. This occurred more frequently
with the * models that have to estimate two different
slopes (up to a quarter of runs), particularly if the number
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of thresholds was small and/or heterogeneity was large.
Another possible reason for error was that the threshold
iteration did not converge. The right panel shows the pro-
portion of warnings signaling that convergence could not
be achieved. This was more frequent for more complex
models. Figure 4 provides the corresponding information
for 1000 simulation runs with number of thresholds fixed
to five. Further simulations showed that all kinds of errors
and warnings were much less frequent or even completely
vanished if there was more threshold information and/or
if there were many studies in a meta-analysis (not shown).

Examples

To illustrate our approach we applied it to two data sets of
published meta-analyses, both with a continuous marker.
We will obtain pooled sensitivity and specificity, an opti-
mal threshold and a SROC curve. For both examples we
chose the logit transformation for comparing the result
with those in the original publications.

Example 1: Diagnostic accuracy of B type natriuretic peptides
in heart failure

In a recent meta-analysis Roberts et al. investigated the
diagnostic accuracy of, among others, B type natriuretic
peptide in heart failure and found 26 studies, where
several were reporting more than one threshold ([2],
Fig. 1). To use the standard bivariate model, they grouped
the data according to recommended thresholds and per-
formed two meta-analyses (100 ng/L and 100-500 ng/L).
For thresholds > 500 ng/L, Roberts et al. did no meta-
analysis because there were only four studies that showed
much heterogeneity.

However, meta-analyses of the same studies based
on different thresholds are correlated. We thus per-
formed one meta-analysis including all the data of the
B type natriuretic peptide by Roberts et al. [2]. We log-
transformed the threshold data and then used a logistic
distribution assumption, in analogy to the logit trans-
formation in the bivariate model. Together, this means
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a log-logistic distribution assumption for the biomarker.
REML was minimised by model *DICS. The results of our
approach are seen in Table 2. At the optimal threshold of
226.0 ng/L, sensitivity was 0.84 with a 95 % confidence
interval of [0.80, 0.87] and specificity was also 0.84 [0.77,
0.89]. Having estimated the biomarker distributions of the
non-diseased and diseased, we may read off values of diag-
nostic accuracy for arbitrary thresholds. For 100 ng/L, the
point estimates and confidence intervals of both methods
agree nearly perfectly. Also the results by Roberts et al.
for 100-500 ng/L agree well with our own for the optimal
threshold, 226 ng/L. Our analysis gives model-based esti-
mates also for the region 500-1000 ng/L, but they differ
from those of each of the single studies given by Roberts
et al. [2]. As most of the studies were carried out in the
emergency department, it seems likely to emphasize sen-
sitivity. This could be achieved in choosing A,, larger than
0.5, such as A, = 2/3 or 3/4. This leads to an optimal
threshold of 154.4 ng/L with a sensitivity of 0.90 [0.87,
0.92] and specificity of 0.76 [0.67, 0.83] for A, = 2/3
and an optimal threshold of 122.0 ng/L with a sensitiv-
ity of 0.92 [0.90, 0.94] and a specificity of 0.69 [0.60, 0.78]
for A, = 3/4. Figure 5a shows the model-based cumu-
lative log-logistic marker distributions for non-diseased
and diseased individuals, Fig. 5b the estimated densities.
Figure 5¢ shows the study-specific ROC curves. Figure 5d
illustrates the SROC curve based on this model with the
three different optimal thresholds for different choices
of A, indicated. The R code (Additional files 1 and 2)
and data sets (Additional files 3 and 4) to apply the
method can be found as supporting information to this
article.

Example 2: Procalcitonin as a diagnostic marker for sepsis
Wacker et al. [5] published a systematic review on
the diagnostic accuracy of procalcitonin as a diagnostic
marker for sepsis. Though 11 of the 31 primary studies
had reported sensitivity and specificity at different (up to
five) thresholds, the authors chose one pair of sensitivity
and specificity per study for their meta-analysis using the
bivariate model. They obtained a pooled sensitivity of 0.77
[0.72; 0.81] and a specificity of 0.79 [0.74; 0.84].
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We extracted data for additional thresholds from the
primary studies and found 54 data points in total for 26
different values of the threshold.

Again, model *DICS minimized the REML criterion.
This resulted in an estimated optimal threshold of 1.2
ng/mL with a sensitivity of 0.71 [0.63; 0.78] and a speci-
ficity of 0.81 [0.74; 0.86]. The results are shown in Fig. 6
which is structured like Fig. 5. Whereas the estimate of
specificity is similar to that given in [5], the sensitiv-
ity estimate is more conservative. A possible reason is
overoptimism due to selection of optimal thresholds when
using the bivariate model [28].

Discussion

We have described and evaluated a new approach for
meta-analysis of diagnostic test accuracy studies, where
several studies report more than one threshold and the
corresponding values of sensitivity and specificity. The
approach uses a common parametric assumption (normal
or logistic) for the distribution of a continuous biomarker.
The idea is to estimate the distribution functions of
the biomarker, one distribution function within the non-
diseased and one within the diseased study population.
This is achieved by the use of a mixed effects model with
study as random factor.

We applied our approach to a number of examples with
both continuous biomarkers and ordinal questionnaires.
Here we report results for two continuous biomarkers.
In both examples we found large heterogeneity between
the studies. Nevertheless, our approach led to convinc-
ing results, as the distribution functions and the pooled
sensitivity and specificity with their confidence intervals
seemed reasonable and were similar to already published
results.

Our new approach for meta-analysis of DTA studies has
its strengths and limitations.

Strengths Our approach uses multiple pairs of sensitiv-
ity and specificity and their corresponding thresholds per
study. In comparison with traditional approaches, this has
several advantages: we use all the given information and
do not need to select one pair of sensitivity and speci-
ficity per study. After assuming a distribution type, we do

Table 2 Sensitivity and specificity for selected thresholds, based on model *DICS and compared to results by Roberts et al. [2]
(for thresholds greater or equal to 500 ng/L, Roberts et al. performed no meta-analysis)

New model

point estimate [95 % confidence interval]

Roberts et al. [2]
point estimate [95 % confidence interval]

Threshold [ng/L] Sensitivity Specificity Sensitivity Specificity
100 0.94 [0.92,0.95] 0.63[0.53,0.72] 0.95 [0.93,0.96] 0.63[0.52,0.73]
226 0.84[0.80,0.87] 0.84[0.77,0.90] 0.85[0.81,0.88] 0.86[0.79,091]
500 0.64[0.56,0.71] 0.94[0.90,0.97] -
1000 0411[0.31,0.52] 0.98 [0.96,0.99] - -
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not need additional assumptions for the SROC curve. In
contrast to the alternative approaches of Hamza et al. [9]
and Putter et al. [12], our approach can deal with a vary-
ing number of thresholds per study. We found varying
numbers of thresholds in most of the systematic reviews
providing multiple thresholds at all.

The models are based on a parametric assumption. The
assumption of a normal or logistic distributed biomarker
with different parameters for the non-diseased and dis-
eased individuals is very common [1]. It seemed a nat-
ural idea to estimate underlying distributions. Directly
and without further assumptions, we obtain all desired
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quantities: sensitivity and specificity, the SROC curve and
the Youden index and the optimal threshold. By using a
mixed effects model we acknowledge the diversity of the
studies, while the data of each study has in principle the
same structure. By admitting correlated random effects,
we respect the bivariate character of the study data.

The logit and the probit transformation often provided
similar results. By log-transforming the biomarker values,

we can also handle skewed distributions (log-logistic or
lognormal). In fact, each cumulative distribution function
F can be transformed into a linear model by using the
transformation #z = F~!. In this way our basic idea can be
extended to other distributions.

Standard approaches such as the bivariate model, and
also the approach by Martinez-Camblor [13], are based
solely on knowledge of pairs of sensitivity and specificity
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or ROC curves, without making use of threshold infor-
mation. Often this information is missing in the primary
studies. However, we found a number of reviews where
this information was present or could be extracted from
the primary studies in hindsight, and our approach estab-
lishes a link between threshold information and the ROC
curve, and we may determine an optimal threshold among
all studies. This is important information for clinicians. In
the clinical routine it is not only of interest to know which
is the best biomarker for a specific illness, but also at
which threshold an optimal discrimination between non-
diseased and diseased individuals can be achieved. The
knowledge of a summary ROC curve alone does not allow
inference on the biomarker.

Whereas most physiological biomarkers can be seen as
continuous, questionnaires or psychological scales often
take only integer values and therefore are ordinally scaled.
However, in practice, they are often analyzed as con-
tinuous, also in meta-analyses [29]. Our approach could
probably be used for psychological scales as well, but we
did not systematically investigate this.

Limitations Our model, like the standard bivariate
model, is a two-stage approach, based on the estimated
transformed study-specific sensitivities and specificities
and using inverse variance weights, however ignoring the
uncertainty of their variances at the study level. It is thus a
linear mixed model, not a generalized linear mixed model.
A problem related to this is the necessity to use continu-
ity correction, at least in case of zeros in the two by two
tables which has been criticized [30].

The approach differs from others in that we did not use
a binomial model for modeling sensitivity and specificity
at the study level. This would have led to two binomial
parameters per threshold with additional requirements of
monotonicity and correlation ([14], option (i)). We think
it is more natural to look at the distributions and refer
to an analogous situation in survival analysis, where it is
standard to consider a time-to-event variable, instead of
jointly modeling binary outcomes such as, say, ‘one year
mortality, ‘two years mortality’ and ‘five years mortality’

Some care has to be taken concerning the concept of an
optimal threshold across studies. This is only reasonable
if a biomarker value has the same meaning in all studies
and does not differ because of laboratory conditions. If the
thresholds are very heterogeneous, this has to be doubted.
Of course the question arises as well in how far it is rea-
sonable to pool sensitivity and specificity if the studies are
very inhomogeneous.

A weak point of this method is the possibility of estimat-
ing decreasing proportions of negative test results with an
increasing threshold. Whereas this is impossible within a
study, it may happen if one combines data of several stud-
ies. Thus, if the heterogeneity between studies is huge and
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the number of thresholds is low, a valid regression slope
cannot be assured and we do not recommend our method
for such data. The problem becomes less relevant if there
is sufficient threshold information.

If there are not enough data points reported from the
studies, some of the linear mixed effects models may not
be applicable as the number of parameters to be esti-
mated might be too big. For some models and data sets,
cases of numerical instability occurred. Besides, the fixed
point iteration of the optimal threshold in case of a logis-
tic distribution assumption did not converge in some few
cases.

Model selection remains a challenge. We investigated
several approaches, including the Akaike information cri-
terion (AIC) and the conditional AIC (cAIC) criterion
that allows comparing mixed models with different fixed
effects [23, 31]. However, we encountered problems with
cAIC, as the ordering of models surprisingly depended on
how the weights were scaled, which seemed unplausible.
We thus decided to apply the REML criterion [23].

Our R code offers a broad range of models, and users
may decide which model or which selection criteria they
want to use.

Further potential extensions of the method are the
derivation of confidence intervals for the optimal thresh-
old under a logistic distribution assumption and account-
ing for the uncertainty of the optimal threshold in the
confidence intervals of sensitivity and specificity at this
point. Also, a non-parametric analogue has not been
investigated so far.

Simulation study The simulation study showed that with
increasing heterogeneity, the quality of the estimates dete-
riorates. Generally, reasonable results of the new approach
can only be expected for the heterogeneity levels ‘no’
and ‘moderate’. However, since the distribution estimates
for almost all data examples have been convincing, we
assume that in practice heterogeneity is mostly moderate.
Martinez-Camblor [13] in his simulation study considered
only levels of heterogeneity smaller than the 'moderate’
heterogeneity level used here. Bias and MSE of the esti-
mates decreased with a increasing number of thresholds
per study.

For data with maximally moderate heterogeneity the
linear mixed models allowing for different fixed slopes
(denoted with *) are to be preferred. They led to smaller
bias and MSE in scenarios where the standard devia-
tions were different and to an equivalent bias and MSE in
scenarios where the standard deviations were the same.

In most circumstances the bias of sensitivity and speci-
ficity was the smallest for the most complex models
examined, the CIDS and *CIDS model (common random
intercept and different random slope). On the other hand,
we observed that the more complex the mixed effects



Steinhauser et al. BMC Medical Research Methodology (2016) 16:97

model was, the more convergence problems occurred in
the Imer() function.

Unfortunately, the coverage of the estimates of the dis-
tribution parameters as well as of sensitivity and speci-
ficity was by no means satisfying. This may be due to
the existing bias, but more probably to incorrect confi-
dence intervals. For the confidence intervals we assumed
the parameters to be approximately normally distributed,
but possibly the normal quantiles led to confidence inter-
vals that were too narrow. We also note that the estimates
of the ‘true’ sensitivity and specificity depend on how well
the distributions and their point of intersection could be
estimated. Further, the two-stage model we employed did
not account for the uncertainty of estimating sensitivities
and specificities at the first level.

Finally, a possible reason for the poor coverage is that
we used the standard errors of the fixed effects part
of the parameters for estimating the standard errors
of the regressions. Methods for integrating the random
effects variance into the estimation of confidence inter-
vals, if possible in a one-stage framework, have still to be
developed.

Our simulation study was not designed to compare our
approach to competing methods. Extensive simulations
comparing different methods should be performed in the
future.

Conclusions

Although our new approach can still be improved in some
aspects, it accounts for the heterogeneity of the studies
and the bivariate character of the data and includes mul-
tiple thresholds of studies, possibly differing in number.
We proposed a total of 16 linear mixed models which
differ in their fixed and random effects structure for esti-
mation of the distribution functions. For model selection,
we only considered the models allowing for differing fixed
slopes, as they led to better results in the simulation study
and applied the REML criterion. However, we would pre-
fer to select the model of choice according to a selection
criterion in one step.

Our approach is feasible if all studies used equal mea-
surement methods and if most studies provide informa-
tion of more than one threshold. Then we may benefit
from its advantage that both, an SROC curve and an opti-
mal threshold, can be determined. This is the setting for
which we recommend the new approach.

Additional files

Additional file 1: R code for the main function and auxiliary functions for
the described method. (TXT 43 kb)

Additional file 2: R code for application of the method to the example
data. (TXT 3 kb)
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Additional file 3: First example data set in txt format. (TXT 1 kb)
Additional file 4: Second example data set in txt format. (TXT 1 kb)
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