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miR-194-5p/BCLAF1 deregulation in AML tumorigenesis
C Dell’Aversana1,2, C Giorgio2, L D’Amato2, G Lania1, F Matarese3, S Saeed3,4, A Di Costanzo2, V Belsito Petrizzi5, C Ingenito5,
JHA Martens2,3, I Pallavicini6, S Minucci6, A Carissimo2, HG Stunnenberg3 and L Altucci1,2

Deregulation of epigenetic mechanisms, including microRNA, contributes to leukemogenesis and drug resistance by interfering
with cancer-specific molecular pathways. Here, we show that the balance between miR-194-5p and its newly discovered target
BCL2-associated transcription factor 1 (BCLAF1) regulates differentiation and survival of normal hematopoietic progenitors. In acute
myeloid leukemias this balance is perturbed, locking cells into an immature, potentially ‘immortal’ state. Enhanced expression of
miR-194-5p by treatment with the histone deacetylase inhibitor SAHA or by exogenous miR-194-5p expression re-sensitizes cells to
differentiation and apoptosis by inducing BCLAF1 to shuttle between nucleus and cytosol. miR-194-5p/BCLAF1 balance was found
commonly deregulated in 60 primary acute myeloid leukemia patients and was largely restored by ex vivo SAHA treatment. Our
findings link treatment responsiveness to re-instatement of miR-194-5p/BCLAF1 balance.

Leukemia (2017) 31, 2315–2325; doi:10.1038/leu.2017.64

INTRODUCTION
MicroRNAs (miRNAs) are endogenous, single-stranded, non-
coding RNAs ~ 18–22 nucleotides long. miRNAs have gene
regulatory capability as they are important regulators of post-
transcriptional gene expression. miRNAs do not shut down gene
expression, but rather fine-tune target’s expression level.1 By
targeting multiple genes simultaneously, single (or families of)
miRNAs can redirect biological pathways, balancing development,
differentiation, apoptosis, stemness and proliferation.1,2 miRNA
functions are cell-, tissue- and disease-specific.3

A global imbalance of miRNA expression (and function) was
reported in both solid and hematological malignancies4 including
acute myeloid leukemia (AML).5 AML includes genetically diverse
malignancies characterized by frequent chromosome transloca-
tions and variable response to treatment.6,7

Promising clinical approaches involve the use of drugs able to
modulate deregulated epigenetic processes, such as histone
deacetylase inhibitors (HDACi). HDACi were shown to revert the
aberrant cancer-associated epigenetic state8,9 by regulating gene
and miRNA expression in several solid tumors10–12 and hemato-
logical cancers.13 It was demonstrated that some HDACi exert
beneficial sensitizing effects in current medical treatments
although the mechanisms of sensitization are not well
understood.14,15

Here, we identify and characterize the mechanism(s) by which
miR-194-5p and its target BCL2-associated transcription factor 1
(BCLAF1) regulate cell cycle progression and differentiation fate.
We show that miR-194-5p triggers BCLAF1 downregulation,
establishes an euchromatic state typical of differentiating cells,
and is associated with improved differentiation ability and
response to drugs. We found that miR-194-5p/BCLAF1 balance is
deregulated in AML cell lines and ex vivo primary AML blasts, and
can at least partially be restored by ex vivo treatment with the
well-known HDACi SAHA.

MATERIALS AND METHODS
Chemical compounds
SAHA (SAHA, Merck, Kenilworth, NJ, USA) and Entinostat (MS275, Alexis
Biochemicals, Roma, Italy) were dissolved in DMSO (Sigma-Aldrich, Milano,
Italy) and used at 5 μM. Etoposide (Teva, Castleford, UK) was used at 34 μM;
all-trans retinoic acid was used at 1 μM; valproic acid (Sigma-Aldrich) was
used at 1 mM.

Cell line studies
U937, NB4, K562 and Molm-14 cells (DSMZ) were grown in RPMI 1640
medium (EuroClone) supplemented with 10% heat-inactivated fetal bovine
serum (Sigma-Aldrich), 1% glutamine (EuroClone), 1% penicillin/strepto-
mycin (EuroClone) and 0.1% gentamycin (EuroClone), at 37 °C in air
containing 5% CO2. KASUMI-1 (DSMZ) cells were grown similarly but with
20% fetal bovine serum (Sigma-Aldrich). HeLa and Kelly (DSMZ) cells were
grown in DMEM medium (EuroClone) supplemented with the same
components described above and in the same incubation conditions.

AML ex vivo samples
AML blasts and CD34+ cells were recovered from peripheral blood or bone
marrow and purified by Ficoll density gradient separation (Sigma-Aldrich):
after centrifugation at 1250 rpm for 25 min the layer of mononuclear cells
was diluted in cell culture medium and further centrifuged for 5 min at the
same speed. Cell pellet was dissolved in RPMI 1640 (EuroClone) enriched
with 20% heat-inactivated fetal bovine serum (Sigma-Aldrich), 1%
glutamine (EuroClone), 1% penicillin/streptomycin (EuroClone) and 0.1%
gentamycin (EuroClone), and kept at 37 °C in air containing 5% CO2. AML
blasts were treated with SAHA at 5 μM concentration for different times. All
experiments were approved by the Second University of Naples ethical
committee.

Purification and culture of mouse hematopoietic stem/progenitor
cells
For in vitro experiments, total bone marrow was flushed out from femurs
and tibia of 8-week-old wild-type C57BL/6 mice. The lineage-negative
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fraction was purified using the Lineage Cell Depletion Kit (Miltenyi Biotec,
Calderara di Reno, Italy), according to manufacturer’s protocol. Lineage-
depleted (Lin− ) bone marrow progenitor cells were plated and cultured as
previously described.16

DNase-seq analysis
DNase I libraries were prepared for UmiR-194-5p and Usc cells as
described.17 In brief, nuclei were isolated and treated for 3 min with
DNase I. The reaction was stopped with stop buffer (50 mM Tris-HCl pH 8,
100 mM NaCl, 0.10% SDS, 100 mM EDTA pH 8.0, 1 mM spermidine, 0.3 mM

spermine). The sample was further fractionated on a 9% sucrose gradient
at 25 000 rpm for 24 h at 16 °C. Fractions containing fragments smaller
than 1 kb were purified and processed according to the Illumina library
preparation protocol. Hotspots (DNAse I accessibility regions) were called
as reported.18 Cutoff was set based on region size selection (4300 bp),
ratio (three-fold) and tag total 430.
Additional details on cell culture, and molecular and cytological

techniques used are provided in the Supplementary Methods.

RESULTS
miR-194-5p expression is increased by the HDACi SAHA in AML
cells
HDACi are currently used as chemosensitizers against cancer. To
investigate the mode of action of HDAC sensitization in
therapeutic treatment of leukemia cells, we assessed whether
HDACi modulate miRNA expression in AMLs. We treated four AML

cell lines (NB4, U937, K562 and KASUMI-1) with SAHA (5 μM, 6 h)
and determined miRNA expression changes. We identified a
cluster of 18 miRNAs commonly modified at least in two of the
four cell lines (Supplementary Table S1). Two miRNAs, miR-194-5p
and miR-92a-1* were identified as most significantly altered upon
SAHA treatment and in all cell lines (P-value ⩽ 0.01); their
expression was up- and downregulated, respectively, (Figure 1a;
Supplementary Figure S1A). The expression level of several
miRNAs was validated by quantitative PCR (data not shown). We
focused on miR-194-5p as it showed a significant increase in
response to SAHA in all four AML cell lines.

BCLAF1 is a new target of miR-194-5p
To identify targets of miR-194-5p, we interrogated three predic-
tion databases (TargetScan, PicTar and miRanda), yielding a list of
119 commonly predicted potential target genes (Supplementary
Table S2). We then performed gene expression microarray
profiling and identified 240 genes commonly regulated in U937,
NB4 and K562 cells upon SAHA treatment, 120 of which were
upregulated and 118 downregulated. Intersecting the experimen-
tally defined 118 commonly downregulated genes with the 119
predicted miR-194-5p target genes identified a single hit: BCLAF1
(Figure 1b). miR-194-5p and BCLAF1 expression in response to
SAHA treatment was inversely correlated, as validated by
quantitative PCR (Supplementary Figure S1B).
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Figure 1. miR-194-5p is regulated by SAHA treatment in AML cell lines and regulates its new target, BCLAF1. (a) Fold change of microarray
expression levels in log2 scale of two miRNAs commonly altered in four AML cell lines treated with SAHA compared to untreated control
(P-value⩽ 0.01). (b) Venn diagram showing 119 downregulated genes after SAHA treatment in each AML cell line and 118 predicted target
genes of miR-194-5p. BCLAF1 gene is the only downregulated predicted target gene. (c) Luciferase activity levels in U937 cells transfected with
pGL3- BCLAF1 3'-UTR wild type (WT) and mutated (MUT) (1 μg), pre-miR-194-5p (100 nM) and pre-miR-scramble (100 nM) for 24 and 48 h.
**P ⩽ 0.01; ***P ⩽ 0.001.
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To determine whether BCLAF1 is a target of miR-194-5p in AMLs,
we transiently overexpressed miR-194-5p in both U937 and NB4
cell lines. At 48 h after transfection, expression of BCLAF1 was
strongly reduced upon miR-194-5p overexpression compared to
miR-negative and carrier controls (Supplementary Figure S1C and D).
We then cloned the predicted homologous seed region of
miR-194-5p in the BCLAF1 3'-UTR in pGL3 control vector down-
stream of the luciferase gene and transfected the construct in
U937 and HeLa cell lines. In these two different cell systems, a 60
and 90% reduction in luciferase activity was achieved, respectively
(Figure 1c; Supplementary Figure S1E). The inverse correlation
between miR-194-5p and BCLAF1 was further corroborated in
SAHA-treated AML cells both at RNA and protein level at longer
time (Supplementary Figures S1F and G). These results provide
unambiguous evidence that miRNA-194-5p binds to the BCLAF1
3'-UTR to negatively regulate its expression.

miR-194-5p/BCLAF1 regulates cell cycle progression and apoptosis
in AML cells
To elucidate the functional role of miR-194-5p, we mimicked
SAHA-induced miR-194-5p expression through its stable re-
expression in U937 cells (UmiR-194-5p). UmiR-194-5p-expressing
lines (n= 10) displayed negative regulation of BCLAF1 at both gene
and protein level (Supplementary Figure S1H). All tested clones
shared these features. Comparative genomic hybridization (CGH)
array of UmiR-194-5p and scramble (Usc) cells did not show

chromosomal rearrangements (Supplementary Figure S2A).
UmiR-194-5p cells exhibited an altered global transcriptome
compared to Usc cells (Supplementary Figures S2B and C;
Supplementary Table S3).
Interestingly, UmiR-194-5p cells treated with SAHA displayed a

large increase in the percentage of cells in pre-G1 phase
(Figure 2a). The transcriptome upon SAHA treatment
(Supplementary Figure S2D) highlighted regulation of apoptosis,
RNA processing and biogenesis, regulation of myeloid cell
differentiation and ribosome biogenesis (Supplementary
Figure S2E; Supplementary Table S4). In agreement, Caspase 8
and 9 protein levels increased after SAHA stimulation
(Supplementary Figure S2F), with a very concordant increase in
Caspase 8 activity and an additional Caspase 9 activation (1.5- and
4.2-fold, respectively) (Figure 2b). These data were extended by
the use of inhibitors of Caspase 9 (Z-LEHD-FMK) and 8 (Z-IETD-
FMK). Blocking Caspase 9 activity in SAHA-treated cells completely
abolished apoptosis in UmiR-194-5p cells, supporting a prepon-
derant activation of Caspase 9-dependent pathways (Figure 2c).
Increased reactive oxygen species production in SAHA-treated
UmiR-194-5p cells corroborated the preferential activation of
Caspase 9-dependent apoptosis (Supplementary Figure S2G). In
agreement, re-expression of miR-194-5p in additional AML cells
such as the Molm-14 cell line influences SAHA sensitivity inducing
an increase of percentage of cells in pre-G1 phases
(Supplementary Figure S2H). UmiR-194-5p cells also exhibited a
better response to ‘classical’ chemotherapeutic agents such as
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etoposide (Supplementary Figure S2I). Taken together, our
findings suggest a role for miR-194-5p in modulating drug
response and susceptibility.

miR-194-5p/BCLAF1 controls dendritic differentiation commitment
Gene ontology (GO) analysis also indicated a role for miR-194-5p in
differentiation, suggesting a potential link between AML differentia-
tion block and miR-194-5p (Supplementary Figures S2B and C). To
investigate this hypothesis, we treated Usc cells with different drugs
known to preferentially induce differentiation: SAHA, valproic acid,
all-trans retinoic acid and MS275 (also known as SNDX-275 or
entinostat). We selected MS275 to evaluate the impact of miR-194-
5p re-expression on AML cell differentiation as (i) it displayed higher
differentiating potential (Supplementary Figure S3A) and (ii) is an
HDACi reported for pro-differentiation action, as in some settings
induce maturation before apoptosis.19–21

First, we verified morphological changes in UmiR-194-5p
compared to Usc cells by measuring cell size (269.29 and
467.08 μm, respectively). Surprisingly, MS275 treatment of
UmiR-194-5p cells resulted in a large increase in differentiated
cells compared to Usc cells, as demonstrated by nitroblue
tetrazolium assay (Supplementary Figure S3B). In agreement,
UmiR-194-5p cells after MS275 treatment revealed features
strongly reminiscent of dendritic cell morphology
(Supplementary Figure S3C). Immunofluorescence microscopy of
cytoskeletal actin filaments indicated that UmiR-194-5p cells form
pluri-filaments of actin already after 5 min, actively polarizing

F-actin at 15 min, and develop defined lamellipodia and filopodia
structures at 6 and 24 h of MS275 treatment (Figure 3a).
The dendritic cell phenotype of UmiR-194-5p cells prompted us

to investigate the expression of a human macrophage and
dendritic marker, CD68. The number of CD68-expressing cells was
higher in UmiR-194-5p than in Usc cells (47% and 10%,
respectively), with 100% positive cells after MS275 treatment
(Figure 3b). The specific dendritic marker CD80 was also expressed
in 39% of UmiR-194-5p cells following MS275 treatment, whereas
only 1.68% of Usc cells became CD80-positive (Figure 3b). Using
granulocyte macrophage colony stimulating factor and interleu-
kin-4, and stimulation with lipopolysaccharides medium to induce
dendritic maturation,22 UmiR-194-5p but not Usc cells expressed
CD80 and concomitantly secreted interleukin-12 (Figure 3b), thus
strengthening the notion that miR-194-5p re-expression directs
differentiation commitment to dendritic cells.
Analysis of transcriptome profiles revealed 80 activated and two

downregulated genes upon MS275 treatment of UmiR-194-5p
cells (Supplementary Table S5). GO analysis showed activation of
genes involved in immune response via MHC class II, a distinct
characteristic of dendritic differentiation (Figure 3c;
Supplementary Table S6). Mechanistically, miR-194-5p-expressing
cells downregulated BCLAF1, triggering an increase in reactive
oxygen species (Supplementary Figure S2G) and higher Ca2+

production (Supplementary Figure S3D). Upon MS275 treatment,
Ca2+ production was further increased. This state triggers
activation of MHC class II gene promoters (Supplementary
Figure S3E) and is also associated with higher expression and
modulation of CIITA gene23 (Supplementary Figure S3F). Similarly
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to UmiR-194-5p cells, U937 BCLAF1 knockdown cells (UKDBCLAF1)
do not display a significant alteration of cell cycle (Supplementary
Figures S4A–C) but are more sensitive to SAHA treatment
(Supplementary Figure S4D), showing a general reversion of the
leukemic phenotype with drastically reduced growth and number
of AML–colony-forming unit (Supplementary Figure S4E). In
support, UKDBCLAF1 acquire features congruent to dendritic cell
morphology, directly reminiscent of the UmiR-194-5p cells, even
more after MS275 differentiation (Supplementary Figure S4F). In
the opposite direction, BCLAF1 overexpression in U937 cells
(UOverBCLAF1) increases proliferation and seem to lead to a
certain resistance to SAHA (Supplementary Figures S4C and D).
Finally, BCLAF1 actively enhanced tumorigenicity, as
UOverBCLAF1 cells AML–colony-forming unit were increased in
number and dimensions (Supplementary Figure S4E). Rescuing
BCLAF1 expression in UmiR-194-5p reversed the effects induced
by miR-194-5p overexpression, thus causally linking the connec-
tion of the miR-194-5p/BCLAF1 module (Supplementary Figures
S5A–C). These features were commonly modulated also by
different HDACi and other differentiating drugs (Supplementary
Figure S5D ).
Interestingly, by inhibiting miR-194-5p function using engi-

neered U937-miArrest-194-5p (UmiR-194-5p-Arrest) cells, we

corroborated miR-194-5p direct regulation of BCLAF1 and the
effects on cell cycle progression (Supplementary Figures S6A and B).
The majority of genes modulated by miR-194-5p re-expression
displayed opposite trends in UmiR-194-5p-Arrest cells, suggesting
a very specific role (and dosage effect) for miR-194-5p in
controlling differentiation (Supplementary Figure S6C). Specific
miR-194-5p repression in AMLs appears to be closely linked to
maturation block, a characteristic of acute leukemias. Taken
together, these data show that miR-194-5p via targeting BCLAF1
commits cells to dendritic cell differentiation.

miR-194-5p/BCLAF1 impacts on chromatin accessibility in AML
Evidence that miR-194-5p/BCLAF1 equilibrium impacts on matura-
tion, cell fate and susceptibility to anticancer treatment, together
with the suggested role of BCLAF1 as a transcription factor,24 led
us to speculate that the miR-194-5p/BCLAF1 module might affect
chromatin state. Although the karyotype of UmiR-194-5p cells did
not reveal significant chromosomal rearrangements (Supple-
mentary Figure S2A), a substantial increase in K9/K14 and K27
acetylation on histone 3 was detected (Figure 4a). This increase
corresponded to a major shift in chromatin accessibility between
UmiR-194-5p and Usc cells, with 14.126 accessible regions in Usc
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cells (Usc accessible) showing reduced accessibility and 8.169
closed regions becoming accessible in U937 cells expressing
miR-194-5p (UmiR-194-5p accessible) (Figure 4b; Supplementary
Figure S7C). Genomic annotation of chromatin accessible sites in
UmiR-194-5p and Usc cells revealed 25% of sites located in
promoter regions (Figure 4c).
Overlapping the DNase I accessible regions to BCLAF1-binding

sites (GEO:GSM803515;GEO:GSM803509, ENCODE), a reduction of
BCLAF1 accessible binding regions was detected in the UmiR-194-
5p cells with respect to Usc, 12% vs 31%, respectively
(Supplementary Figure S7D). BCLAF1-associated regions preferen-
tially localized at promoters in UmiR-194-5p, independent on the
expression directionality (Supplementary Figures S7E and F).
These results corroborate and strengthen the miR-194-5p/BCLAF1
module impact on chromatin accessibility.

BCLAF1 functions via an HDAC4-dependent pathway in AML
To clarify the implication of BCLAF1 regulation by miR-194-5p in
tumorigenesis and therapeutic response to HDACi in AMLs, we
investigated the cellular localization of BCLAF1. In AML cells,
BCLAF1 was localized in dot-like structures throughout the
nucleus25,26 (Figure 5a). In contrast, upon miR-194-5p (re)expres-
sion, residual BCLAF1 shuttled from nucleus to cytosol (Figure 5a).

Such shuttling was also observed upon the maturation burst
induced by MS275, with BCLAF1 present in both cytosol and
nucleus. Conversely, SAHA treatment (associated with a prefer-
ential apoptotic response) retained BCLAF1 in nucleus (Figure 5a).
In support of these finding, we verified at transcriptional level

during lineage commitment of human blood progenitors27 that
miR-194-5p expression was low and correlated with increased
Bclaf1 expression in hematopoietic progenitors (Figure 5b).
Besides, upon cell culture of freshly isolated murine Lin− murine
bone marrow progenitor cells (T0) into CD34+-enriched hemato-
poietic cells (T1) and more differentiated stages (T2, T3), miR-194-
5p expression increased and Bclaf1 levels decreased (Figure 5c). Ex
vivo culturing of Lin− murine bone marrow progenitor cells (LIN-
CD150+) reduces their differentiative potential, inducing a more
differentiated state (LIN-CD150−) (Supplementary References 4
and 5). In a time course analysis from T0 to T3, the correlation
between miR-194-5p/BCLAF1 module expression and reduction
multi-lineage differentiation potential of Lin− murine bone
marrow progenitor cells was demonstrated (Figure 5c;
Supplementary Figure S8A). Noteworthy, in normal mouse
CD34+-enriched myeloid progenitors, BCLAF1 is located at peri-
membrane and not in nuclei, whereas in AMLs it is nuclear,
suggesting that its expression and location are functionally
altered. In normal progenitors, the MS275-induced differentiation
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burst maintained peri-membrane cytosol location, whereas SAHA
treatment led to nuclear location (Figure 5c). Accordingly, we
found BCLAF1 location in human CD34+ progenitor cells in the
cytosol and human primary AML blasts in the nucleus
(Supplementary Figure S8B).
Thus, we hypothesized that the differential BCLAF1 localization

observed might be causally linked to the differential HDAC targeting
exerted by SAHA or MS275. Several class II HDACs are reported to
shuttle between nucleus and cytoplasm,28,29 and our observation of
HDAC4 expression in UmiR-194-5p cells strengthens this hypothesis.
Excitingly, unlike all other HDACs, HDAC4 was selectively transcrip-
tionally upregulated (Figure 6a), also for direct regulation of
accessibility on its promoter region (Figure 6b). miR-194-5p seems
to regulate specific members of MAPK pathway, such as CAMKII and
14-3-3 at chromatin (data not shown) and protein level (Supple-
mentary Figure S7A). Upon treatment with the two different HDACi,
HDAC4 consistently co-localized with BCLAF1 (Supplementary
Figure S7B): in UmiR-194-5p cells, HDAC4 (and its phosphorylated
form) was mainly located in cytoplasm, whereas upon SAHA
treatment HDAC4 partially shuttled into nucleus.
In UmiR-194-5p cells, HDAC4 and HDAC4-P, but also CaMKII,

CaMKII-P and 14-3-3-P, were mainly found in cytosol
(Supplementary Figure S7B). Examination of the sequences
surrounding the conserved phosphorylation residues in the class
IIa HDACs revealed that they are closely related to the consensus
phosphorylation sites of CaMK.23 We hypothesized that HDAC4
(and its phosphorylated form) might bind BCLAF1, possibly in a
complex with CaMKII. In support, immunoprecipitation of BCLAF1
showed binding with HDAC4-P and CaMKII-P. Similarly, HDAC4
was able to form endogenous complexes with BCLAF1 and CaMKII

(Figure 6c). BCLAF1 differential location was HDAC4-dependent.
Indeed, HDAC4 silencing (UshHDAC4) caused the absence of
BCLAF1 cytosolic shuttling in UshHDAC4miR-194-5p cells, with
respect to control (Uscsh) (Figure 6c). The fact that expression of
both HDAC4 and CaMKII can be reduced by applying miArrest
technology strengthens the importance of the modulatory role of
miR-194-5p (Supplementary Figure S6D). In U937-miArrest-194-5p
cells, inhibition of miR-194-5p function showed an opposite trend
in all the newly identified targets (Supplementary Figures S6C–E).
These findings suggest that an unbalanced dose of miR-194-5p
triggers the kinase pathway involving BCLAF1, HDAC4 and CaMKII,
modulating either differentiation and/or apoptosis.

miR-194-5p/BCLAF1 deregulation is a hallmark of AML
tumorigenesis
The emerging role for BCLAF1 (and possibly miR-194-5p) in AML
pathogenesis and/or progression is further supported by the high
expression of BCLAF1 in chronic lymphocytic leukemia, AML and
neuroblastoma (Supplementary Figures S9A–C). miR-194-5p/
BCLAF1 inversely correlated expression was assessed ex vivo in
normal human CD34+ myeloid progenitors and AML samples.
Importantly, normal progenitors invariably displayed higher levels
of miR-194-5p compared to primary AML blasts independently of
karyotype and immunophenotype (n= 60) (Supplementary Table
S7), suggesting a general repression of miR-194-5p and exertion of
its function during leukemogenesis (Figure 7a; Supplementary
Figure S9A; Supplementary Table S8). BCLAF1 showed the
opposite pattern, displaying higher expression in AML and lower
in CD34+ cells (Figure 7a; Supplementary Figure S9D; Supple-
mentary Table S8). Treatment of AML blasts ex vivo with SAHA
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reverted the expression of miR-194-5p/BCLAF1 to a level more
comparable to normal cells (Figure 7a; Supplementary Figure S9D;
Supplementary Table S8). Comparative analysis of miR-194-5p/
BCLAF1 in CD34+ and AML cells confirmed a highly significant
direct inverse correlation between expression and cancer pheno-
type (Figure 7a; Supplementary Figure S9D). High BCLAF1
expression in AML was further confirmed in an analysis of 200
clinically annotated adult cases of de novo AML30 (Supplementary
Figure S9E). We also investigated the induction of cell death in 41
samples from AML patient’s blasts. Thirty-seven out of 41 blast
samples were responsive to SAHA treatment with an apoptosis
fold induction higher than two, whereas five samples were not
responsive (Supplementary Table S9). Among all responsive AML
samples, 56.76% displayed inverse correlation between miR-194-
5p and BCLAF1 expression levels, and their modulation upon SAHA
treatment (Figure 7b). By merging data with the medical outcome
information (available only on 44 out of 61 samples), higher
miR-194-5p levels (and the lower expression of BCLAF1) correlated
to favorable prognosis based on the 5-year survival rate
(Figure 7c). No predominant correlation subgroups were detected
in the not-responsive category (Supplementary Figure S9F),
although miR-194-5p expression level was significantly lower if
compared to the responsive group (Supplementary Figure S9G;
Supplementary Table 10). Finally, miR-194-5p and BCLAF1 module
in AML and its regulation by SAHA was corroborated at gene and
protein level in vivo in human AML xenograft mouse model
(Supplementary Figure S9H).
Altogether, these data hint at a role for miR-194-5p/BCLAF1 in

defining tumorigenic arrangement and mediating sensitivity to
SAHA treatment.

DISCUSSION
Epigenetic mechanisms regulate the miRNA expression and,
conversely, subsets of miRNAs control important epigenetic
regulators, establishing a regulatory circuit to stabilize and
modulate gene expression patterns.31,32 The link between miRNA
deregulation and malignancies has been clearly defined.3 Some
reports identified ‘epidrug’-responsive miRNAs whose expression
was affected by ‘epi’-treatment in different cancers.33,34 However,
insights into miRNA function in cell behavior, differentiation,
stemness and pathology, and their mode of action have so far
been scarce.
We provide evidence that miR-194-5p exhibits an oncosup-

pressor role and a key function in cell reactivity, drug response
and differentiation commitment. A body of literature suggests
that the role of miR-194-5p (mainly its aberrant expression)
depends on the context and/or dynamics of different targets
within a specific cell.35–38

We investigated whether miR-194-5p and its respective target(s)
might regulate the equilibrium of biological processes such as
maturation/differentiation and pathogenesis. We found that
miR-194-5p acts by negatively regulating BCLAF1, a newly
identified target gene. In human AML cell lines and in a
statistically significant number of human primary AML blasts
compared to normal myeloid progenitors, expression of miR-194-
5p (low) and BCLAF1 (high) is inversely correlated, defining
leukemic phenotype. This finding suggests compelling evidence
that miR-194-5p might play a tumor suppressor role, and that its
expression level in AMLs may have preclinical significance. We also
found that SAHA upregulates miR-194-5p in all AML models tested
including ex vivo treatment of human primary blasts and that
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Figure 8. The miR-194-5p/BCLAF1 module orchestrates differentiation block, cell fate and treatment susceptibility in AML. (a) miR-194-5p/
BCLAF1 expression trend (miR-194-5p increase vs BCLAF1 downregulation) and BCLAF1 cytosolic localization of module during hematopoietic
lineage commitment. (b) Expression level and localization of miR-194-5p/BCLAF1 module in AML cells before and upon miR-194-5p re-
expression; also HDAC4 and P-HDAC4 shown. (c) Expression level and localization of miR-194-5p/BCLAF1 module in AML cells re-expressing
miR-194-5p upon SAHA and MS275 treatment; also HDAC4 and P-HDAC4 shown. Peculiar cells after epigenetic treatments fates are shown.
SAHA activity drives BCLAF1 nuclear localization and its pro-apoptotic function. MS275 treatment stabilizes BCLAF1 pro-differentiation
cytosolic placement. HDAC4, as well as its phosphorylation, are upregulated by miR-194-5p re-expression; HDAC4 mediates BCLAF1 export in
the cytoplasm (upon pro-differentiation stimuli) or BCLAF1 import into the nucleus (upon pro-apoptotic treatments).
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miR-194-5p re-expression leads to chemo-or epi-drugs sensitiza-
tion, restoring the physiological-like state. Chip-seq data suggest
an active epigenetic chromatin regulation by SAHA treatment on
putative miR-194-5p promoter (Supplementary Figures S8D and
E). Specifically, miR-194-5p re-expression sensitizes cells to SAHA-
induced pro-apoptotic effects through a Caspase 9-dependent
pathway and by functional determination of BCLAF1 nuclear
localization. Conversely, MS275 treatment affects the ability of
miR-194-5p to induce differentiation, most likely by affecting
cytosolic localization of BCLAF1.
Very recently, miR-194-5p was reported as a candidate biomarker

for myelodysplastic syndromes, being its low expression associated
with poor survival in myelodysplastic syndromes.39 To date, few
reports have described the involvement of miR-194-5p40,41 and
BCLAF125,26 in differentiation. As acute leukemias represent the
prototype of a cancer caused by so-called ‘cancer stem cells’, where
all blasts have a marked deficit in maturation, we hypothesize that
miR-194-5p acts as a checkpoint for stem cells to decide on their
fate. Supporting and strengthening our suppositions, the miR-194-
5p/BCLAF1 module is similarly deregulated in neuroblastoma, a
cancer in which cells have impaired maturation. miR-194-5p may
thus perform the role of ‘commitment maker’.
Interestingly, our findings underscore that re-establishment of

miR-194-5p expression levels also permits differentiation toward fully
specialized cells, in our case to dendritic cells. The effect of miR-194-
5p on potential maturation into dendritic cells suggests a role in
immune response in AML by myeloid differentiation commitment.
It remains to be clarified whether miR-194-5p deregulation is an

initial event or is part of leukemogenesis progression. Recent
studies have highlighted the role of miRNAs in enhancing
sensitivity to traditional therapies.13,42 Here, we show a mechan-
ism of action exerted by miR-194-5p in association with BCLAF1.
BCLAF1 was originally identified as a death-inducing

repressor,24 but subsequent reports indicated a much wider
function, not necessarily linked to BCL2.26 For example, BCLAF1 is
a γH2AX-interacting tumor suppressor,43 and activates p53
transcription after DNA damage.44 Recent studies suggested a
role for BCLAF1 in transcription, mRNA metabolism and distribu-
tion modulation.19,45 In our studies, pre-mRNA splicing, stabiliza-
tion and/or processing alterations may, therefore, also reflect the
depression of BCLAF1 expression and define a distinctive
phenotype with a changed transcriptional arrangement, making
cells re-expressing miR-194-5p more responsive to anticancer
treatment and prone to differentiation.
It is tempting to speculate that miR-194-5p acts ‘on its own’ as a

chromatin modulator, carrying out ‘reprogramming’ on an
unexpected scale. Indeed, our study revealed a drastic change
in chromatin state, observable as accessibility, instigated by
miR-194-5p re-expression in AML system. Re-expression of
miR-194-5p and consequent reduction of aberrantly elevated
BCLAF1 expression causes extensive rearrangement of chromatin
into a dendritic cell landscape. Normalization of expression levels
of the miR-194-5p/BCLAF1 module to those present in healthy
cells leads to intrinsic re-establishment of differentiation direction
and potential. Genomic regulatory loci linked to differentiation
commitment and immune responses are also involved, supporting
our hypothesis that miR-194-5p/BCLAF1 deregulation in AMLs
might be causally involved in differentiation block. Deregulation
of miR-194-5p/BCLAF1 might thus influence lineage decisions in
myeloid/lymphoid compartments of hematopoietic progenitors.
In this scenario, by binding with HDAC4 and CaMKII, BCLAF1

modulates their signaling pathway, which is also activated by
reactive oxygen species and higher calcium levels. HDAC4 seems
to be positively regulated at gene and protein level by miR-194-5p
re-expression and to be an essential regulator of BCLAF1 shuttling;
HDAC4 phosphorylation mediates the BCLAF1 cytosolic export.
BCLAF1 modifications (such as phosphorylation) and localization
(nucleus–cytosol) might affect specific molecular partners and

consequently their action on downstream targets. Whether
phosphorylation on HDAC4-Ser-632 by CaMKII may promote
cytoplasmic localization and 14-3-3 binding46 remains to be
determined. By Ca2+ stimuli, auto-phosphorylation of CaMKII is
activated and, by phosphorylating HDAC4, in turn indirectly and
directly activates transcriptional regulators.47,48

We found a robust enhancement of histone acetylation in
general and specifically of promoter proximal and distal elements
(putative enhancer) regions. Extensive remodeling of chromatin
facilitates recruitment of transcription factors and the assembly of
the transcription initiation complex. HDAC4 and its nuclear-
cytoplasmic shuttling may also be crucial in promoting Caspase 9-
dependent apoptotic machinery.49 Thus, re-expression and loca-
tion of HDAC4 upon re-expression of miR-194-5p strengthens
Caspase 9 activation, sensitizing AMLs to chromatin-targeting
treatments as well as to ‘canonical’ therapies.
miR-194-5p/BCLAF1 balance and likely compartmentalization

control cell differentiation and fate (Figures 8a–c). Re-establishing
the physiological-like balance by increasing the level of miR-194-5p
sensitizes AML blasts to apoptosis, maturation and re-acquisition of
immune function (Figure 8c), the pivotal target processes for
anticancer therapy. Noteworthy, innovative anticancer therapies are
already based on the use of dendritic cell vaccines to enhance
immune reaction, mainly in AMLs and neuroblastoma.50,51

Our findings may have important therapeutic implications for
better patient stratification for resistance or treatment sensitivity
and in terms of the potential immune differentiative capability of
miR-194-5p. The prospect of developing miRNA-based interven-
tions in combination with immunotherapies in AMLs is undoubt-
edly an exciting one.
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