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Abstract
The process of reprogramming patient samples to human-induced pluripotent stem cells (iPSCs) is stochastic, asynchronous,
and inefficient, leading to a heterogeneous population of cells. In this study, we track the reprogramming status of patient-
derived erythroid progenitor cells (EPCs) at the single-cell level during reprogramming with label-free live-cell imaging of cel-
lular metabolism and nuclear morphometry to identify high-quality iPSCs. EPCs isolated from human peripheral blood of three
donors were used for our proof-of-principle study. We found distinct patterns of autofluorescence lifetime for the reduced
form of nicotinamide adenine dinucleotide (phosphate) and flavin adenine dinucleotide during reprogramming. Random for-
est models classified iPSCs with *95% accuracy, which enabled the successful isolation of iPSC lines from reprogramming
cultures. Reprogramming trajectories resolved at the single-cell level indicated significant reprogramming heterogeneity
along different branches of cell states. This combination of micropatterning, autofluorescence imaging, and machine learning
provides a unique, real-time, and nondestructive method to assess the quality of iPSCs in a biomanufacturing process, which
could have downstream impacts in regenerative medicine, cell/gene therapy, and disease modeling.

T he derivation of donor-specific induced pluripotent stem
cells (iPSCs) from somatic cells through reprogramming
generates a unique self-renewing cell source for disease

modeling, drug discovery, toxicology, and personalized cell
therapies.1–3 These cells carry the donor’s genome, facilitating
elucidation of the genetic causes of disease, and are immuno-
logically matched to the donor, facilitating the engraftment of
cells derived from iPSCs.4–6

With several clinical trials underway,7 there has been significant
progress in developing iPSC-based cell therapies in recent years.
However, several challenges remain in the field.8 First, the deriva-
tion of high-quality iPSCs must be efficient, rapid, and cost-
effective to ensure that patients receive their treatments in a
timely manner with autologous iPSC-derived products. Second,
reprogramming to make iPSCs for both allogeneic and autolo-
gous cell therapy could benefit from standardized manufacturing
processes to overcome the inconsistencies arising from variability
in human material sources, reagents, delivery of reprogramming
factors, microenvironmental fluctuations, or inherent stochasticity
in epigenetic processes underpinning reprogramming.9

Typical assays currently used for quality control of good
manufacturing practices (GMPs)-grade iPSCs include testing
for cell line identity (short tandem repeat analysis, single nucleo-
tide polymorphism analysis, genomic sequencing), genomic in-
stability (G-banding, chromosomal microarray, NanoString
technology), pluripotency (marker expression analysis through
flow cytometry or immunocytochemistry, embryoid body analy-
sis, teratoma assays, Pluritest�, TaqMan Scorecard� Assay), and
residual expression of reprogramming factors (polymerase chain
reaction or immunocytochemistry).10–13 Each of these methods
can be low throughput, labor intensive, time consuming, and re-
quire destructive processing.

Nondestructive strategies such as automated machine learn-
ing can be used to identify various cell types and structures in
cell cultures from bright-field images.14–18 However, such auto-
mated methods to identify iPSCs, in particular, have had limited
success in the field.19–21 Deep learning has recently been
employed to analyze monoclonal cell cultures of established
iPSC lines,22 but reprogramming cultures involve a higher num-
ber of cell fate transitions that have yet to be analyzed through
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deep learning pipelines. Hence, in complex cultures, like those in
reprogramming, new standardized platforms with robust analyt-
ical methods for identifying high-quality iPSCs are still needed.

Our strategy to identify iPSCs exploits metabolic and nuclear
changes during reprogramming. Somatic cells primarily utilize
mitochondrial oxidative phosphorylation (OXPHOS) to support
cell proliferation,23 while pluripotent stem cells favor glycolysis
in a manner reminiscent of the Warburg effect in cancer
cells.23,24 During reprogramming, somatic cells thus undergo a
metabolic shift from OXPHOS to glycolysis,25,26 accompanied
by a transient OXPHOS burst, resulting in the initiation and pro-
gression of reprogramming.27–29

Recent evidence also indicates that this metabolic shift occurs
before changes in gene expression and that the modulation of
glycolytic metabolism or OXPHOS alters reprogramming effi-
ciency.24,30,31 High-resolution imaging of reprogramming cells
has also identified that nuclear geometry is dramatically altered
during reprogramming.32–34 Therefore, simultaneous monitor-
ing metabolic and nuclear changes during reprogramming
could identify various cell states within reprogramming cultures.

Optical metabolic imaging (OMI) is a noninvasive and label-
free two-photon microscopy technique that provides dynamic
measurements of cellular metabolism at a single-cell level.
OMI is based on the endogenous fluorescence of metabolic co-
enzymes, reduced form of nicotinamide adenine dinucleotide
(NADH) and flavin adenine dinucleotide (FAD),35 that are both
used across several cellular metabolic processes. NADH and
reduced form of nicotinamide adenine dinucleotide phosphate
(NADPH) have overlapping fluorescence properties and are col-
lectively referred to as reduced form of nicotinamide adenine
dinucleotide (phosphate) (NAD(P)H).36 The optical redox ratio, de-
fined as the ratio of NAD(P)H intensity to the sum of NAD(P)H and
FAD intensity, provides a measure of the relative oxidation–reduc-
tion state of the cell [INAD(P)H/(INAD(P)H + IFAD)].37,38

Fluorescence lifetime imaging microscopy of NAD(P)H and FAD
provides additional information specific to protein binding activity.
The two-component decays of NAD(P)H and FAD measure the
short (s1) and long (s2) fluorescence lifetimes that correspond to

the free or bound states of these coenzymes,39–41 along with frac-
tional contributions of short (a1) and long (a2) lifetimes. Since
NAD(P)H and FAD are found predominantly in the cytoplasm,
the lack of fluorescence signal in images can also be used to iden-
tify cell borders and nuclei.42 Thus, OMI provides multiple readouts
for cell metabolism and nuclear morphometry to track metabolic
and nuclear changes of cells undergoing reprogramming.

In this study, we address some of the challenges associated
with the biomanufacturing of iPSCs by developing a microcontact
printed (lCP) platform34,43,44 to noninvasively monitor metabolic
and nuclear changes over 22 days of reprogramming of human
erythroid progenitor cells (EPCs) to iPSCs. We demonstrate that
OMI is sensitive to the metabolic and nuclear differences during
reprogramming, provide accurate identification of reprogram-
ming status of cells using machine learning models, and subse-
quently build reprogramming trajectories at the single-cell
level.45 Our label-free, nondestructive, rapid, and scalable method
to track reprogramming provides novel insights into human cell
reprogramming and could enable the development of new tech-
nologies for biomanufacturing high-quality iPSCs.

Results
Reprogramming on patterned substrates
We first designed a lCP substrate to spatially control the adhesion
of EPCs undergoing reprogramming.34,43,46 The lCP substrate is
formed by coating circular regions of 300 lm radius, referred to
as lFeatures, with Matrigel on a 35-mm ibiTreat dish that allows
for cell adhesion. The remaining regions of the dish are then back-
filled with polycationic graft copolymer, poly(L-lysine)-graft-
poly(ethylene glycol) (PLL-g-PEG), that resists protein adsorption
and prevents cell adhesion in these regions (Supplementary
Fig. S1A).47,48 The ibiTreat dishes are made of gas-permeable ma-
terial, enabling maintenance of carbon dioxide or oxygen ex-
change during cell culture and have high optical quality.

These properties make the dishes suitable for two-photon mi-
croscopy during reprogramming. To verify proper coating of the
circular lFeature regions, we immunostained for laminin, a

‰
FIG. 1. NAD(P)H and FAD autofluorescence imaging reveal metabolic differences during reprogramming.
(A) Left: Matrigel-coated lFeatures on the ibiTreat dish visualized with an anti-laminin antibody (red) show good fidelity in the transfer from
the Matrigel-coated polydimethylsiloxane mold. Scale bar, 100 lm. Right: Representative images of the progression of EPCs on a single
circular lFeature (300 lm radius) through a reprogramming time course.
(B) Left: Image analysis pipeline to identify metabolic and nuclear parameters using ilastik and CellProfiler software. Right: Schematic
representation of cell metabolism with NADH and FAD highlighted as the fluorescent molecules in the diagram, and molecules in bold
indicate the net direction of the reaction.
(C) Representative optical redox ratio, NAD(P)H sm, and FAD sm images (3 lFeatures selected from 36 lFeatures acquired from three
different donors) for EPC, IM, and iPSC. Color bars indicated on the right are a representation of the values optical redox ratio, NAD(P)H sm,
and FAD sm. Scale bar, 100 lm.
Single-cell quantitative analysis of (D) metabolic parameters: optical redox ratio, NAD(P)H sm, FAD sm; (E) nuclear parameters: area,
perimeter, and mean radius (n = 561, 990, and 586 for EPC, IM, and iPSC, respectively). Data are presented as median with interquartile range
for each cell type. Statistical significance was determined by one-way ANOVA using the Kruskal–Wallis test for multiple comparisons; ns for
p ‡ 0.05, * for p < 0.05, ** for p < 0.01, *** for p < 0.001, **** for p < 0.0001. ANOVA, analysis of variance; EPC, erythroid progenitor cells; FAD,
flavin adenine dinucleotide; IM, intermediate; iPSC, induced pluripotent stem cell; NADH, reduced form of nicotinamide adenine
dinucleotide; NAD(P)H, reduced form of nicotinamide adenine dinucleotide (phosphate); ns, nonsignificant.
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major component of Matrigel.49 Fluorescence imaging showed
laminin consistently within the circular lFeatures indicating uni-
form patterning of Matrigel (Fig. 1A; left). We next assessed the
ability of the lCP substrates to enable cell attachment by seed-
ing two different cell types: human dermal fibroblasts (HDFs)
and human embryonic stem cells (hESCs). We observed that
both HDFs and hESCs remained viable, attached, and confined
to the circular lFeatures indicating that the lCP substrates en-
able spatial control of cell adhesion (Supplementary Fig. S1B).

Next, peripheral blood mononuclear cells (PBMCs) were iso-
lated from healthy human donors and further enriched for
EPCs before the delivery of reprogramming factors. We exam-
ined the enrichment of EPCs by flow cytometry with erythroid
cell surface marker CD71.50 Flow cytometry confirmed the pres-
ence of enriched EPCs showing that >98% of the cells expressed
CD71 on day 10 of PBMC culture (Supplementary Fig. S1C).

To initiate reprogramming, we electroporated EPCs with four
episomal reprogramming plasmids51,52—encoding OCT4,
shRNA knockdown of p53, SOX2, KLF4, L-MYC, LIN28, and
miR302–367 cluster—and seeded them onto lCP substrates.
We assessed the ability of the lCP substrates to sustain long-
term reprogramming studies by performing high-content imag-
ing to track individual lFeatures (>30 lFeatures per 35-mm dish)
longitudinally at multiple time points over the *3 weeks of
reprogramming time course. Day 22 was chosen as the reprog-
ramming endpoint because there were several lFeatures with at
least one iPSC colony at this time point without significant out-
growth beyond the boundaries of the lFeatures.

Although the starting EPCs (day 0) are nonadherent, EPCs under-
going reprogramming start adhering to the lCP substrates on day
8. Cells in the middle of reprogramming (day 8–day 17) that lack
EPC markers or iPSC markers are broadly termed as intermediates
(IMs), consistent with prior nomenclature in the field.53 Moreover,
endpoint iPSCs on day 22 remain adhered to the lCP substrates
within each circular lFeature (Fig. 1A; right), indicating that lCP
substrates can support the full reprogramming of EPCs. Overall,
the lCP platform provides unique spatial control over cells and en-
ables high-content quantitative imaging of reprogramming.

OMI reveals metabolic states during reprogramming
Cellular metabolism plays an important role in regulating
reprogramming and pluripotency of iPSCs,54–58 and can be non-
invasively monitored through OMI. NAD(P)H is an electron
donor and FAD is an electron acceptor. Both are present in all
cells as coenzymes and provide energy for metabolic reactions.
For example, glycolysis in the cytoplasm generates NADH and
pyruvate, whereas OXPHOS consumes NADH and produces
FAD (Fig. 1B; right). Autofluorescence imaging of NAD(P)H and
FAD can thus detect the oxidation–reduction state of a cell
and is influenced by many biochemical reactions.35,59

We tracked the autofluorescence dynamics of NAD(P)H and
FAD by performing OMI on cells attached to lCP substrates at dif-
ferent time points during EPC reprogramming. In these images,
the nucleus remains dark as NAD(P)H is primarily located in cyto-
sol and mitochondria, and FAD is primarily located in mitochon-
dria. The NAD(P)H images were used as inputs for an image

analysis software, ilastik,60 to identify the nuclei. The identified nu-
clei were then used as an input for a high-content image analysis
pipeline in CellProfiler software61 to segment the cytoplasm, and
measure various metabolic and nuclear parameters (Fig. 1B; left).

Altogether, 11 metabolic parameters (NAD(P)H intensity,
INAD(P)H; NAD(P)H a1; NAD(P)H s1; NAD(P)H s2; NAD(P)H mean
lifetime, sm = a1s1 + a2s2; FAD intensity, IFAD; FAD a1; FAD s1;
FAD s2; FAD sm; optical redox ratio, INAD(P)H/[INAD(P)H + IFAD])
and 8 nuclear parameters34 (area; perimeter; mean radius
[MeanRad]; nuclear shape index [NSI]; solidity; extent; number
of neighbors [#Neigh]; distance to closest neighbor [1stNeigh])
were measured by the analysis pipeline. Supplementary
Figure S1D provides further details of each parameter.

By fixing the cultures at these time points, we verified the cell
type by immunofluorescent staining: EPCs (CD71+, Nanog�), IMs
(CD71�, Nanog�), and iPSCs (CD71�, Nanog+) (Supplementary
Fig. S1E). NAD(P)H and FAD autofluorescence imaging revealed
metabolic differences between starting EPCs, IMs, and iPSCs
(Supplementary Figs. S2 and S3).

We observed a significant increase in the optical redox ratio
(iPSC>IM>EPC) during reprogramming (Fig. 1C), indicating that
individual EPCs are more oxidized than individual IMs and
iPSCs (Fig. 1D). In addition, we noted that patterned IMs and
iPSCs have significantly higher optical redox ratios than their
nonpatterned counterparts (Supplementary Fig. S2K). This ob-
servation is consistent with previous studies that show that me-
chanical cues can regulate their relative use of glycolysis.62–65

Next, we observed that NAD(P)H and FAD lifetime compo-
nents undergo biphasic changes during the progress of reprog-
ramming. FAD lifetime components undergo a more significant
and pronounced change relative to the NAD(P)H components
(Fig. 1D and Supplementary Fig. S2A–J). On average, the fraction
of protein-bound FAD (FAD a1) first decreases from its levels in
EPCs to those in IMs and then increases during the IM to iPSC
transition, which could be reflective of the OXPHOS burst (Sup-
plementary Fig. S2H).27–29 FAD sm (Fig. 1D) is inversely related
to FAD a1 and, therefore, undergoes a biphasic change that is
opposite to that of FAD a1 (Supplementary Fig. S2H). Similar
biphasic changes occur in nuclear parameters during reprog-
ramming, which is consistent with our previous study (Fig. 1E
and Supplementary Fig. S3).34

We compared these measurements on cells undergoing
reprogramming to established cell lines and primary cell popula-
tions. Both pluripotent stem cell lines—established hESCs and
iPSC lines—have similar values for most metabolic and nuclear
parameters, as expected. The significant differences observed be-
tween hESCs and iPSCs in some metabolic and nuclear parame-
ters (Supplementary Figs. S2 and S3) may be because iPSCs
have not undergone any passages in contrast to the hESC line.24

Fibroblasts from human donors (HDFs) had metabolic param-
eters significantly different from those of EPCs (Supplementary
Fig. S2). This difference could be because (1) fibroblasts are ad-
herent whereas starting EPCs are nonadherent and (2) fibro-
blasts and EPCs have different proliferation rates and energy
needs. Taken together, autofluorescence imaging of NAD(P)H
and FAD revealed significant dynamic changes for various cell
populations during reprogramming.
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FIG. 2. Optical metabolic imaging enables the classification of cells based on their reprogramming status.
UMAP dimensionality reduction was performed on (A) all 11 metabolic and 8 nuclear parameters, (B) only 11 metabolic parameters, and (C)
only 8 nuclear parameters for each cell, projected onto two-dimensional space and enables separation of different cell types (EPC, IM, and
iPSC). Each color corresponds to a different cell type. Data are from three different donors. Each dot represents a single cell, and n = 561, 990,
and 586 cells for EPC, IM, and iPSC, respectively.
(D) Model performance of the different classifiers (random forest, simple logistic, k-nearest neighbor [IBk], naive Bayes) for iPSCs was
evaluated by ROC curves using all 11 metabolic and 8 nuclear parameters. The AUC is provided for each classifier as indicated in the legend.
(E) Parameter weights for random forest classification of EPCs, IMs, and iPSCs using the gain ratio method. Analysis was performed at a
single-cell level using three different donors.
(F) Classification accuracy with respect to number of parameters was evaluated based on the gain ratio parameter selection with the random
forest model (parameters added from highest to lowest gain ratio in (E). The number of parameters included in the random forest model is
indicated on the x-axis.
(G) Model performance of the random forest classifier for iPSCs was evaluated by ROC curves using different metabolic and nuclear
parameter combinations as labeled. AUC is provided for each parameter combination as indicated in the legend.
(H) Imaging time (left y-axis) and accuracy score (right y-axis) evaluation of the random forest classifier for different metabolic and nuclear
parameter combinations as labeled. AUC, area under the curve; OMI, optical metabolic imaging; ROC, receiver operating characteristic; UMAP,
Uniform Manifold Approximation and Projection.
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OMI enables the identification of iPSCs
with high accuracy
To visualize cell states within the entire metabolic and nuclear
morphometry data set, Uniform Manifold Approximation and
Projection (UMAP)66 was employed on the multidimensional
measurements already described. Neighbors were defined
through the Jaccard similarity coefficient computed across the
metabolic and nuclear parameters. UMAP was chosen over
t-distributed stochastic neighbor embedding (t-SNE) since
UMAP (Fig. 2A) yielded more distinct clusters for two different
known cell types—EPCs and iPSCs—than t-SNE (Supplementary
Fig. S4A). Furthermore, the UMAP algorithm took less time than
the t-SNE algorithm to implement with our data set. In addition,
UMAP can include nonmetric distance functions while preserv-
ing the global structure of the data.

UMAP was next used to visualize subsets of the entire data set
to investigate which measurements were associated with differ-
ent cell states. Distinct cell populations could be derived from
data sets built exclusively from the 11 metabolic parameters
(Fig. 2B) and data sets built exclusively from the 8 nuclear pa-
rameters (Fig. 2C). Although these UMAP representations
revealed some distinct clusters of EPCs, IMs, and iPSCs, the
UMAP generated using both metabolic and nuclear parameters
displayed less overlap of cell clusters among EPCs, IMs, and
iPSCs (Fig. 2A).

We also plotted a heatmap representation of the z-score of
metabolic and nuclear parameters at the donor level (each
row is the mean of a single donor and cell type) to examine het-
erogeneity arising from individual donors (Supplementary
Fig. S4B). Despite some donor-to-donor heterogeneity, EPCs
and iPSCs could be distinguished visually (Fig. 2A) based on a
combination of 11 metabolic and 8 nuclear parameters.

Next, classification models were developed based on 11 met-
abolic and 8 nuclear parameters to predict the reprogramming
status of cells, that is, as either EPCs, IMs, or iPSCs. Supervised
machine learning classification (naive Bayes, K-nearest neigh-
bor) and regression algorithms (logistic regression and random
forest)67 were implemented to test the prediction accuracy for
iPSCs properly when all the metabolic and nuclear parameters
are used. To protect against overfitting, various classification
methods were trained using 15-fold cross-validation on single-
cell data from three different donors with reprogramming status
assigned based on morphological characteristics.

Furthermore, we tested the various classification methods on
data collected from CD71 and Nanog immunofluorescence
staining with the same cells from three donors (completely inde-
pendent and nonoverlapping observations). Receiver operating
characteristic (ROC; one-vs-rest) curves of the test data revealed
highest classification accuracy for predicting iPSCs (area under
the curve, AUC = 0.993), IMs (AUC = 0.993), and EPCs (AUC =
0.999) when a random forest model was used (Fig. 2D and Sup-
plementary Fig. S4C, D). We thus used the random forest classi-
fication model for further analysis in this study.

Gain ratio analysis on the decision tree within this random for-
est model revealed that FAD lifetime components, FAD a1, FAD
s1, and FAD sm, are the most important parameters for classify-
ing the reprogramming status of cells (Fig. 2E). This result is con-
sistent with the observation that FAD lifetime components are
significantly different among EPCs, IMs, and iPSCs (Fig. 1 and
Supplementary Fig. S2). We then plotted the accuracy score as
a function of the number of parameters, wherein the parameters
with highest gain ratio values (Fig. 2E) were chosen (one param-
eter means FADa1; two parameters means FADa1, FADs1, and
so on).

This plot revealed that the accuracy score increases with the
number of parameters until eight parameters (FADa1, FADs1,
FADsm, perimeter, redox ratio, area, FADs2, NAD(P)Hs1) and pla-
teaus thereafter (Fig. 2F). Notably, high classification accuracy
can be achieved for predicting iPSCs (AUC = 0.944), IMs (AUC =
0.968), and EPCs (AUC = 0.987) when using only FAD lifetime var-
iables (FAD sm, s1, s2, a1; collected in the FAD channel alone)
(Fig. 2G and Supplementary Fig. S4E, F).

Imaging using only FAD lifetime parameters requires a mini-
mal time of 2.5 min per lFeature (Fig. 2H) without relying on in-
tensity parameters that are associated with higher variability.
Such variability can arise from confounding factors associated
with intensity levels, such as laser power and detector gain.
Hence, FAD lifetime parameters alone are sufficient to classify
accurately the reprogramming status of cells.

Pseudotemporal ordering of single cells resolves
cellular transitions
By sampling a process over a time course, profiles at a single-cell
level can be used to order cells along a ‘‘pseudotemporal’’ con-
tinuum. Such ordering can resolve cellular transitions during

‰
FIG. 3. Inference of reprogramming trajectories at the single-cell level reveals heterogeneity during
reprogramming.
Trajectory analysis of reprogramming EPCs constructed from the metabolic and nuclear parameters based on UMAP dimension reduction
using Monocle3 revealed four branch points, colored by (A) cell type and (B) pseudotime.
(C) Monocle UMAP plots showing clustering of reprogramming EPCs. Samples were grouped into 10 clusters. Cells colored by cluster.
(D) Heatmap representing the metabolic and nuclear parameters of 10 clusters. Each column is a separate cell group based on the
generated clusters, and each row represents a single metabolic or nuclear parameter. Z-score = (lobserved � lrow)/rrow, where lobserved is the
mean value of each parameter for each cell; lrow is the mean value of each parameter for all cells together, and rrow is the standard
deviation of each parameter across all cells. Dot plots indicating the expression of (E) FAD s1, (F) FAD a1, (G) FAD sm,
(H) NAD(P)H s2, (I) NAD(P)H a1, and ( J) NAD(P)H s2 along the pseudotime. Smooth lines are composed of multiple dots representing the
mean expression level at each pseudotime, regardless of the cell type. Four branch points are labeled on the smooth lines.
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complex processes such as organismal development.45,68 Here
we used 11 metabolic and 8 nuclear parameters to construct
pseudotime trajectories of cellular reprogramming at a single-
cell level using the Monocle3 algorithm.45,69 Monocle3 is a trajec-
tory inference method that learns combinatorial changes that
each cell must go through as a part of a process and subsequently
places each cell at its inferred location in the trajectory.

The inferred pseudotime trajectories built on our entire data set
consisted of EPCs, IMs, and iPSCs distributed across 10 clusters, 4
branching events, and 1 disconnected branch (Fig. 3A–C). The pri-
mary trajectory—colored by pseudotime and actual reprogram-
ming time points—exhibited transitions from EPCs to IMs to
iPSCs as expected (Fig. 3B and Supplementary Fig. S5A).

Trajectory inference indicated that the starting EPCs were het-
erogeneous and occupied three clusters (Fig. 3C; clusters: 1, 2,
and 3). Although cluster 2 consists of starting EPCs that undergo
reprogramming, clusters 1 and 3 constituted the disconnected
branch with EPCs that failed to progress through reprogram-
ming. iPSCs predominantly occupied two clusters (clusters 7
and 10) irrespective of the reprogramming time point, whereas
IMs belonged to several clusters (clusters 4, 5, 6, 8, and 9) with
clusters 6 and 8 concentrated at the unsuccessful reprogram-
ming branches (Fig. 3C).

Overall, these various trajectories provide a detailed map of
several cases of reprogramming heterogeneity within human
cells. For example, cells that advance right at branch points 1,
2, and 3 (Fig. 3A, B) completely reprogram to iPSCs within
25 days while cells that proceed left at branch points 1 and 3
(Fig. 3A, B) remain as IMs.

Cellular clusters that are adjacent to each other on the reprog-
ramming pseudotime axis exhibit high correlation in their pa-
rameter values: that is, EPCs (cluster: 2) have a high correlation
with early IMs (cluster: 4), whereas late IMs (clusters: 5, 6, 8,
and 9) demonstrate high correlation with iPSCs (cluster: 7)
(Fig. 3D). Moderate correlation of cells (cluster: 10) with the start-
ing EPC cluster 1 could indicate more incompletely or partially
reprogrammed cells in cluster 10 relative to the iPSCs in cluster
7. When we compared IMs that undergo reprogramming (clus-

ter: 9) and the IMs that do not reprogram to iPSCs (cluster: 6),
we noted differences in their NAD(P)H lifetime components, in-
dicating that these parameters might play a role in identifying
reprogramming cell fate.

To further examine the parameters that distinguished the cell
clusters, we performed another correlation analysis using Moran’s
I,70 which is a statistic that reports whether cells at nearby positions
on a trajectory will have similar (or dissimilar) expression levels for a
given parameter (Supplementary Fig. S5B). When the parameters
were ranked by Moran’s I, FAD lifetime parameters (FAD s1, s2,
sm) were most important in distinguishing clusters followed by
NAD(P)H lifetime parameters (NAD(P)H s2, a1, s1), in agreement
with expression level maps (Supplementary Fig. S5C–H).

This result is consistent with high gain ratio values for FAD
lifetime parameters (Fig. 2E) and the observation FAD lifetime
parameters are significantly different among EPCs, IMs, and
iPSCs (Fig. 1D). When we plotted the identified important met-
abolic parameters as a function of pseudotime, we observed
that they undergo biphasic changes during reprogramming
that could be representative of the OXPHOS burst (Fig. 3E–J).
These pseudotime trajectories complement the UMAP visualiza-
tions (Fig. 2A–C) by providing higher temporal resolution of
changes occurring during reprogramming.

Isolation of high-quality iPSCs
Although visualizing reprogramming heterogeneity at a high
temporal resolution and single-cell resolution with our methods
can be insightful, the terminal goal of any reprogramming plat-
form is to successfully isolate iPSCs that can be used for down-
stream applications. As proof of concept, we used a
combination of OMI, lCP platform, and machine learning mod-
els developed in this study to isolate high-quality iPSCs (Fig. 4).
First, we tracked the metabolic and nuclear parameters of lFea-
tures throughout the reprogramming time course using OMI
(Fig. 4A). Second, we employed our random forest classification
model to predict the reprogramming status of the tracked lFea-
tures (Fig. 4B).

‰
FIG. 4. In situ OMI of lFeatures aids in the identification and isolation of iPSCs.
(A) Representative optical redox ratio images of a single lFeature at different days through the reprogramming time course. Color bar is
indicated on the right. Scale bar, 100 lm.
(B) Stacked column bar graph showing the variation in distribution of cell types during reprogramming as classified by the random forest
model using all metabolic and nuclear parameters. The color of the bar corresponds to the cell type and the height of the bar represents
the percentage of the cell type.
(C) Violin plots showing the distribution of reprogramming pseudotime of single cells within a lFeature as a function of the actual
reprogramming time point. Middle solid line indicates median and upper, and bottom solid lines indicate the interquartile range. Statistical
significance was determined by one-way ANOVA using the Kruskal–Wallis test for multiple comparisons; ns for p ‡ 0.05, * for p < 0.05, ** for
p < 0.01, *** for p < 0.001, **** for p < 0.0001).
(D) Representative images of cell subpopulations on lFeatures at different days through the reprogramming time course, stained with
Hoechst (blue), TRA-1-60 (white), Nanog (green), and CD71 (magenta). Scale bar, 100 lm.
(E) Representative image of iPSC colony isolated from a lFeature, stained with Hoechst (nuclear dye), TRA-1-60, and Nanog (pluripotency
markers). Scale bar, 50 lm.
(F) iPSCs derived from lCP substrates show normal karyotypes suggesting that no major chromosome abnormality was present within the
cells after reprogramming.
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Third, we inferred the pseudotimes during the reprogram-
ming time course to monitor the progress of the lFeatures
along the reprogramming trajectory (Fig. 4C). Finally, we per-
formed immunostaining on the lFeatures. The reprogramming
status predictions made by the machine learning models corre-
lated well with the cell markers detected by immunostaining
(Fig. 4D).

Finally, we isolated iPSCs from the lCP culture platform
based on the predictions made by the random forest classifica-
tion model. The physical separation of lFeatures from one an-
other, combined with a high fraction of predicted iPSCs, even
up to 100% throughout the lFeature, resulted in easy picking
and isolation of iPSCs. We further confirmed that the isolated
iPSC lines expressed pluripotency markers (Fig. 4E) and
showed no genomic abnormalities (Fig. 4F), indicating that
our approach supports the generation of genetically stable
iPSC lines.

Discussion
In this study, we report a noninvasive, high-throughput, quanti-
tative, and label-free imaging platform to predict the reprog-
ramming outcome of EPCs by combining micropatterning,
live-cell autofluorescence imaging, and automated machine
learning. We can predict the reprogramming status of EPCs at
any time point during reprogramming with an accuracy of
*95% and model performance of *0.99 (AUC of ROC) using
a random forest classification model with 11 metabolic parame-
ters and 8 nuclear parameters (Fig. 2G and Supplementary
Fig. S4C–F). In addition, we provide a single-cell roadmap of
EPC reprogramming, which reveals diverse cell fate trajectories
of individual reprogramming cells (Fig. 3).

Recent evidence indicates that metabolic changes during
reprogramming include decreasing OXPHOS and increasing gly-
colysis,26,71 along with a transient hyperenergetic metabolic
state, called OXPHOS burst. This OXPHOS burst occurs at an
early stage of reprogramming and shows characteristics of
both high OXPHOS and high glycolysis, which could be a regu-
latory cue for the overall shift of reprogramming.28,29,72,73 These
changes are accompanied by alterations in the amounts of cor-
responding metabolites and have been confirmed by genome-
wide analyses of gene expression, protein levels, and metabolo-
mic profiling.53,74–76

The shifts in cellular metabolism affect enzymes that control
epigenetic configuration,77 which can impact chromatin reorga-
nization and provide a basis for changes in nuclear morphology
as well as gene expression during reprogramming.34,78–81 Con-
sistent with these studies, the redox ratio increases during
reprogramming (Fig. 1D), which could be indicative of increased
glycolysis during reprogramming.82

The changes in NAD(P)H and FAD lifetime parameters that
occur during reprogramming (Fig. 1 and Supplementary
Fig. S2) could reflect changes in quencher concentrations,
such as oxygen, tyrosine, or tryptophan, or changes in local tem-
perature and pH.35,83,84 Specifically, the biphasic changes in the
metabolic and nuclear parameters could be due to the in-
creased production of reactive oxygen species (ROS) by mito-

chondria35,59,85,86 during the OXPHOS burst. The generated
ROS could further serve as a signal to activate nuclear factor
(erythroid derived 2)-like-2 (NRF-2), which then induces hypoxia-
inducible factors (HIFs) that promote glycolysis during reprog-
ramming by increasing the expression levels of the glycolysis-
related genes.25,73,75

Moreover, the importance of FAD parameters for distinguish-
ing various reprogramming cell types (Figs. 1D and 2E) could
point to the significant changes in the mitochondrial environ-
ment during reprogramming. The differences in NAD(P)H life-
time parameters among IMs that successfully undergo
reprogramming and those that do not (Fig. 3D) may suggest a
role for molecular pathways involving NAD(P)H in impacting
reprogramming barriers and thus the end cell fate of reprogram-
ming cells.

The classification models trained on all 11 metabolic and 8
nuclear parameters had the highest accuracy. Random forest
models using only FAD lifetime parameters, in particular, yielded
comparatively high ROC AUC values (Fig. 2G and Supplementary
Fig. S4E, F). In addition, FAD lifetime parameters were more ac-
curate for predicting reprogramming status than using nuclear
parameters alone, which can be obtained using wide-field or
confocal fluorescence microscopy.

Imaging only FAD lifetime parameters instead of imaging all
the parameters significantly reduced the time of imaging from
7 to 2.5 min per lFeature (Fig. 2H). This reduction in imaging
time is especially helpful when assessing multiple lFeatures
for iPSC quality at larger scales, and lifetime measurements ben-
efit from fewer confounding factors and less variability com-
pared with intensity measurements.

Prior studies on the heterogeneity of reprogramming relied
on bulk analysis87–90 or single-cell analysis91–99 techniques.
Prior bulk analyses encountered challenges in characterizing
the variability in both the starting cell population and during
fate conversion, owing to the variable kinetics and low efficiency
of reprogramming, and single-cell techniques disrupted the cel-
lular microenvironment, resulting in significant changes in the
biophysical properties of cells undergoing reprogramming.
Our methods overcome these challenges with the combination
of a lCP culture platform, OMI, and machine learning.

First, the lCP platform dissects cell cultures undergoing
reprogramming into hundreds of cell subpopulations that en-
ables easy tracking of cells undergoing reprogramming with
imaging time as low as 2.5 min per lFeature. Circular and iso-
lated lFeatures, however, are not necessary to implement OMI.
Moreover, the lCP platform ensures an intact microenviron-
ment for reprogramming cells while enabling single-cell anal-
ysis. Second, OMI provides single-cell measurements
nondestructively to assess the influence of neighboring cells
and provides high temporal resolution for time-course studies
of reprogramming. Finally, machine learning with trajectory in-
ference is applied here to a new type of cellular measurement,
single cell metabolism. These methods excel in analyzing time
course data containing asynchronous processes within cells—
as seen in prior studies with flow cytometry and gene expres-
sion data.45,74,97,98,100 Machine learning here overcomes the
problems of reprogramming trajectories built based on absolute
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time points. Overall, these methods could aid in the identification
of somatic cells or early reprogramming cells that are refractory to-
ward reprogramming and thus increase the success rate of iPSC
generation from patient-derived primary cells.

Our methods could be adapted for industrial-scale GMP-
compliant manufacturing system. First, the lCP platform
involves direct extracellular matrix printing onto optically
clear substrates (Supplementary Fig. S1A) and does not involve
any gold coating, unlike traditional microcontact printing
methods.101,102 Therefore, the lCP platform is cost-effective
and relatively simple because it does not require cleanroom ac-
cess. Plus, our lCP platform utilizes prior advances in the field
with xeno-free and feeder-free medium, thus preventing
reprogramming inconsistencies arising from the undefined na-
ture of xeno components. Second, we used EPCs isolated from
peripheral blood as the starting cell type for reprogramming
due to their lack of genomic rearrangements and demon-
strated reprogramming ability.103,104 Moreover, peripheral
blood collection is a routine laboratory procedure. The use of
EPCs with episomal reprogramming plasmids is likely to gener-
ate genetically stable iPSCs devoid of reprogramming factors,
as seen in prior studies with EPCs103,104 and episomal plas-
mids.51,52,105,106 Third, the autofluorescence imaging tech-
nique is label-free, unlike other common methods to study
metabolism such as electron microscopy, immunocytochemis-
try, and colorimetric metabolic assays. Autofluorescence imaging
provides nondestructive real-time monitoring of live cells with
lower sample phototoxicity compared with single-photon excita-
tion.107 Taken together, the processes of lCP platform fabrication,
reprogramming, cell culture, autofluorescence imaging, iPSC
identification based on machine learning models, and iPSC isola-
tion can all be automated and extended to different reprogram-
ming methods108 (e.g., mRNA, Sendai virus), to other starting cell
types (e.g., fibroblasts, keratinocytes), to other parameters (e.g.,
cell morphology,19–21 mitochondrial structure71,76,109), and to
other processes (e.g., differentiation110–113).

Limitations of our current approach include imaging resolution,
culture duration, and per-lFeature image analysis. First, compre-
hensive three-dimensional imaging of each lFeature could pro-
vide maps at higher resolution to further dissect the metabolic
and nuclear changes occurring throughout the entire depth of
the reprogramming cultures. Second, any discrepancy in the
z-plane during OMI and confocal fluorescence image acquisition
on the same sample could lead discrepancies in the data that lead
to poor classification of cell types by the random forest models.
We mitigated this issue by programming a fixed z-plane for
both OMI and confocal fluorescence image acquisition. Third,
there is a limited duration of culture before cells overgrow within
the lFeature. This could also result in cell detachment from the
lFeature, which is difficult to image with OMI. For the reprogram-
ming experiments described here, circular features with 300 lm
radius have been used for *22 days of culture, although the
cell seeding density or micropatterned geometry34,43,101 could
be easily changed. Fourth, because our primary focus was on
identifying iPSCs that could be isolated to establish cell lines,
this study did not distinguish the diverse cell states of IMs be-
tween day 8 and day 17 of reprogramming and subtle changes

in iPSC state. For instance, the intensity levels of NANOG and
other key pluripotency transcription factors were not accounted
for in our analyses, making it difficult to distinguish between par-
tially reprogrammed cells, early and late stage iPSCs, and com-
peting cells in culture.100,114–116 Higher resolution staining for
NANOG along with additional stem cell markers (e.g., TRA-1-60,
MYC, OCT4, E-CADHERIN) could provide further insights into
the differences between cell clusters identified in our analysis.
Finally, imaging analysis was performed at different reprogram-
ming time points on a per-lFeature basis. Tracking single cells
within the lFeature during reprogramming using cell tracking al-
gorithms117 could provide insights into metabolic and nuclear
changes during reprogramming at a higher resolution.

Overall, we developed a high-throughput, noninvasive, rapid,
and quantitative method to predict the reprogramming status
of cells and study reprogramming heterogeneity. Our studies
indicate that OMI can predict the reprogramming status of
cells, which could enable real-time monitoring during iPSC
manufacturing, thereby aiding in the identification of high-quality
iPSCs in a timely and cost-effective manner. Similar technologies
could impact other areas of cell manufacturing such as direct
reprogramming, differentiation,110 and cell line development.

The Bigger Picture
Cell cultures undergoing epigenetic reprogramming are com-
plex, as cells span a broad spectrum of cell states. In this study,
we use two-photon microscopy to acquire high-dimensional
data on the nuclear and metabolic characteristics of cells and
develop machine learning models to predict reprogramming
outcomes. This analysis can offer an orthogonal approach to
investigating human somatic cell reprogramming that is
complementary to the current studies of transcript and protein
expression within reprogramming cells.

With further development, strategies using these imaging
techniques could enable a rapid, automated, and standardized
method to isolate iPSCs. This proof-of-principle study indicates
that an image-based approach in conjunction with trajectory
inference methods can elucidate cellular and subcellular
changes that accompany human cell fate transitions.

Materials and Methods
EPC isolation and cell culture
EPCs were isolated from fresh peripheral human blood that was
obtained from healthy donors (Interstate Blood Bank, Memphis, TN).
Research using purchased de-identified blood specimens are not con-
sidered human subjects research under the US Common Rule. Blood
was processed within 24 h of collection, where hematopoietic progen-
itor cells were extracted from whole blood using negative selection
(RosetteSep; STEMCELL Technologies) and cultured in polystyrene tis-
sue culture plates in erythroid expansion medium (STEMCELL Technol-
ogies) for 10 days to enrich for EPCs.

Enriched EPCs from day 10 were examined by staining with APC an-
tihuman CD71 antibody (1:100; 334107; Biolegend) and incubating for
1 h at room temperature (RT). Data were collected on Attune Nxt flow
cytometer and analyzed with FlowJo.
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Micropattern design and polydimethylsiloxane
stamp production
First, a template with the feature designs was created in AutoCAD
(Autodesk). The template was then sent to the Advance Reproductions
Corporation, MA, for the fabrication of a photomask, and a 6-inch
(0.15 m) patterned silicon (Si) wafer was fabricated by the Microtechnol-
ogy Core, University of Wisconsin-Madison, WI.118 Using soft photoli-
thography techniques, the Si wafer was spin coated with an SU-8
negative photoresist (MICRO CHEM) and exposed to UV light. The Si
mold was then developed for 45 min in SU-8 developer (Sigma) that
yielded features with a height of 150 lm. The Si mold was then washed
with acetone and isopropyl alcohol.

Elastomeric stamps used for microcontact printing were generated
by standard soft lithographic techniques. The Si mold was rendered
inert by overnight exposure in vapors of (tridecafluoro-1, 1, 2, 2-
tetrahydrooctyl) trichlorosilane. Polydimethylsiloxane (PDMS; Sylgard
184 silicone elastomer base, 3097366-1004; Dow Corning) was prepared
at a ratio of 1:10 curing agent (Sylgard 184 silicone elastomer curing
agent, 3097358-1004; Dow Corning) and degassed in a vacuum for
30 min. The PDMS was then poured over the SU-8 Si mold on a hot
plate and baked at 60�C overnight to create the PDMS stamp.

lCP well plate construction
lCP substrates were constructed based on previous studies.47,48,119 In
brief, PDMS stamps with 300 lm radius circular features were coated
with Matrigel (WiCell Research Institute) for 24 h. After 24 h, the
Matrigel-coated PDMS stamp was dried with nitrogen and placed
onto 35 mm cell culture-treated ibiTreat dishes (81156; Ibidi). A 50 g
weight was added on top of the PDMS stamps to ensure even pattern
transfer from the Matrigel-coated PDMS stamp to the ibiTreat dish.

This setup was incubated for 2 h at 37�C. The 35 mm ibiTreat dish was
then backfilled with PLL (20 kDa)-g-(3.5)-PEG (2 kDa) (Susos), a graft
polymer solution with a 20 kDa PLL backbone with 2 kDa PEG side
chains, and a grafting ratio of 3.5 (mean PLL monomer units per PEG
side chain), by using 0.1 mg/mL solution in 10 mM HEPES buffer for
30 min at RT. The ibiTreat dish was then washed with phosphate-
buffered saline (PBS) and exposed to UV light for 15 min for sterilization
to yield the micropatterned substrate.

Reprogramming
On day 10, EPCs were electroporated with four episomal reprogram-
ming plasmids encoding OCT4, shRNA knockdown of p53 (#27077;
Addgene); SOX2, KLF4 (#27078; Addgene); L-MYC, LIN28 (#27080; Addg-
ene); miR302-367 cluster (#98748; Addgene), using the P3 Primary Cell
4D-Nucleofector Kit (Lonza) and the EO-100 program.51,52 Electropo-
rated EPCs were seeded onto micropatterned substrates with erythroid
expansion medium (STEMCELL Technologies) at a seeding density of
2000k cells per dish. Cells were supplemented with ReproTeSR (STEM-
CELL Technologies) on alternate days starting from day 3 without re-
moving any medium from the well. On day 9, the medium was
entirely switched to ReproTeSR, and the ReproTeSR medium was
changed daily starting from day 10.

Isolation of iPSCs
To isolate high-quality iPSC lines, candidate colonies were picked from
micropatterns using a 200 lL micropipette tip and transferred to
Matrigel-coated polystyrene tissue culture plates in mTeSR1 medium
(WiCell Research Institute). If additional purification was required, one
additional manual picking step with a 200 lL micropipette tip was per-
formed. During picking and subsequent passaging, the culture medium

was often supplemented with the Rho kinase inhibitor Y-27632 (Sigma-
Aldrich) at a 10 lM concentration to encourage cell survival and estab-
lish clonal lines. iPSCs obtained from EPCs were maintained in mTeSR1
medium on Matrigel-coated polystyrene tissue culture plates and pas-
saged with ReLeSR (STEMCELL Technologies) every 3–5 days. All cells
were maintained at 37�C and 5% CO2.

Antibodies and staining
All cells were fixed for 15 min with 4% paraformaldehyde in PBS (Sigma-
Aldrich) and permeabilized with 0.5% Triton-X (Sigma-Aldrich) for >4 h
at RT before staining. Hoechst (H1399; Thermo Fisher Scientific, Wal-
tham, MA) was used at 5 lg/mL with 15 min incubation at RT to stain
nuclei. Primary antibodies were applied overnight at 4�C in a blocking
buffer of 5% donkey serum (Sigma-Aldrich) at the following concentra-
tions: anti-laminin (L9393; Sigma-Alrich) 1:500; TRA-1-60 (MAB4360;
EMD Millipore, Burlington, MA) 1:100; NANOG (AF1997; R&D Systems)
1:200; CD71 (334107; Biolegend) 1:100.

Secondary antibodies were obtained from Thermo Fisher Scientific
and applied in a blocking buffer of 5% donkey serum for 1 h at RT at
concentrations of 1:400 to 1:800. A Nikon Eclipse Ti epifluorescence mi-
croscope was used to acquire single 10 · images of each micropattern,
and a Nikon AR1 confocal microscope was used to acquire 60 · stitched
images of each micropattern using the z-plane closest to the micropat-
terned substrate for reprogramming studies. In brief, EPCs are identified
as CD71+; Nanog�, IMs are indicated as CD71�; Nanog�, and iPSCs are
indicated as CD71�; Nanog+.

Autofluorescence imaging of NAD(P)H and FAD
Fluorescence lifetime imaging was performed at different time points
during reprogramming by an Ultima two-photon microscope (Bruker)
composed of an ultrafast tunable excitation laser source (Insight DS+;
Spectra-Physics) coupled to a Nikon Ti-E inverted microscope with
time-correlated single-photon counting electronics (SPC-150; Becker &
Hickl). The laser source enables sequential excitation of NAD(P)H at
750 nm and FAD at 890 nm. NAD(P)H and FAD images were acquired
through 440/80 and 550/100 nm bandpass filters (Chroma), respec-
tively, using gallium arsenide phosphide photomultiplier tubes
(H7422; Hamamatsu).

The laser power at the sample was *3.5 mW for NAD(P)H and 6 mW
for FAD. Lifetime imaging using time-correlated single-photon counting
electronics (SPC-150; Becker & Hickl) was performed within Prairie View
Atlas Mosaic Imaging (Bruker Fluorescence Microscopy) to capture the
entire lFeature. Fluorescence lifetime decays with 512-time bins were
acquired across 512 · 512-pixel images with a pixel dwell time of
4.8 ls and an integration period of 60 s. Photon count rates were
*1–5 · 105 and monitored during image acquisition to ensure that
no photobleaching occurred.

All samples were placed on a stage-op incubator and illuminated
through a 40 · /1.15 NA objective (Nikon). The short lifetime of red
blood cell fluorescence at 890 nm was used as the instrument response
function and had a full-width half maximum of 240 ps. A yellow green
(YG) fluorescent bead (YG microspheres, Polysciences Inc.;
s = 2.13 – 0.03 ns, n = 6) was imaged daily as a fluorescence lifetime
standard.35,120

Image analysis
Fluorescence lifetime decays were analyzed to extract fluorescence life-
time components through SPCImage software (Becker & Hickl). A
threshold was used to exclude pixels with low fluorescence signals
(i.e., background). A bin of 3 · 3 pixels was used to maintain spatial
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resolution, the fluorescence lifetime decay curve was convolved with
the instrument response function and fit to a two-component exponen-
tial decay model, I(t) = a1e�t/s

1 + a2e�t/s
2 + C, where I(t) is the fluores-

cence intensity as a function of time t after the laser pulse, a1 and a2

are the fractional contributions of the short and long lifetime compo-
nents, respectively (i.e., a1 + a2 = 1), s1 and s2 are the short and long life-
time components, respectively, and C accounts for background light.

Both NAD(P)H and FAD can exist in quenched (short lifetime) and
unquenched (long lifetime) configurations39,40; the fluorescence decays
of NAD(P)H and FAD are, therefore, fit to two components. Fluorescence
intensity images were generated by integrating photon counts over the
per-pixel fluorescence decays.

Images were analyzed at the single-cell level to evaluate cellular het-
erogeneity.121

A pixel classifier was trained on 15 images using ilastik60 software to
identify the pixels within the nuclei in NAD(P)H images. An object clas-
sifier was then used to identify the nuclei in NAD(P)H images using the
pixel classifier along with the following parameters: Method = Simple,
Threshold = 0.3, Smooth = 1, Size Filter Min = 15 pixels, Size Filter
Max = 500 pixels. A customized CellProfiler61 pipeline was then used
to obtain metabolic and nuclear parameters. The CellProfiler pipeline
applied the following steps: Primary objects (nuclei) were inputted
from ilastik. Secondary objects (cells) were then identified in the
NAD(P)H intensity image by outward propagation of the primary
objects.

Cytoplasm masks were determined by subtracting the nucleus mask
from the cell mask. Cytoplasm masks were applied to all images to de-
termine single-cell redox ratio and NAD(P)H and FAD lifetime parame-
ters. A total of 11 metabolic parameters were analyzed for each cell
cytoplasm (Supplementary Fig. S1D): NAD(P)H intensity (INAD(P)H),
NAD(P)H a1, NAD(P)H s1, NAD(P)H s2, NAD(P)H mean lifetime (sm = a1s1

+ a2s2), FAD intensity (IFAD), FAD a1, FAD s1, FAD s2, FAD sm, optical
redox ratio [INAD(P)H/(INAD(P)H + IFAD)]. A total of eight nuclear parameters
were analyzed for each nucleus: area, perimeter, MeanRad, NSI, solidity,
extent, number of neighbors (#Neigh), and distance to closest neighbor
(1stNeigh).

Representative images of the optical redox ratio, NAD(P)H sm and
FAD sm, were computed using the Fiji software.

UMAP clustering
Clustering of cells across EPCs, IMs, and iPSCs was represented using
UMAP. UMAP dimensionality reduction66 was implemented using R
on all 11 OMI parameters (optical redox ratio, NAD(P)H sm, s1, s2, a1,
a2; FAD sm, s1, s2, a1, a2) and/or all 8 nuclear parameters (area, perimeter,
MeanRad, NSI, solidity, extent, #Neigh, 1stNeigh) for projection in two-
dimensional space. The following parameters were used for UMAP visu-
alizations: ‘‘n _neighbors’’: 20; ‘‘min_dist’’: 0.3, ‘‘metric’’: Jaccard, ‘‘n_com-
ponents’’: 2.

z-Score hierarchical clustering
z-Score of each metabolic and nuclear parameter for each cell was cal-
culated. z-Score = (lobserved � lrow)/rrow, where lobserved is the mean
value of each parameter for each cell; lrow is the mean value of
each parameter for all cells together, and rrow is the standard devia-
tion of each parameter across all cells. Heatmaps of z-scores for all
OMI variables were generated to visualize differences in each param-
eter between different cells. Dendrograms show clustering based on
the similarity of average Euclidean distances across all variable
z-scores. Heatmaps and associated dendrograms were generated in
Python.

Classification methods
Random forest, simple logistic, k-nearest neighbor (IBk), and naive
Bayes classification methods were trained to classify reprogramming
cells into EPCs, IMs, and iPSCs using Weka software.122 All data were ran-
domly partitioned into training and test data sets using 15-fold cross-
validation for training and test proportions of 93.3% (1994 cells) and
6.7% (143 cells), respectively. Cross-validation of EPCs, IMs, and iPSCs was
performed using immunostaining data. Each model was replicated 100
times; new training and test data were generated before each iteration.

Parameter weights for metabolic and nuclear parameters were
extracted using the GainRatioAttributeEval function in Weka to deter-
mine the contribution of each variable to the trained classification mod-
els. One-vs-rest ROC curves were generated to evaluate the
classification model performance on the classification of test set data
and are the average of 100 iterations of data that was randomly se-
lected from training and test sets. All the ROC curves displayed were
constructed from the test data sets using the model generated from
the training data sets.

Karyotyping
Cells cultured for at least five passages were grown to 60–80% conflu-
ence and shipped for karyotype analysis to WiCell Research Institute,
Madison, WI. G-banded karyotyping was performed using standard cy-
togenetic protocols.123 Metaphase preparations were digitally captured
with Applied Spectral Imaging software and hardware. For each cell line,
20 GTL-banded metaphases were counted, of which a minimum of 5
was analyzed and karyotyped. Results were reported in accordance
with guidelines established by the International System for Cytogenetic
Nomenclature 2016.124

Statistics
p-Values were calculated using the nonparametric Kruskal–Wallis test
for multiple unmatched comparisons with GraphPad Prism software.
Statistical tests were deemed significant at a £ 0.05. Technical replicates
are defined as distinct lFeatures within an experiment. Biological repli-
cates are experiments performed with different donors. No a priori
power calculations were performed.

Pseudotime trajectories
To order cells by pseudotime, EPCs were designated the starting point.
We used Monocle3 to define a pseudo-reprogramming time trajectory,
termed pseudotime, where cells are linearly ordered relative to their
progress or change in metabolic and nuclear parameters relative to
the starting EPC population. The lengths of the trajectory between
each branch point were used to define state by the Monocle3 algorithm
implemented in Rstudio Version 1.3.1073 as described in CodeS1.R file.
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