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Electroencephalograms (EEG) signals are of interest because of their relationship with physiological activities, allowing a
description of motion, speaking, or thinking. Important research has been developed to take advantage of EEG using classification
or predictor algorithms based on parameters that help to describe the signal behavior. Thus, great importance should be taken to
feature extraction which is complicated for the Parameter Estimation (PE)–System Identification (SI) process. When based on an
average approximation, nonstationary characteristics are presented. For PE the comparison of three forms of iterative-recursive uses
of the Exponential Forgetting Factor (EFF) combinedwith a linear function to identify a synthetic stochastic signal is presented.The
one with best results seen through the functional error is applied to approximate an EEG signal for a simple classification example,
showing the effectiveness of our proposal.

1. Introduction

Electroencephalogram (EEG) is a technique to obtain infor-
mation related to brain activity, extracting information mea-
suring electric fields from the brain, allowing obtaining
information related to the intention for different mental
activities, like motor imagery, motor planning, imagined
speech or subject identification [1]. When information from
EEG is obtained their features should be processed and used
in classification algorithms.

According to [2], neural signal oscillations are the most
important EEG characteristics to study because the rela-
tionship among specific patterns, perceptual, motor, and
emotional processes, is described by these changes. Because
of EEG stochastic characteristics, an adaptive description is
needed within the time analysis especially when changes are
neither smooth nor slow [3, 4].

Nevertheless, their neural nature makes them difficult
to analyze without using an adequate descriptor. Hence,
new EEG signal modelling techniques allow selecting spe-
cific information helping neuropathology clinical studies
[5] to obtain the parameters to be used in, for example,
classification algorithms [6] such as Fuzzy Logic Classifier
(FLC), Artificial Neural Networks (ANN), Particle Swarm
Optimization, and Sliding Modes, [1, 7–10].

In [11] the use of Time-Frequency Distributions (TFD),
Fast Fourier Transform (FFT), eigenvector methods (EM),
Wavelet Transform (WT), and Auto-Regressive Method
(ARM) is discussed, for EEG feature extraction in time and
frequency domain. Results from this comparison indicate
frequency methods may be not adequate for EEG signals
while time-frequency do not give detailed information; now
the election of one method will depend on the application
objective [4, 5, 12].
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Figure 1: Representation of the processes for the corresponding
time 𝜏.

The sampled neural signal in a mathematical sense
corresponds to a stochastic, time variant, and nonlinear
description with a specific bounded distribution function for
each clinical case. From this, the neuron is represented by a
Black Box (BB) system with only its excitation (input) and
answer (output) available without knowing what happens
inside.

Variations of Adaptive Auto-Regressive (AR) models
have been proved to be adequate to model systems, where the
number of parameters to determine depends on the model
order. Othermethods include Recursive Least Squares (RLS),
Least Mean Squares (LMS), and Kalman Filter (KF) and their
variations [9, 12–15]. In general algorithms by themselves are
not adequate when abrupt changes are presented, giving rise
to hybrid or correction forms such as Forgetting Factor (FF)
[16]. The great importance of the identifier lies in describing
the internal time system evolution and observing its stability
and stationary properties [3, 9, 17].

Considering computational operation latencies shown in
Figure 1, the time interval between two consecutive output
system steps makes the estimation-identification process
achievable and feasible to add a second stage in the same
interval, obtaining a recursive version using the Exponential
Forgetting Factor (EFF) to modify the first identification.

A previous EFF analysis using (1) from [18] about the
identification experiment was developed in [19], showing its
effectivenesswhenusing the sign function to give a correction
factor, decreasing the identification error when implemented
in nondeterministic signals:

EFF𝑡 = sign (𝐴 𝑡) 𝑒sign(𝐴𝑡)𝑒𝑡 , (1)

where 𝐴 𝑡 is the parameter estimated on average [20].
Equation (1) has been proved only for point to point

corrections, integrating a second stage operation after the first
developed on average, as shown in Figure 2.

Searching for a better identification, three different imple-
mentation cases of additional correction stages inside the
second correction indicated in Figure 2 (dashed line) are
compared. To accomplish this task, expression (1) is modified
to create a recursive description for 𝑦𝑡, based on stochastic
input 𝑤𝑡, interacting in (2) and leading to the identification
error 𝑒𝑡 (3). Applying modifications in (1) the new parameter
(4) is described and used instead of𝐴 𝑡 in (2), obtaining a new
identification and identified error.

𝑦𝑡 = 𝐴 𝑡𝑤𝑡 (2)

𝑒𝑡 = 𝑦𝑡 − 𝑦𝑡 (3)

̂̂𝐴𝑡 = 𝐴 𝑡 + EFF𝑡 − sign (𝐴 𝑡) . (4)

The obtained algorithms are proved using in the first-place
sinusoidal signals and, then, the one with better results is
applied to a synthetic amplitude and frequency variation.

2. Recursive Exponential Forgetting Factor
(REFF) Comparison

For the following algorithms, their effectiveness is analyzed
by comparing their corresponding recursive EFF parameters
estimation and identifications with respect to the reference in
Figure 3, whose sinusoidal shape (Figure 3(b)) is given by the
parameters viewed in polar representation (Figure 3(a)).

The purpose of describing the parameters in a polar graph
is to determine if they lead to instability problems due to
their values. The identification is considered unstable and
nonadequate when the estimation parameters go out of the
unitary circle giving an overpass to the reference boundaries.

2.1. Recursion through the Previous Estimated Parameter. The
first approach is by considering an instant 𝑡 and the previous
corrected estimated parameter ̂̂𝐴𝑡−1 based on the estimated
parameter 𝐴 𝑡. For the second identification stage in (4) the
estimation is described as ̂̂𝐴𝑡 in the iteration 𝑡 as in (5). Results
are shown in Figure 4.

̂̂𝐴𝑡 = ̂̂𝐴𝑡−1 + EFF𝑡 − sign (̂̂𝐴𝑡−1) . (5)

2.2. Recursion through the Mean between the Previous and
Actual Estimated Parameter. Continuing with (4) as the base,
now the average estimated parameter for instant 𝑡 and the
delayed 𝑡 − 1 corrected estimation as in (6) is considered.
Results are shown in Figure 4.

̂̂𝐴𝑡 = ̂̂𝐴𝑡−1 + 𝐴 𝑡2 + EFF𝑡 − sign( ̂̂𝐴𝑡−1 + 𝐴 𝑡2 ) . (6)

Notice in cases (a) and (b) a third stage is added to the process,
having first the simple average approximation; secondly the
EFF𝑡 correction and the second parameters correction are
made.

From Figure 4, it is possible to see that the identification
using cases (a) and (b) is not adequate because every time the
reference changes its concavity converging, it becomes more
difficult, leading to undesirable peaks [15].

2.3. Iterative EFF-Estimation. In Figure 2 the dashed lines
represent the first EFF correction; the same stage at the end
of the process (7) is iteratively added, valid for 𝑛 ≥ 2, having𝑎𝑡,1 = 𝐴 𝑡 and EFF𝑡,1 = sign(𝐴 𝑡)𝑒sign(𝐴𝑡)𝑒𝑡 as the initial
conditions, where 𝑛 is the number of iterations made for the
signal instant 𝑡, being 𝑛 = 1 the average stage.

EFF𝑡,𝑛 = sign (𝑎𝑡,𝑛) 𝑒sign(𝑎𝑡,𝑛)𝑒𝑡,𝑛 , (7)
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Figure 2: Block diagram for two stages into the estimation-identification process using a recursive averagemethod (first) and the EFF (second,
dashed line).
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Figure 3: Reference parameters (a) and the output signal (b) to be identified.
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Figure 4: Identification using the estimation from case (a).
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Figure 6: Identified signal applying case (c) for 𝑛 = 10, from 2 to 10.

where 𝑎𝑡,𝑛 and 𝑒𝑡,𝑛 are defined as (8) and (9), respectively.

𝑎𝑡,𝑛 = 𝑎𝑡,𝑛−1 + EFF𝑡,𝑛−1 − sign (𝑎𝑡,𝑛−1) (8)

𝑒𝑡,𝑛 = 𝑦𝑡 − 𝑦𝑡,𝑛. (9)

Considering 𝑦𝑡,𝑛 as the identified signal after 𝑛 iterations of
the EFF and 𝑦𝑡 as the output reference signal with input 𝑤𝑡,
then (9) could be defined as

𝑒𝑡,𝑛 = 𝑦𝑡 − 𝑎𝑡,𝑛𝑤𝑡
= 𝑦𝑡 − [𝑎𝑡,𝑛−1 + EFF𝑡,𝑛−1 − sign (𝑎𝑡,𝑛−1)] 𝑤𝑡. (10)

Unlike cases (a) and (b), this last one changes in estimating
not only the parameter, but also the EFF, correcting 𝑛
times the parameters to improve the identification signal
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Figure 7: Comparison of the functional error 𝐽𝑡 obtained from the
identified signals from Figure 6.

convergence, as seen in the block diagram for case (c) shown
in Figure 5.

The question now lies in how many iterations would
be necessary to obtain an adequate convergence rate with-
out having redundancies in data. The answer could vary
according to what is most important from one application to
another; thus, the reduction of the error is one of the main
objectives in identification tasks.

Thus, to verify the effectiveness of correction through the
EFF, first the identified signals for 𝑛 = 2 to 𝑛 = 10 were
obtained and ten simulations as shown in Figure 6.

Figure 6 shows that when increasing the 𝑛 iterations, the
identification is closer to the reference. Here is where the
decision to increment the iterations depends on the desired
accuracy level. To better appreciate the approximation errors,
Figure 7 includes the functional error 𝐽𝑡, in agreement with
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Figure 8: Resemblance errors and functionals, from consecutive
EFF iterations.

[21], with respect to previous closer identifications, as viewed
in Figure 7.

The second process identifies a better convergence, as
shown in Figure 7, where the error between the first and sec-
ond iteration is remarkably reduced, as between the second
and third, and so on. To have a better visualization from the
differences between the results obtained in every iteration,
Figure 8 shows the relation (11), expressed in percentage,
which indicates how similar the results are in each iteration
based on the functional error.

𝑅𝐽𝑛/𝐽𝑛−1 = 𝐽𝑡,𝑛𝐽𝑡,𝑛−1 × 100%. (11)

From iteration 7, the resemblance between it and the previous
is above 99.8%,meaning the difference would be insignificant
depending on the application.On the other hand, considering
the magnitude errors obtained from this same iteration, they
are less than 3% with respect to the original signal.

3. Parameter Estimation Example

Our proposed example task is to approximate an EEG ref-
erence with changes in concavity and frequency with added
noise, as those illustrated in [5, 22]. The reference signal is
described as follows in (12), where 𝑡 is the time evolution in
seconds with sample frequency of 100Hz, 𝑓𝜃 = 7, 𝑓𝛽 = 25,𝑓𝛼 = 15, and 𝑓𝛾 = 40, as shown in Figure 9.

𝑦𝑡 =
{{{{{{{{{{{{{{{{{{{{{

2𝑡0.5 sin (2𝜋𝑓𝜃𝑡) 𝑡 ∈ [0, 2)
𝑡0.5 sin (2𝜋𝑓𝛽𝑡) 𝑡 ∈ [0, 4)
2𝑡0.25 sin (2𝜋𝑓𝛼𝑡) 𝑡 ∈ [0, 6)
3𝑡0.25 cos (2𝜋𝑓𝛾𝑡) 𝑡 ∈ [0, 8)
0 otherwise.

(12)

The estimation process generates the adequate parameters
described symbolically as𝐴 𝑡 in each sampled point for time 𝑡,
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Figure 9: Reference signal described in (10), with evolution time 𝑡
and sample frequency 100Hz.
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Figure 10: Identifications of the reference signal from Figure 9
applying an average identification and 10 iterations using recursive
EFF.

approximating a linear variant function (2) to (12), which has
stochastic properties, having variations in amplitude and fre-
quency. The identification is composed of various iterations
and the results are presented comparing the identifications
with the proposed reference signal shown in Figures 10 and
11, observing the functional errors evolution.

In a Black Box (BB) system the relationship between the
internal and external parameters cannot be made directly
because the internal evolution is unknown, as would happen
with real signals. Nevertheless, the parameters are important
because they could be analyzed to obtain special features
from EEG signals which are difficult to obtain for nonlinear
signals. In fact, the obtainment of those parameters is the
objective of the proposed technique. Figure 12 presents the
parameters obtained using the estimation, for the simple EFF
and its iterative description considering 𝑛 = 5, 8, and 11
iterations, which are representative when adding more than
one correction step.
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From Figure 12, it is determined that the parameters have
variable characteristics for each sampled point. The variation
between the average estimation and the simple EFF (𝑛 = 2)
estimation is noticeably as in size and in direction. On the
other hand, between the simple EFF and the other iterations
the estimated parameters are similar in direction, presenting
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Figure 13: Sampled signals for Counting tasks, taken from [8, 9], for
subject 1, considering 6 EEG channel and 1 EOG.

changes with the characteristic of never being able to leave
the reference, maintaining the stability identification.

3.1. Estimation of EEG Signals. As a second part of the test,
the estimation-identification process is applied to sampled
signals taken from [7, 23], which are for subject 1 from
6 Electroencephalogram (EEG) and one Electrooculogram
(EOG) channels for different activities. The objective is to
apply the EFF iterative description from case (c) to obtain the
parameters that allow the approximation by using (2). The
reference data as in Figure 13 have 10 seconds of recording
with a sampling frequency of 250Hz, obtaining in total 2500
samples representing instants 𝑡. The results of applying the
average description and 5 and 10 iterations of the EFF are
shown in Figure 14.

In Figure 14, signals from Figure 13 are separated to
improve the convergence to each. These are different from
one another. Having different signals is useful to determine
the fact that the identification using the EFF is adequate
for chaotic nonstationary cases, such as the EEG or EOG,
presented in this work. To conclude, the measured error is
viewed as the functional errors average from the seven signals
for each estimation as shown in (13), where 𝑛 is the number
of iterations. Results are given in a polar graph in Figure 15,
observing functionals errors that tend to zero in all corrected
approximations, having a better performance when more
iterations are applied.

𝐽𝑇𝑛 = 𝐽EEG1𝑛 + 𝐽EEG2𝑛 + ⋅ ⋅ ⋅ + 𝐽EEG6𝑛 + 𝐽EOG1𝑛7 . (13)

3.2. Classification of EEG Signals. In the previous section,
the EEG signals parameter estimation was possible. Then
we present the application of the estimated parameters into
the classification of EEG signals viewed in our case as
a stochastic system with multioutput EEG responses. For
different instances, we consider the same database used in
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Figure 16: Four tasks defined by six EEG signals distributions with their representative mean distributions.

Section 3.1 [7, 23] and the estimation-identification process
with iterative EFF iterating 10 times.

The regarded four tasks are multiplication (Task 1), letter
(Task 2), rotation (Task 3). and counting (Task 4). For each
task, six EEG channels (1 to 6) are considered having specific
distributions as seen in Figure 16, which presents the normal-
ized signals distributions divided into ten principal intervals
between [−1, 1], for a better appreciation. The average of
the six distributions signals for every task was obtained and
presented also in Figure 16. The mean distribution is the
representative one to be used as the base for the stochastic
EEG classification.

For a specific task, when identifying its six signals, their
corresponding distributions could be obtained as well as
the mean identified representative distribution. The classi-
fication is made by comparing the four base distributions
from Figure 16 to the mean identified and determining the
convergence error between them. The assignment is then for
the taskwhere theminimumerror is found. Figure 17 presents
four different instances.

In Figure 17 the similarities between the identification of
different tasks are seen. For example, within instance 1, the
identified distribution is closer to Task 1 than to the others, so
that it is possible to say that the identification corresponds
to it. To quantify how close they are, the recursive error
functional [21] based on the second probability moment
considering the errors from the distribution comparison is
calculated and presented in Figure 18 for each instance.

From Figure 18, the minimum cumulative error corre-
sponds to the correct assigned classification. On the other
hand, Table 1 represents a decision chart based on the errors
for the four instances, summarizing the classification process
tominimum error identification, obtaining good results in all
considered instances.

4. Conclusion

The results obtained for cases (a) and (b) are obvious because
the changes are made considering the past, and the EFF
description is for actual information. Therefore, the use of
previous parameters would break the convergence after using
the parameter obtained with the EFF leading to a poorer
convergence.

For case (c) it could be said that special care must be
taken when the time is important to obtain the identification
because having more iterations, and in consequence less
error, implies more execution time. However, the latency is
big enough to allow a considerable number of iterations,
modifying the EFF, and then the parameter as in case (c),
from iteration 7 (as shown in Figures 7 and 8), results in
better correction than that obtained by modifying only the
parameters.

The estimation-identification process is adequate for
nonlinear signals, such as those obtained from EEG. The
importance of describing these signals lies in the description
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Figure 17: Comparison between the base EEG signal distributions and four identified signals instances.
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Figure 18: Functional errors comparing the EEG base and identified distributions from Figure 17.

of possible missing information when drastic changes in
concavity and frequency are given. Even when in this paper
only time-variant analysis is shown, the reconstruction of
chaotic signals gave good results in comparison with a simple
average approach, as seen in Figure 14.

Even when the main objective of this work is the parame-
ter estimation, a simple classification test has been performed
to demonstrate one possible use of the parameters obtained
by using our technique, achieving good results is the four
presented instances (Table 1).
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Table 1: Classification of different instances of EEG signals considering the minimum error viewed as a decision chart from the cumulative
errors.

Instance Task 1 Task 2 Task 3 Task 4 Minimum error Classification
1 001.10 485.26 772.26 525.93 001.10 Task 1
2 485.26 001.43 326.76 105.10 001.43 Task 2
3 772.26 325.10 0.4333 252.10 0.4333 Task 3
4 525.93 105.10 252.76 0.4333 0.4333 Task 4

As future work, comparisons using more real signals
should be performed, and finally, the obtained parameters
could be helpful to create a database and obtain more
characteristics to create useful synthetic signals and prove the
effectiveness of new methods or techniques.
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“Estimador estocástico para un sistema tipo caja negra,” Revista
Mexicana de Fı́sica, vol. 57, no. 3, pp. 204–210, 2011.

[5] M. X. Cohen, “Where does EEG come from and what does it
mean?”Trends in Neurosciences, vol. 40, no. 4, pp. 208–218, 2017.

[6] Y. Li, M.-L. Luo, and K. Li, “A multiwavelet-based time-varying
model identification approach for time-frequency analysis of
EEG signals,” Neurocomputing, vol. 193, pp. 106–114, 2016.
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