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Abstract

Bursting as well as tonic firing patterns have been described in various sensory systems. In the olfactory system,
spontaneous bursts have been observed in neurons distributed across several synaptic levels, from the periphery, to the
olfactory bulb (OB) and to the olfactory cortex. Several in vitro studies indicate that spontaneous firing patterns may be
viewed as ‘‘fingerprints’’ of different types of neurons that exhibit distinct functions in the OB. It is still not known, however,
if and how neuronal burstiness is correlated with the coding of natural olfactory stimuli. We thus conducted an in vivo study
to probe this question in the OB equivalent structure of insects, the antennal lobe (AL) of the tobacco hornworm Manduca
sexta. We found that in the moth’s AL, both projection (output) neurons (PNs) and local interneurons (LNs) are
spontaneously active, but PNs tend to produce spike bursts while LNs fire more regularly. In addition, we found that the
burstiness of PNs is correlated with the strength of their responses to odor stimulation – the more bursting the stronger
their responses to odors. Moreover, the burstiness of PNs was also positively correlated with the spontaneous firing rate of
these neurons, and pharmacological reduction of bursting resulted in a decrease of the neurons’ responsiveness. These
results suggest that neuronal burstiness reflects a physiological state of these neurons that is directly linked to their
response characteristics.
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Introduction

Neurons in various sensory systems produce action potentials in

brief bursts of high frequency discharge as well as in tonic patterns

[1]. In the olfactory system, the diversity of firing patterns have

been observed in neurons distributed across several synaptic levels,

including the periphery [2], the olfactory bulb (OB) [3–5] and the

olfactory cortex [6]. At the OB level, one type of juxtaglomerular

cells, the external tufted cells, intrinsically fire bursts of action

potentials at theta frequency while other types of juxtaglomerular

cells do not produce spike bursts spontaneously [3]. Similarly, the

tufted cells of the external plexiform layer also fire rhythmic bursts

of spikes. In contrast, the intrinsic GABAergic interneurons at this

layer rarely fire any action potential spontaneously [7]. These in

vitro observations suggest that spontaneous firing patterns are

different in different types of neurons within the OB circuit.

Despite that bursting patterns are commonly observed, it is largely

unexplored if neuronal burstiness could be correlated with the

function of encoding natural olfactory stimuli in a predictable

fashion.

We thus conducted an in vivo study to probe this question in the

OB equivalent structure of insects, the antennal lobe (AL), of the

moth Manduca sexta [8]. As in their vertebrate counterparts, AL

glomeruli are the sites where synaptic interactions occur among

afferent neurons, local interneurons (LNs) and projection (output)

neurons (PNs), most of which possess dense dendritic arbors

confined to a single glomerulus [9–13]. PNs receive input from

both olfactory receptor cells (ORCs) and LNs, and send output to

higher olfactory centers via their long axons [11,14,15]. In

contrast, the axonless LNs, which innervate many glomeruli, are

mainly responsible for within-AL information processing [16–20].

The distinct morphological characteristics of PNs and LNs

enabled us to identify these two types of neurons unambiguously

with fluorescent dyes, satisfying the prerequisite for investigating

the relationship among neuron types, spiking patterns and in the

case of PNs, response characteristics. Further, PNs that innervate

the moth’s male-specific macroglomerular complex (MGC)

respond selectively to components of the conspecific female sex

pheromone [21,22], allowing identification of these neurons based

on their odor response properties.

Here we report that in the moth AL both PNs and LNs are

spontaneously active, but these neuronal types have distinct firing

patterns, with PNs producing randomly bursting spikes and LNs

firing more regularly. Non-spiking LNs have been reported in

other insects [17,23], but still need to be confirmed in M. sexta.

Incorporation of the firing patterns into a classification algorithm

allowed us to distinguish PNs from LNs with up to 90% of

accuracy. In addition, we found that spontaneous burstiness in
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MGC-PNs was positively correlated with spontaneous firing rate

and with their responsiveness to pheromonal stimuli. Furthermore,

pharmacological reduction of burstiness in the MGC-PNs resulted

in a decrease of the neuron’s response to odorant stimulation.

Materials and Methods

Intracellular recording and staining
Manduca sexta (L.) (Lepidoptera: Sphingidae), reared in the

laboratory on an artificial diet, were used 1–3 days after adult

emergence. We did not notice any apparent difference in the

overall spiking patterns of day 1–3 animals. In the same species,

Mercer and Hildebrand pointed out that bursty spike patterns are

already formed at stage 6 (out of 18) of metamorphosis [24]. We

postulate that spike patterns associated with different types of

neurons are probably established in later developmental stages and

persist through adult stage. Animals were dissected and prepared

for intracellular recording according to established procedures

[25]. Sharp microelectrodes were made from borosilicate glass

capillaries with filament (1 mm outer diameter; 0.58 or 0.75 mm

inner diameter; Sutter Instruments, Novato, CA) on a laser puller

(P-2000; Sutter Instruments). The tip of the micropipette was filled

with a 65 mM solution of Lucifer yellow CH (Sigma-Aldrich) in

200 mM LiCl, or with a solution of Alexa Fluor 568 hydrazide

(10 mM in 200 mM KCl; Invitrogen, San Diego, CA). The shaft

was filled with 2 M LiCl. The final electrode resistances ranged

from 100 to 350 MV. Membrane potentials were amplified 10–50

fold using an amplifier (Axoclamp-2A, Molecular Devices, Foster

City, CA; or IX2-700, Dagan Instruments, Minneapolis, Minne-

sota) in some cases coupled to a DC amplifier (LPF 202A, Warner

Instruments, Hamden, CT) and digitized at 20 kHz (Digidata

1200 series Interface; Molecular Devices, Foster City, CA; some

data were digitized using Datapack, Run Technologies, Mission

Viejo, CA). To avoid voltage-dependence of spike patterns, no

current was applied during recordings until dye injection. After

physiological characterization, neurons were injected with either

Lucifer yellow or Alexa 568 by passing hyperpolarizing current

(0.3–1.5 nA) for at least 6 min. Upon completion of an

experiment, the brain was excised and immersed in 2.5%

formaldehyde fixative solution (pH 7.2) for at least 3 h, dehydrat-

ed through a graded series of ethanol solutions, and cleared with

methyl salicylate (Sigma-Aldrich). Cleared brains were imaged as

whole mounts (optical sections, 2 mm thick) with a laser-scanning

confocal microscope (Nikon PCM 2000, Tokyo, Japan; or Carl

Zeiss 510 Meta), equipped with a 457 nm argon laser and a

546 nm green HeNe laser.

Juxtacellular recording, odor stimulation and
pharmacology

Long-term recordings from single neurons, as required in the

pharmacological experiments in this study, were achieved using

the juxtacellular recording technique [26,27]. In short, electrodes

resembling those used for patch clamp recordings were pulled

from thin-wall borosilicate glass capillaries (1 mm outer diameter;

0.78 mm inner diameter; Sutter Instruments, Novato, CA) using a

laser puller (Sutter P-2000 , Sutter Instruments, Novato, CA), and

filled with physiological saline, resulting in electrodes with ,5 mV
resistance. Electrodes were positioned in the MGC region of the

AL and slowly advanced until a contact similar to that used for

perforated-patch recordings was achieved. At this point, extracel-

lular spikes could be distinguished from baseline noise. Signals

were amplified 10006 times using an amplifier (Axoprobe-1A,

Molecular Devices, Sunnyvale, CA) connected to a 106 DC

amplifier (Model FC-23B, WPI, Sarasota, FL).

Olfactory stimuli were delivered to the preparation by injecting

odor-laden air puffs onto a constant air flow (1 liter per minute)

that was directed to the middle portion of the antenna ipsilateral to

the AL from which recordings were made. Trains of 5 air puffs

(50 ms each; 2 sec inter-pulse interval) from a glass syringe

containing odors were generated using a solenoid-activated valve

controlled by an electronic stimulator (WPI, Sarasota, FL). A piece

of filter paper was placed in each glass syringe, bearing various

amounts of a single pheromone component or a blend of the two

key pheromone components (0.1–100 ng in decadic steps), or

solvent alone. The stimulus compounds used were: (i) E10,Z12-

hexadecadiennal (bombykal [Bal], the primary component of the

conspecific female’s sex pheromone) [28,29]; (ii) E11,Z13-

pentadecadiennal (‘‘C15’’, a chemically more stable mimic of

another essential component of the sex pheromone) [30]; and (iii) a

mixture of Bal and C15 (blend, 1:1 ratio). Although we substituted

C15 for the natural pheromone component, we refer to both Bal

and C15 as pheromone components. MGC-PNs were character-

ized using the following physiological criteria: (1) response

specificity to the pheromone components; and (2) multiphasic

response pattern. In M. sexta, MGC-PNs have been extensively

shown to produce predictable responses to the pheromone

components according to the identity of the MGC glomerulus in

which their dendrites arborize [10,31–33]; MGC-PNs that

innervate the Cumulus (one of the MGC glomeruli) are excited

by antennal stimulation with C15 but inhibited (or not affected) by

stimulation with Bal, whereas MGC-PNs that innervate the

Toroid 1 (the second MGC glomerulus) are excited by stimulation

with Bal but inhibited (or not affected) by stimulation with C15.

Both types of MGC-PNs are excited by the blend (Bal+C15).

MGC-PNs typically exhibit a triphasic (–/+/–) response pattern in

intracellular recordings, i.e. a brief inhibitory response preceding a

depolarization phase with spiking that is then followed by a period

of delayed hyperpolarization and spike suppression. Juxtacellular

recordings from MGC-PNs do not reliably show the initial

inhibitory phase, but clearly display the excitatory response and

the following inhibitory phase [27].

Bicuculline methiodide (Sigma-Aldrich, .95%) was diluted in

physiological saline to a concentration of 25 mM (low dosage) or

500 mM (high dosage) and then bath-applied to moth prepara-

tions. This drug has been reported to act as a GABAA receptor

antagonist in M. sexta [34,35] and an antagonist of small-

conductance calcium dependent potassium channels (SK) in

vertebrates [36].

Detection and quantification of bursts
To describe the burstiness or the variation of interspike intervals

(ISIs) of spike trains for different types of neurons, the Coefficient

of variation (Cv), i.e. the standard deviation of ISIs divided by the

mean of ISIs, was calculated from spontaneous traces (30–60 sec

long). A second measurement of ISI variations, the Local

Variation (Lv), was also calculated from these traces. Lv, which

is less affected by the statistical non-stationarity of long spike trains

[37], is defined as:

Lv~
1

n{1

Xn{1

i~1

3(ISIi{ISIiz1)2

(ISIizISIiz1)2

where n is the number of ISIs.

To quantify the spike-train burstiness more directly, we used the

Poisson Surprise (S) criterion [38]. The S value for a given number

of spikes within a time interval is a measure of the unlikelihood of

observing that many spikes within that interval, i.e.
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S~-log P

and

P~e{rT
X?

i~n

rTð Þi=i!

where r is mean firing rate and T represents the time interval.

The spikes are assumed to be generated randomly at an average

rate and the time intervals between the occurrences of successive

spikes are assumed to be independent of each other. This is the

same as assuming that spikes come from a Poisson distribution

with a certain rate, i.e. the mean rate of the spike train under

investigation. The S value of n spikes within a time interval T is

then the negative log of the probability of observing at least n

spikes within T under a Poisson distribution of rate equal to the

mean spiking rate.

Using the Poisson Surprise method, a potential burst is detected

by starting with a pair of successive spikes whose ISI is less than

half the mean ISI of the entire spike train. Subsequent spikes are

included if the ISI between successive spikes is less than the mean

ISI. Poisson surprise values for the potential bursts (sets of spikes)

are computed with the inclusion of each successive spike and the

set with the highest Poisson surprise value is retained. The set is

further refined by removing spikes at the beginning of the set if the

surprise value is increased by doing so. Then the spike set is

considered as a burst if its S value exceeds a predetermined

threshold (S0) and if it contains a minimum of three spikes. The

effectiveness of this algorithm is demonstrated in Fig. 1 (A–C),

which shows a rhythmic bursting neuron recorded intracellularly

(likely a PN with its soma in the anterior cluster of cell bodies [39])

and contains 24 apparent bursts in the 8 second period that was

selected as a testing input for the algorithm (Fig. 1A). The accuracy

of burst detection increased with decreasing initial values S0, but

reached the maximum (88%) at S0 = 0.1 (Fig. 1B). This initial

value was then used throughout the rest of analysis. A test on a

randomly bursting PN demonstrated again the effectiveness of this

algorithm (Fig. 1C).

Classification and correlation analysis
The PN/LN burst parameters were entered into an internal

classification algorithm (function: ‘‘Classify’’, with ‘‘linear’’ option,

Statistics toolbox) in Matlab (The Mathworks Inc, Natick, MA).

For each run 20% of randomly selected PNs or LNs were used as

the training group and the rest as the sample group. A percentage

of correct classification was calculated from each run and the

procedure was repeated 1000 times. To estimate the correct

classification due to chance, the labels for the PNs and LNs were

randomly shuffled. The new labels were checked against the

original ones to calculate the percentage of labels that remained

correct. This procedure was also repeated 1000 times.

Linear regression was performed to examine the correlation

between the neuronal responsiveness (i.e. mean instantaneous

firing rate during the response period) and the individual burst

parameters. Subsequently, a Canonical Correlation Analysis

(CCA) was performed to correlate the neuronal responsiveness

and the integrated burstiness. Since CCA constructs canonical

variates in such a way that the correlation between them is

maximized, it is therefore important to assess the correlations

produced by the procedure itself. To this end we randomly

shuffled the response data thus breaking the pairings between the

response data and the burst data. This new data matrix was then

entered into CCA and the correlation coefficient was computed.

This procedure was repeated 1000 times to calculate the

magnitude of chance-induced correlation. Also, because each

MGC-PNs was stimulated with 4 concentrations of the pheromone

blend (from 0.1 ng to 100 ng in decadic steps), we obtained 4

replicates where the empirical correlation between the neuronal

responsiveness and burstiness could be determined. MGC-PNs

were chosen in this experiment because their specific ligands are

known.

A similar correlation analysis was performed on spontaneous

firing rate. Spike traces about 1 min long were extracted from

each neuron. A cumulative curve was generated from the

frequency distribution of ISIs of each trace, and the 5% increment

point was identified on the curve. This point was then used as the

cut-off threshold, which allowed selection of representative ISIs

(85% of total) from each trace. Then the mean firing rate was

calculated from these selected ISIs, which was subsequently

correlated with the burst parameters of each neuron from which

the ISIs were extracted.

Results

Data reported here were collected from two series of

experiments. First, we used intracellular recording and staining

methods to sample the spontaneous activity of 81 PNs (63 PNs

with arborizations in glomeruli other than the MGC and 18

MGC-PNs) and 85 LNs, all of which were morphologically

Figure 1. Burst detection. A rhythmically bursting trace was used to
test the accuracy of the Poisson Surprise algorithm in detecting spike
bursts (A). Each action potential (or spike) is represented by a tick mark
in (B). With the decreasing initial Surprise value (S0) the successful
detection rate increased from 0% to 88%. The detected bursts are
marked with asterisks on top of the bursts. The same algorithm was also
tested on non-rhythmically bursting traces using S0 = 0.1 (C), showing
different Surprise (S) values calculated from four detected bursts. Higher
S values appear to be associated with briefer bursts with high spiking
frequency.
doi:10.1371/journal.pone.0023382.g001
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identified (representative examples are shown in Fig. S1). The

second series of experiments were focused on MGC-PNs (n = 12),

in which we used a more stable method (juxtacellular recording)

that allowed us to study the neuron’s dose response and to

pharmacologically manipulate their spontaneous spike patterns.

PNs and LNs have distinct spontaneous spike patterns
The spike traces of morphologically identified PNs, MGC-PNs

and LNs were individually examined. Raster plots of spiking

activities from these neurons revealed gross differences of their

spike patterning. PNs, especially MGC-PNs, displayed more

clusters of spikes whereas LN spikes were more evenly distributed

(Fig. S2). The morphology of two such neurons is shown in Fig. 2A,

B. The PN had dense arbors in the Cumulus (one of the MGC

glomeruli), with its soma located in the medial cluster of neuronal

cell bodies and the axon projecting to protocerebrum. The LN

innervated the ventro-medial portion of the AL with its soma

located in the lateral cluster of neuronal cell bodies. Both neurons

were spontaneously active, but their spiking patterns were clearly

different. The MGC-PN displayed bursting spikes with variable

interspike intervals (ISIs) (Fig. 2C) whereas the LN produced a

regular spiking pattern with rather consistent ISIs (Fig. 2D).

Interestingly, when pooling all LNs the ISI histogram displayed a

skewed distribution, with the major peak occurring at an ISI

similar to that from PNs and MGC-PNs and the tail including

larger ISIs (Fig. 2E). The mean ISI among the neuronal types was

not statistically different (Kruskal-Wallis H test, p.0.05); however,

the variance of ISI was significantly larger in PNs or MGC-PNs

than in LNs (Mann-Whitney U tests, p,0.005 in both cases),

suggesting a higher degree of variation in PN and MGC-PN

spikes. A commonly used parameter for measuring variation, the

coefficient of variation (Cv), was also calculated for each neuron

(Fig. 2F, upper panel), revealing that PNs and MGC-PNs had

significantly higher Cv values than LNs (Kruskal-Wallis H test,

p,0.01). A third measure of spiking variability, the local variation

(Lv), which is less affected by the statistical non-stationarity of long

spike trains [37], again indicated that the spike pattern of PNs and

MGC-PNs was significantly more variable than that of LNs

(Fig. 2F, lower panel). This measure, however, revealed that the

spike pattern of MGC-PNs was even more variable than that of

the other uniglomerular PNs (Kruskal-Wallis H test, p,0.01).

A possible source of spike variability comes from the burstiness

of spike trains. We therefore applied a Poisson Surprise [38]

algorithm to detect spike bursts on spike trains. Once detected, a

burst was quantified with multiple parameters such as burst

duration, within-burst spiking frequency, within-burst maximum

spiking frequency, within-burst number of spikes, inter-burst

interval, percentage of spikes that were included in bursts, mean

burst frequency, mean Surprise value and maximum Surprise value.

The same algorithm was performed on spike trains derived from

PNs, MGC-PNs and LNs (Fig. 3). Results clearly show that LNs

were significantly less bursting when compared with PNs and/or

Figure 2. Distinct morphological and physiological properties of PNs and LNs. Shown in (A) and (B) are a PN innervating the Cumulus of
the MGC and a LN arborizing in the medial portion of the AL. The MGC PN randomly produced spike bursts (C) whereas the LN fired tonically (D). The
distribution histogram of interspike intervals (ISI) pooled from 85 LNs, 63 PNs and 18 MGC-PNs (each with 30–60 sec long spike trace) clearly shows a
skewed distribution in these neurons (E). The vertical dashed lines indicate the averaged ISIs. Both Coefficient of Variation of ISIs (Cv) and Local
Variation of ISIs (Lv) (Mean6SEM) show that LNs have significantly less variable ISIs comparing with that of PNs and MGC-PNs (F). Different letters
indicate statistical significance (Kruskal-Wallis H test, p,0.01).
doi:10.1371/journal.pone.0023382.g002
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MGC-PNs, as shown by the above parameters. Additionally,

MGC-PNs differed significantly from other uniglomerular PNs

only in three parameters, i.e. the percentage of bursting spikes, the

burst frequency and the maximum Surprise value, indicating a

similar spiking pattern between these two groups of neurons,

relative to the LNs. The differences revealed in these three

parameters, along with the Lv measurement of spiking variation

(Fig. 2F), suggest that the spiking activities of MGC-PNs could be

even more variable. Although the trend was clear, the parameters

in Fig. 3 were not equally informative. For example, LNs and PNs

did not show statistical difference in the burst duration, the

number of spikes within a burst, and the maximal Surprise value.

Collectively, all these results indicate that the spontaneous spiking

patterns of LNs and PNs significantly differ from each other, with

PNs having higher within-burst spiking frequency, higher within-

burst maximum spiking frequency, shorter inter-burst interval,

higher bursting frequency and higher Surprise values (Kruskal-Wallis

H test, p,0.05).

While the spiking activity of PNs was more variable or bursting

than that of LNs, an overlap between these two types of neurons

was also apparent. The Cv of PNs and LNs respectively ranged

from ca. 0.1 to 2.3 and from 0.1 to 2.9, and the Cv of PNs was

positively correlated with their Lv (R2 = 0.543, p,0.001) (Fig.

S3A). However, more than 50% of PNs exhibited Cv.1 whereas

only a few LNs displayed such high variability (Fig. S3B). The

spiking variability was also evident in the auto-correlogram

derived from PN spike traces. One PN with Cv = 0.24 displayed

oscillatory autocorrelogram while another PN with a much higher

Cv (2.05) totally lacked such oscillations (Fig. S3C).

Another interesting observation was that the bursts within a PN

appeared to be similar (Fig. S4). In this example, the PN produced

270 bursts during a period of 8 min spontaneous activity. We

examined the difference of two bursts that were either directly next

to each other (D= 0, i.e. no other bursts in between), or with

another burst in between (D= 1), or with two bursts in between

(D= 2). In all three parameters examined – Poisson surprise (S)

(Fig. S4 A–C), within-burst spiking frequency (Fig. S4 D–F) and

within-burst number of spikes (Fig S4 G–I) – the distribution

histograms were bell-curve shaped with its center at difference = 0,

suggesting the two bursts were alike. We compared bursts with D
value up to 25, finding that the bell-curve-shaped histograms were

maintained.

Statistical classification of neuron types
Next we tested if the bursting features could be used to

statistically distinguish PNs from LNs. Because identification of

MGC-PNs can be based on their unique responsiveness to the sex

pheromone, this group of cells was not included in the

classification analysis. Nine parameters describing the LNs’ and

PNs’ burstiness along with their categorical labeling were entered

into a linear classification algorithm (Materials and Methods), and

then the correct classification percentage was calculated based on

the output of the algorithm and the original data. This procedure

was repeated 1000 times, randomizing the order of neurons each

time. We found that on average the success rate was about 80%

with a maximal accuracy of 90% (Fig. 4 A, B).

Correlation between burstiness and response firing rate
Next we examined the correlation between MGC-PNs’ mean

instantaneous firing rate – firing frequency calculated from the

inverse of inter-spike intervals - during odor response (to 50 ms

blend 10 ng stimulation) and their burst parameters during

spontaneous (non-stimulation) period (Fig. 5 A–F). We found that

the response firing rate was positively correlated with the within-

Figure 3. Burst quantification. Spike-train-burstiness is quantified with a set of parameters after the bursts are detected using Poisson Surprise
algorithm from all three neuron types. Except for the parameters of ‘‘burst duration’’, ‘‘within-burst number of spikes’’ and ‘‘max Surprise’’ all other
parameters describing the burstiness of PNs (n = 63) or MGC-PNs (n = 18) are significantly different from that of LNs (n = 85) (Kruskal-Wallis H, p,0.05).
Bar values are Mean 6 SEM.
doi:10.1371/journal.pone.0023382.g003
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burst spiking frequency (r = 0.82, p,0.0001), the within-burst

number of spikes (r = 0.54, p = 0.0138) and the bursting frequency

(r = 0.73, p,0.0001) (Fig. 5 B, C, F), but negatively correlated with

the burst duration (r = 20.77, p,0.0001) and the inter-burst

interval (r = 20.67, p = 0.0011) (Fig. 5 A, D).

In MGC-PNs, the odor-evoked responses essentially consist of

large burst of spikes. If the same mechanisms underlie the production

of spontaneous bursts and odor-evoked responses, one would expect

a positive correlation between the burst parameters and the

spontaneous firing rate. This was indeed the case (Fig. 5 G–L).

We next minimized the correlation redundancy due to the

relatedness of burst parameters. For this, we conducted the

Canonical Correlation Analysis (CCA) (Materials and Methods),

which linearly combined all burst parameters after weighing the

contribution of each one to generate a Canonical Variate

(Canonical variate 1 in Fig. 6 A), and then correlated it with the

response firing rate (Canonical variate 2 in Fig. 6 A). The

correlation between these two variates was highly significant

(r = 0.91, p,0.0001), indicating that the MGC-PNs’ bursting

property was predictive of their responsiveness – the higher the

burstiness, the stronger the response. As a control we also

conducted the CCA after randomly shuffling the order of these

neurons, thus breaking the pairing between the firing rate and the

burst parameters. The correlation so obtained was not significant

(r = 0.19, p = 0.428) (Fig. 6 B), thus supporting that the positive

correlation shown in Fig. 6 A was not due to the CCA procedure

itself. Furthermore, the random shuffling procedure was repeated

1000 times, resulting in correlation coefficients (0.5360.12; mean

6 Std; n = 1000) that were significantly lower than the correlation

coefficients (0.8460.095; mean 6 Std; n = 4) derived from the

experimental data (Mann-Whitney U test, p,0.0001) (Fig. 6 C). The

latter preserved the paired relationship between the neurons’

burstiness and the mean instantaneous firing rate evoked by

stimulation with different odor concentrations (0.01 ng, 0.1 ng,

1 ng, 10 ng) (n = 4). Additionally, we performed CCA on

spontaneous traces and found that the MGC-PNs’ burstiness

was also positively correlated with their spontaneous firing rate

(Fig. 6 D, r = 0.85, p,0.0001).

Pharmacological manipulation of MGC-PNs’ burstiness
Previous studies showed that bicuculline methiodide produced

changes in spontaneous firing patterns [34,40], including one

study which showed that MGC-PNs changed from a randomly

bursting to a tonic firing pattern during drug bath application [27].

We thus took advantage of this pharmacological tool to investigate

the link between the MGC-PNs’ burstiness and their odor

responsiveness. In order to quantify how this pharmacological

intervention affects spike burstiness, the coefficient of variation

(Cv) for the interspike intervals was measured during a 1-minute

recording of spontaneous activity before and during bicuculline

application. Similarly, the odor-evoked mean instantaneous firing

rate was also calculated before and during the drug application. As

a result of high-dose (500 mM) bicuculline superfusion, MGC-PNs

(n = 5) ubiquitously decreased their Cv as well as their firing rate

(Fig. 7 C). An example is shown in Fig. 7 A–B, where the bursting

spontaneous activity of an MGC-PN was apparently changed to a

more regular pattern due to high-dose bicuculline application. The

reduction of Cv and firing rate was not consistently observed when

neurons were perfused with a low dosage of bicuculline (25 mM)

(n = 7) (Fig. 7 D). Furthermore, the drug effect was also dependent

on odor concentration. Under the same high-dosage application of

bicuculline, MGC-PNs reduced their Cv by about 50%, but the

modulation on the response firing rate varied with odor

concentration (blend 0.1 ng–100 ng in decadic steps). The largest

reduction (ca. 50%) on firing rate was observed upon stimulation

with 0.1 ng of the blend (Fig. 7 E), but this trend became less

obvious at a higher concentration (1 ng) (Fig. 7 F), and even

reversed at 10 ng (Fig. 6G) and 100 ng (Fig. 7 H).

Discussion

Neural circuits are composed of different types of neurons,

specifically wired to accomplish various physiological functions.

Although action potentials (or spikes) are generally considered as

the currency of information transmission in nervous systems, the

more complex spiking patterns generated by different types of

neurons may differ drastically according to their biophysical

properties. These properties may facilitate specific functions of

certain neuron types in neural circuits. In the olfactory bulb, the

external tufted cells produce spike bursts at theta frequencies

whereas the other types of juxtaglomerular neurons rarely

produce spikes [3,7]. In the insect AL, the morphological

differences between PNs and LNs are clear, the former having

a long axon exiting the AL and the latter being axonless. Reports

on the differences of their spontaneous firing patterns, on the

other hand, are rather scattered in the literature. For example,

rhythmic bursts as well as tonic spiking patterns were reported in

LNs in the moth M. sexta [16] and Drosophila [18]. Bursting

patterns were found in both PNs and LNs in Agrotis segetum [41].

In the AL of honeybees, PNs innervating multiple glomeruli

produce rhythmic bursts, but LNs generate irregular bursts of

spikes [42]. A recent study revealed two physiologically distinct

types of LNs in the AL of cockroaches - Type I being capable of

generating sodium spikes and Type II producing calcium spikes

only [43]. Two other studies took advantage of the presence of

specific GAL-4 lines in D. melanogaster to study the morphological

and electrophysiological diversity of AL LNs [18,20]. In [18], two

classes of LNs, Krasaviez_class1 and Krasaviez_class2, were

shown to generate tonic spike pattern when responding to input

currents whereas other two classes, NP1227_class1 and

NP2426_class1 LNs, did not process the input stimulus

continuously but rather responded transiently. The panglomer-

ular LNs, as described in [20], had higher background firing rate

Figure 4. Statistical classifications of neuron types based on
the spike-train’s burstiness. A linear classification process, repeated
1000 times with each time having a randomly chosen set of training
group, yields up to 90% of accuracy in distinguishing the PNs from LNs
(black line); the rate of correct classification by chance is 50% (red line)
(A). Histogram data show that the empirical and chance classification
has about 80% and 50% of accuracy, respectively (B).
doi:10.1371/journal.pone.0023382.g004
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and weaker change of firing rate in response to odor stimuli,

compared with other LNs that have more heterogeneous

innervation patterns. All these data clearly demonstrate the

diversity of spiking patterns in AL neurons.

In this study we analyzed a large sample of morphologically

identified PNs (n = 63), MGC-PNs (n = 18) and LNs (n = 84) in the

AL of M. sexta. Although we did not find a clear-cut boundary that

separates the firing patterns of PNs from that of LNs, the PNs

tended to produce randomly bursting spikes with more variable

interspike intervals (ISI), which is reflected in the larger coefficients

of variations of ISI and also by the differences in burst parameters

(Fig. 2; Fig. 2; Fig. S3). In contrast, the firing pattern of LNs

appeared to be more regular or tonic. Based on the firing pattern

characteristics, up to 90% of neurons were successfully classified as

PNs or LNs (Fig. 4), corroborating the idea that the differences

between the firing patterns of these two neuronal populations may

be related to their functions in AL circuitry. PNs are responsible for

transmitting information to third order olfactory neurons in the

protocerebrum. In comparison with single spikes, a burst of spikes at

high frequency may be advantageous in transmitting information

[44]. LNs, on the other hand, as critical elements in modulating

local circuits, may use tonic release of neural modulators to regulate

global properties such as sensitivity and gain control. In D.

melanogaster, wide-field LNs showed spike suppression and weak

changes in firing rate in response to odor stimulation, and because

they are mostly GABAergic, it was proposed that odor-evoke

activities in these LNs dis-inhibit the entire AL [20]. It is worthwhile

noting if spike patterns are related to how transmitters are released.

Our data suggest that transient (or bursting) and tonic releasing may

be two major mechanisms by which PNs and LNs respectively

release transmitters. Further investigations are required to address

whether bursting and tonic patterns are inter-changeable within a

neuron (and if so, what are the mediating factors) or are

permanently associated with certain neurons. The pharmacological

experiments in this and our previous study (Fig. 7, [27]) showed that

bicuculline methiodide caused MGC-PNs to change their sponta-

neous spiking patterns from randomly bursting to tonic pattern, and

also change their odor-evoked responses from bursting to long

lasting pattern. These results suggest that GABA-A receptors and/

or small-conductance calcium-activated potassium channels (SK)

[36] may underlie the transformation of spiking patterns. Verifica-

tion of SK channels and their functions in AL neurons has yet to be

determined, but in vertebrates, SK channels play important roles in

shaping spiking patterns [45,46].

Figure 6. Results from the Canonical Correlation Analysis (CCA) showing significantly positive correlations between the MGC-PNs’
burstiness and their firing rate during response and spontaneous periods. CCA linearly combines individual parameters to generate
Canonical variates (Variate 1 for burstiness and Variate 2 for responsiveness) that satisfy the condition that the correlation between Variate 1 and
Variate 2 is maximal (A). As a control for the procedure itself, CCA was performed on the data where the order of the neurons was randomly shuffled
for the dependent variate (thus breaking the pairing between the burstiness and responsiveness). The correlation coefficient so obtained was not
significant (B). The shuffling procedure was repeated 1000 times and the results show that chance-induced correlation is significantly lower than the
correlation obtained in experiments where 4 odor concentrations ranging from 0.1 ng to 100 ng in decadal steps were used (C, Mann-Whitney U test,
p,0.0001). CCA also revealed a significant positive correlation between the two canonical variates representing burstiness and spontaneous firing
rate (D).
doi:10.1371/journal.pone.0023382.g006

Figure 5. Correlation between MGC-PNs’ burstiness and firing rates during odor-evoked response and spontaneous (non-
stimulation) periods. Burst parameters (measured during spontaneous period) were used in a linear regression analysis. During response period,
negative correlations were found for burst duration, inter-burst interval and percentage of burst spikes; positive correlations were found for within-
burst spiking frequency, within-burst number of spikes and bursting frequency (A–F). During spontaneous period, similar correlations were also
found between the burst parameters and firing rate (G–L).
doi:10.1371/journal.pone.0023382.g005
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Figure 7. Pharmacological manipulations of the neuronal burstiness and the effects on responsiveness to odors. Application of
bicuculline at 500 mM apparently caused an MGC-PN to change its bursting spontaneous activity to a tonic pattern (A, B). Tick marks represent spikes,
and the vertically arranged rows are continuous in time. The coefficient of variation (Cv) and instantaneous firing rate during the response of MGC-
PNs (n = 5) to blend (0.1 ng) were measured before (open circles) and during (filled circles) the bath application of bicuculline methiodide (high dose
– 500 mM) (C). Arrows point at the direction of changes, showing that under the drug application every neuron reduces its Cv (thus its burstiness)
(Mann-Whiteney U test, p,0.05) and its response firing rate. This effect, however, is drug-dosage dependent, as shown by inconsistent changes of Cv
and response firing rate under low dose treatment (25 mM, n = 7) (D). Furthermore, the drug effect on response firing rate is also dependent on odor
concentrations. While bicuculline reduces Cv in a magnitude of 25%,75% across 4 odor concentrations (blend 0.1 ng–100 ng in decadal steps), its
effect on reducing the response firing rate is weakened and even reversed with increasing odor concentrations (E–H).
doi:10.1371/journal.pone.0023382.g007
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Our results also demonstrate that the bursting characteristics of

MGC-PNs are correlated with their responsiveness to pheromones

– the higher degree of burstiness the stronger response (Fig. 5, 6).

Pharmacologically reducing the neurons’ burstiness resulted in

decreased response intensity, although this phenomenon was odor

concentration dependent (Fig. 7). These results do not indicate a

causal relationship between burstiness and response intensity, but

suggest that common mechanisms may underlie both phenomena.

Another possibility is that the burstiness of PNs may be caused by

input from olfactory receptor cells (ORCs). In lobsters [2], ORCs

produce rhythmic bursts. ORCs from pheromone-responsive

sensilla in M. sexta, however, produce random bursts [47]. We

argue that the periphery burstiness might not directly determine

the bursting characteristics of PNs because if that were the case,

the extensive convergence of ORCs onto PNs would most likely

have transformed the random bursting pattern to other patterns

such as long lasting firing. Furthermore, in developing moth ALs,

experimental evidence indicates that the influence of peripheral

neurons on the spiking patterns of AL is minimal [24]. This may

not be the case in adult moths, however. Future deafferentation

experiments should shed more lights on the origin of spiking

patterns of AL neurons in adult moths.

In addition to the correlation between burstiness and respon-

siveness, our analysis also revealed that the burstiness of MGC-

PNs is positively correlated with their spontaneous firing rate

(Fig. 5, 6). In other words, bursting neurons tend to fire spikes at

high frequency, either with or without stimulus. This result

suggests that an overlapping set of conductances may be activated

during the production of spontaneous bursts as well as during odor

responses, but characterization of these conductances is beyond

the scope of this study. Our observation that two categories of

spiking pattern occur in AL neurons is consistent with earlier

studies in the same species [24,48], where putative PNs and LNs

showed marked difference in the occurrence of sodium spikes.

Neuronal bursts are transmitted across synapses more reliably

than isolated spikes [44]. In the natural environment of moths, an

odor stimulus can become extremely low in concentration when it

is far away from the odor source. Neuronal burstiness may thus

facilitate detecting and processing such weak stimuli. In the moth

AL, individual PNs do not produce spike bursts to the same extent;

instead, they exhibit a range of burstiness, as measured by the

coefficient of variation (Fig. S3). This may reflect the functional

differentiation among PNs, with some neurons being more

sensitive and some being less sensitive to olfactory stimulation.

As a population, these neurons offer a full dynamic range to

encode naturally fluctuating odor stimuli.

Supporting Information

Figure S1 Examples of spike traces and morphology of
PNs and LNs. The spike traces from 5 LNs and 5 PNs are shown

in (A), demonstrating the variation of their spontaneous spike

patterns. The overall tonic pattern in LNs and bursting patterns in

PNs are apparent. The morphological characteristics of two

neurons (A9, A10) are shown in (B).

(TIF)

Figure S2 Raster plots showing 3 seconds of spontaneous
spiking activities from MGC PNs (n = 18), PNs (n = 63) and
LNs (n = 85). Rows are arranged in ascending order of Cv values.

(TIF)

Figure S3 PNs and LNs produce spike patterns of
distinct but overlapped temporal features. Linear regres-

sion analysis on interspike intervals reveals a significant positive

correlation between the two measures of spiking variations (or

burstiness) – the Coefficient of variation (Cv) and the Local variation

(Lv) (A). Although overlapping, the Cv values of most LNs are below

1 while more than 50% of PNs and MGC PNs have Cv higher than

1, indicating more variability in PN and MGC PN’s spontaneous

spiking pattern (B). The relationship between Cv and spiking

pattern is also evident from the autocorrelograms of spike traces.

Two PNs were selected (asterisks in the middle panel of B), one with

a Cv of 2.05 and the other 0.24. The former shows no regularity

(thus highly variable) and the latter displays apparent oscillations,

suggesting a regular spike pattern (C).

(TIF)

Figure S4 Bursts are similar within a PN. The difference

between two bursts, which were directly next to each other (D= 0),

or with another burst in between (D= 1), or with two other bursts

in between (D= 2), was calculated by subtracting the Poisson

surprise (S) (A–C), within-burst spiking frequency (D–F) or within-

burst number of spikes (G–I) of one burst from that of the other.

The relative proportion of these difference values was shown in

frequency distribution histograms, which appear to be bell-curve

shaped in all conditions. Difference value of zero (or close to zero)

indicates two bursts are identical or similar.

(TIF)
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