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Introduction

The V-raf murine sarcoma viral oncogene homolog B1 
(BRAF) gene, which encodes BRAF kinase protein, has 
been identified as an oncogene and potential therapeutic 
target since 2002 (1). It belongs to the RAF family (ARAF, 
BRAF, and CRAF/Raf-1) which controls the duration 
and amplitude of MAPK signaling. Among RAF family 
members, BRAF has the highest mutation propensity. The 

high rate of mutations in cancer has led to several efforts 
for the development of inhibitors (2). In human cancers, 
BRAF mutations, mostly BRAFV600E, mainly occur in 
40–60% melanoma, 45% thyroid cancer, 8–12% colorectal 
carcinoma, and 1–5% non-small cell lung cancer (3-6). 

BRAFV600 leads to continuous activation of BRAF and 
downstream of MEK and ERK (7,8). MAPK pathway plays 
a crucial role in regulating cell growth, proliferation, and 
survival. MAPK pathway-targeted inhibitors are the main 
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therapy for BRAFV600 mutant tumors (9). Currently, many 
BRAF inhibitors (BRAFi) such as vemurafenib, dabrafenib, 
and encorafenib have been approved by the US Food and 
Drug Administration (FDA) for clinical use. Unfortunately, 
approximately 50% of patients suffered from disease 
progression within 6–7 months of initiating treatment with 
a single BRAF inhibitor (10). BRAFi in combination with 
MEK inhibitors, which include trametinib, binimetinib, 
and cobimetinib completely blocks MAPK signaling and 
increases metastasis-free survival (MFS) and progression-
free survival  (PFS) compared to BRAF inhibitor 
monotherapy since the simultaneous blockade of BRAF 
and MEK protein in MAPK pathway suppresses and delays 
the occurrence of drug resistance (11,12). However, drug 
resistance still occurs in approximately 15% of patients 
during the treatment processes, which leads to disease 
recurrence or deterioration (13). Experimental data for 
melanoma in mice show that under continuous treatment 
with BRAFi, the pro-cancer macrophages and chemokine 
C-C motif chemokine ligand 2 (CCL2) initially decrease but 
eventually increase to above the original level. In contrast, the 
anticancer T cells continuously decrease (14). Therefore, a 
combination of anti-CCL2 or immune checkpoint inhibitors 
is becoming increasingly prevalent thereby eliminating or 

reducing BRAFi-acquired resistance. CCL2 is a chemokine 
involved in recruiting monocytes and macrophages to the 
tumor microenvironment, where they can promote tumor 
growth and resistance to therapies. Combining BRAFi with 
anti-CCL2 has been effective in melanoma by attenuating 
the immunosuppressive microenvironment and enhancing 
the direct anti-tumor effects of BRAFi (15). Another study 
has demonstrated that the combination of BRAFi with 
anti-PD-1 significantly improved PFS and overall survival 
(OS) in patients with melanoma compared to BRAFi 
alone (16). Cytotoxic T-lymphocyte-associated protein 4  
(CTLA-4) is another immune checkpoint receptor that 
inhibits early stages of T-cell activation. Similar to PD-1, 
CTLA-4 prevents the immune system from attacking tumor 
cells effectively. By combining BRAFi with anti-CTLA-4 
therapy, the immune system can be activated to recognize 
and destroy cancer cells. Although the combination can lead 
to increased immune-related adverse events, it has been 
associated with improved survival outcomes in patients with 
advanced disease, suggesting a synergistic effect between 
the two therapies (17). Therefore, a reliable way to predict 
drug response to different inhibitors is needed to achieve 
true individualization of therapy (18). 

Machine learning (ML) is a subset of artificial intelligence 
and has been widely employed in drug screening, drug 
toxicity prediction, quantitative structure-activity relationship 
prediction, and anti-cancer synergy score prediction (19). 
Additionally, along with the advance of medical technology, 
big data such as genomic profiles of cell lines or patient 
samples, physical-chemical properties of drug molecules, 
tumor imaging information, healthcare insurance, social 
media, omics data, and traditional clinical trials are difficult to 
process using traditional methods and tools (20). Therefore, 
the applications of ML could enhance personalized medicine 
due to its important role in identifying potential objective 
biomarkers, genetic predictors, and new risk factors related 
to drug response (21). ML methods for drug response 
prediction including support vector machines, Bayesian 
multitask multiple kernel learning, Random forests, and 
neural network models have been reported (22). Currently, 
with the rapid development of next-generation high-
throughput sequencing technologies, international large-
scale cancer projects such as The Cancer Genome Atlas 
(TCGA), Cancer Cell Line Encyclopedia (CCLE) and 
Genomics of Drug Sensitivity in Cancer (GDSC) have 
offered large amount of multi-omics and clinical data based 
on different technologies, which are considered as the 
source of data to advance cancer studies (23). 

Highlight box

Key findings
•	 AOX1 is first reported in our study to have a vital role in V-raf 

murine sarcoma viral oncogene homolog B1 (BRAF) inhibitor 
(BRAFi) metabolism and resistance. Further, we found higher 
expression of OXTR, H2AC13, TBX2 and lower expression of 
SLC2A4, which were independent risk factors for BRAFi resistance 
and were associated with poor prognosis. 

What is known and what is new? 
•	 BRAFi therapy resistance affects approximately 15% of cancer 

patients, leading to disease recurrence and poor prognosis. A 
reliable way to predict drug response to different inhibitors is 
needed in order to achieve true individualization of therapy.

•	 We established a gene-expression model using machine learning 
methods, consisting of 37 variables based on RNA-seq database, 
which was externally validated and could be used to predict BRAFi 
resistance. 

What is the implication, and what should change now? 
•	 Machine learning (ML) methods may be useful in predicting BRAF 

resistance, and the differential expression genes we identified in 
this study based on the methods may help us to better understand 
BRAF resistance and improve the prognosis of cancer patients.
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To investigate the resistance mechanism, we obtained 
drug sensitivity data of five kind of BRAFi from the GDSC 
database and subsequently screened resistance-related genes 
by RNA-seq data from the CCLE database. Further, ML 
algorithms were used to select important genes related to 
drug resistance. Then we employed two external data to 
verify these variables based on an established classifier and 
resistance-susceptible gene variations. We could clearly 
distinguish resistant and sensitive patients according to our 
methods. The results of this study will provide a basis for 
individualized treatment with BRAF inhibitors. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-24-961/rc).

Methods

Public databases and data preparation

The detailed information on cell lines was extracted from 
CCLE (https://depmap.org/portal/download/all/), which 
mainly includes cell line source, RNA expression, gene 
mutation, and copy number variation data. The cell line 
drug sensitive data including half maximal inhibitory 
concentration (IC50) and drug types were obtained from the 
GDSC database (https://www.cancerrxgene.org/downloads/
anova). These datasets provide comprehensive genomic 
and transcriptomic profiles that are crucial for linking gene 
expression patterns to drug response. We downloaded the 
TCGA database, which includes information on patient 
status, survival time, drug treatment status, and gene 
expression for cancer patient data, from the public platform 
UCSC Xena (https://xenabrowser.net/datapages/). The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

The RNA-seq data were log2 transformed before 
applying it to analysis, and the missing values were imputed 
with zero. All variables whose missing values were over 
50% were omitted. Only the protein-coding RNAs were 
objects of study. To obtain a precise understanding of the 
expression discrepancy in cells, we conducted a principal 
component analysis (PCA) with expressional sequencing 
data from CCLE. The emerged two main clusters of cells 
were separated by unsupervised hierarchical clustering 
analysis (HCA). Finally, the larger cluster included 787 cells 
that were collected for further analysis (available online: 
https://cdn.amegroups.cn/static/public/tcr-24-961-1.xlsx).

BRAF inhibitor resistance score

We originated a method called the BRAFi resistance score 
(BRS) to evaluate the resistance potential of cell lines. 
First, five BRAF inhibitors (AZ628, Dabrafenib, HG6-
64-1, PLX-4720, and SB590885) were selected. Then, we 
categorized cancer cell lines with drug responses, measured 
by IC50, into three bins, ranging from resistance (score =1), 
intermediate (score =0) to sensitive (score =−1). The BRSs 
were defined as the summing scores of five BRAF inhibitors 
in different cell lines. We removed cells with missing values 
over 50% at the very beginning and defined the rest of the 
missing values as score =0. The resistant cells were defined 
as BRS ≥3 and sensitive cells as score ≤−3. Finally, 235 
cell lines were obtained for further study (available online: 
https://cdn.amegroups.cn/static/public/tcr-24-961-1.xlsx). 
RNA-seq data was then employed to assess differences in 
gene expression between the two groups. 

Differential expression genes

The analysis of differential expressed mRNA between 
BRAF resistant and sensitive groups was performed by R 
software. Student’s t-test, Orthogonal Partial Least Squares-
Discriminant Analysis (OPLS-DA), and expression fold 
change were used to compare the two groups. Differential 
expression genes were defined as P<0.05, |log2FC| >1, and 
VIP value >1. As a result, 990 genes were screened out with 
the above threshold. The volcano plot demonstrated the 
directions of these differential genes. The most common 
mutations of the two groups were displayed and visualized 
in an Oncoplot. To further explore the biological pathways 
involved, we performed pathway enrichment analysis 
on the differences such as Gene Ontology (GO), Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analysis, and 
gene set enrichment analysis (GSEA). This analysis helps in 
mapping these genes to specific pathways, such as oxidative 
phosphorylation and metabolic pathways, which are known 
to be implicated in drug resistance mechanisms. 

Feature selection process based on XGboost

Subsequently, the 990 differentially expressed genes were 
used to select important variables to predict drug response. 
The importance rank of the features was calculated from 
the Shapley Additive exPlanations (SHAP) mean score by 
the XGboost method. The training and test set was set 

https://tcr.amegroups.com/article/view/10.21037/tcr-24-961/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-24-961/rc
https://depmap.org/portal/download/all/
https://www.cancerrxgene.org/downloads/anova
https://www.cancerrxgene.org/downloads/anova
https://xenabrowser.net/datapages/
https://cdn.amegroups.cn/static/public/tcr-24-961-1.xlsx
https://cdn.amegroups.cn/static/public/tcr-24-961-1.xlsx
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at 7:3. Then the features whose importance score >0.1 
were subsequently selected as inputs in model building. 
In addition, the SHAP approach was used to explain the 
effects of all feature contributions on the outcome of each  
patient (24). Totally 37 variables were inputted to develop 
a drug response model. These genes are key indicators of 
altered biological pathways contributing to drug resistance.

Drug sensitivity determination based on an established 
predictor

We applied the feature selection and prediction procedure 
derived from Bolis et al. (25) and further used to select 
features for drug-response prediction. For the 787 cell lines 
of cluster1, we firstly abandoned the mRNA data which was 
unexpressed in more than 1/3 of cell lines. Subsequently, 
we retained the genes based on the Spearman correlation 
coefficient P<0.01 with LnIC50. Then we used a ML 
algorithm of Bayesian ridge regression to predict IC50. 
The dataset was split into training and test sets with a ratio 
of 7:3, and a 10-fold cross-validation method was used to 
verify the accuracy of the model. Instead of the 10 times 
repeated Leave-Half-Out cross-validation procedure, we 
concurrently used data from the two most common BRAF 
inhibitors for clinical use, Dabrafenib, and Vemurafenib, to 
reduce data and classification error. We selected variables 
significantly correlated with LnIC50 (Spearman, P<0.05) for 
constructing the prediction model.

Bayesian Ridge regression model was used to predict the 
sensitivity of TCGA pan-cancer study patients. According 
to the expression of screened variables, the patients were 
classified into sensitive and resistant by the median of the 
predicted value. Only patients predicted to be sensitive or 
resistant to Dabrafenib and Vemurafenib concurrently were 
included in corresponding groups. Through the prediction 
and classification procedure, 3,014 BRAFi sensitive patients 
and 3,015 BRAFi resistant patients were selected from 10,535 
patients for further study, detailed in available online: https://
cdn.amegroups.cn/static/public/tcr-24-961-2.xlsx.

Literature evidence-based sensitivity classification

We next generated a sensitivity classification method based 
on published literature evidence (26,27). As previously 
reported, the appearance of BRAF inhibitor resistance is 
associated with some specific changes in a gene such as 
mutations and copy number variants. Thus, according to 
published literature, 17 gene alterations (EGFR, IGF1R, 

KRAS, MAP2K1, MAP2K2, MET, NF1, NRAS, PDGFRB, 
PTEN, RAF1, STAG3, CDKN2A, MAP3K8, CCND1, ARAF, 
STAG2) that influence BRAF inhibitor sensitivity the most 
were selected. Then the mutation and copy number data of 
the TCGA pan-cancer study patients were obtained. We 
considered the patients who carry BRAFV600 series mutations 
as sensitive to BRAF inhibitors, as most literature reported. 
Apart from BRAFV600 mutations, patients who concurrently 
carry specific gene changes or another BRAF site mutation 
were deemed resistant to BRAF inhibitors.

For the 17 specific gene alterations, patients carried 
mutations in EGFR, IGF1R, KRAS, MAP2K1, MAP2K2, 
MET, NF1, NRAS, PDGFRB, PTEN, RAF1, amplifications 
in RAF1, BRAF, MAP3K8, CCND1, ARAF, or deletions 
in STAG3, CDKN2A, PTEN, NF1, STAG2 were classified 
into the resistant group. We only considered the non-
silent mutations as effective. Samples without RNA-seq 
data were omitted from the analysis. With this literature 
evidence-based classification method, 368 BRAF inhibitor 
sensitive and 185 resistant patients were selected for further 
validation (available online: https://cdn.amegroups.cn/
static/public/tcr-24-961-3.xlsx).

Validation of 37-feature classification

To validate the predictive effect of the 37 features, we 
applied these features to external datasets. We predicted 
and established two datasets using predictor and literature 
evidence from TCGA. Multi ML algorithms such as linear 
regression, K-nearest neighbor, support vector machine, 
decision tree, random forest, Adaboost, Catboost, linear 
discriminant analysis, and XGboost were employed to 
predict drug resistance. The area under the curve (AUC) 
and the precision/recall (PR) curve were used to evaluate 
the performance of the models. 

Quantitative real-time polymerase chain reaction (qRT-PCR)

Total RNA was isolated from the rat myocardium samples 
with RNA extraction kit (TaKaRa, Dalian, China) according 
to instructions. Approximately 2 μg of total RNA was used 
for first-strand cDNA synthesis by cDNA Synthesis Kit 
(TaKaRa, Osaka, Japan). Quantitative real-time PCR was 
performed using QuantStudio 6 Flex System (Thermo 
Fisher Scientific, Massachusetts, USA) with TB Green 
qPCR Kit (TaKaRa, Osaka, Japan). Specific primers of the 
cDNAs are displayed in Table 1. We chose the quantitation-
comparative 2−ΔΔCT algorithm with the normalization of data 

https://cdn.amegroups.cn/static/public/tcr-24-961-2.xlsx
https://cdn.amegroups.cn/static/public/tcr-24-961-2.xlsx
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to reference gene GAPDH.

Statistical analysis

For unsupervised clustering, RNA-seq data were input 
into PCA and HCA. For orthogonal partial least square 
discriminant analysis (OPLS-DA), the variable importance 
in projection (VIP) value over 1.0 was considered 
meaningful to the model. The VIP value threshold 
combined with |log2FC| >1 and P<0.05 (Student’s t-test) 
constructed the differential expression genes’ inclusion 
criteria. For oncoplot, Chi-squared tests were performed 
between BRAFi resistance and sensitive group to judge 
the mutational difference, and P<0.01 was considered as 
significant. For SHAP by XGboost feature selection, the 
importance score >0.1 was considered significant for the 
classification model. For univariate logistic regression, 
multivariate logistic regression, and Kaplan-Meier survival 
analysis, P<0.05, Adjusted P<0.05, and Log-rank P<0.05 
was considered significant. 

Statical analyses were performed by R 4.2.1 and Python 
3.6. HCA, OPLS-DA, enrichment analysis, oncoplot, 
forest plot, and Kaplan-Meier curve were performed by R 
packages ggtree, ropls, clusterProfiler, ComplexHeatmap, 
forestplot, and survminer respectively. Plot visualization and 
beautification were performed by R package ggplot2. ML 
models and feature selection involved in this study were 
implemented by sklearn and shap packages of python.

Results

Group division according to PCA, HCA, and OPLS-DA

The drug sensitivity and expression data of 952 cell lines 
were finally downloaded from the GDSC and CCLE 
database, which contained most of the cancer types  
(Figure 1A). Then, HCA was employed to calculate and 

separate the cells. Given that BRAF mutations are more 
prevalent in solid tumors, we ultimately selected the 787 cell 
line, which represents solid tumors within the larger group, 
for the subsequent study (Figure 1B cluster1). Two hundred 
and thirty-five cell lines were further utilized to investigate 
the potential presence of BRAF inhibitor resistance  
(Figure 1C). To control for the influence of huge differences 
among cell types, we tested the RNA expression dispersion 
of these cell lines by PCA. The result showed that these 
cell lines could be divided into two conspicuous groups, we 
subsequently found the samples were clearly distinguished 
by solid or hematological tumors (Figure 1D). 

We next employed our original method BRS to 
evaluate the cells’ resistance potential and help grouping 
(Figure 2A). After that, 235 cell lines were extracted and 
divided into resistance group (n=163) and sensitive group 
(n=172) (available online: https://cdn.amegroups.cn/static/
public/tcr-24-961-1.xlsx). This time, the PCA showed no 
remarkable subgroup generated except for a slight tendency 
(Figure 2B). To better demonstrate the differences between 
the two groups, we introduced a supervised clustering 
analysis OPLS-DA of RNA-seq data. Supervised clustering 
is aware of group information of samples, so the analysis is 
more result-oriented. A better separation trend of the two 
groups was seen from OPLS-DA (Figure 2C), which also 
indicated that the resistant difference of different cell lines 
could be properly illustrated by the RNA profile.

Differential expression genes analysis between BRAFi 
resistant and sensitive cells

To obtain an applicable difference between the two groups, 
we screened the differential expression genes by statistical 
approach and model contribution. Overall, after eliminating 
non-protein-coding RNA, 666 genes were upregulated 
and 324 genes were downregulated between the two 

Table 1 Specific primers for the qRT-PCR analysis

Gene Forward Reverse

OXTR CCGAGGCTCCAGTGAGAGA CGCAGGCGAACCTAAAGTTG

SLC2A4 GGCTGTTGTCATACTTCTCATGG GCCAGGACATTGTTGACCAG

TBX2 CACGGCTTCACCATCCTAAAC TGCGGAAGGTGCTGTAAGG

H2AC13 AGAAGACTCGCATCATCCCG TCCAGGCTTCTACTTGCCCT

GAPDH GGAGCGAGATCCCTCCAAAAT GGCTGTTGTCATACTTCTCATGG

qRT-PCR, quantitative real-time polymerase chain reaction.

https://cdn.amegroups.cn/static/public/tcr-24-961-1.xlsx
https://cdn.amegroups.cn/static/public/tcr-24-961-1.xlsx
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Figure 1 Composition of pan-cancer cluster. (A) Composition of all pan-cancer cell lines; (B) composition of 235 BRAFi resistant and 
sensitive cell lines; (C) HCA result of the two cell line clusters; (D) PCA result of all pan-cancer cell lines, the red-outlined cells are omitted 
hematologic tumors belonging to cluster2. BRAFi, V-raf murine sarcoma viral oncogene homolog B1 inhibitor; HCA, hierarchical cluster 
analysis; PCA, principal component analysis.

groups. Figure 2D showed a volcano plot representing the 
results. To further elucidate the physiological function, the 
differential expression genes were subsequently subjected to 
GO enrichment analysis and KEGG pathway enrichment 
analysis. We employed all the differential expression genes 
in KEGG pathway enrichment, and the result shows that 
only the cell adhesion molecules pathway was significant 
(Figure 2E). Furthermore, the GSEA investigated the 
pathway changes of the two groups (Figure 2F,2G). The 
cytochrome P450 (CYP450), the key enzyme of drug 

metabolism, was significantly enriched in up-regulated 
genes. The important role of CYP450 isoenzymes in BRAF 
inhibitors metabolism was validated previously (27,28). 
Next, we separated the up- and down-regulated genes 
into different GO functional enrichment analysis. The 
up-regulated genes are generally enriched in ion channel 
activity and transportation, and the down-regulated genes 
are mainly involved in collagen-containing extracellular 
matrix (Figure 2H,2I). We also found that melanin 
metabolism and pigmentation were main results in down-
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regulated genes. This may indicate BRAFi resistance that is 
associated with the recession of melanin-related metabolic 
processes. In contrast, immune-related pathways were 
enriched in down-regulated genes, which indicated BRAFi 
resistant cells may have a potential for immune escape. We 
also noticed that hormone metabolism was enriched in both 

GO and GSEA results. Overall, the RNA changes of BRAFi 
resistance cells involved in ion channel transportation, 
melanocyte bioprocess, CYP450 and hormone metabolism.

To investigate the genetic profile of the two groups, we 
further plotted an oncoplot of gene panorama (Figure 3). 
From this plot, the gain of copy number in the resistant 

Figure 2 Differential expression genes between BRAFi resistant and sensitive groups. (A) Originated BRS method to identify BRAFi 
resistant and sensitive cell lines; (B) PCA result of BRAFi resistant and sensitive group, and there is no conspicuous subgroup generated; 
(C) OPLS-DA result of BRAFi resistant and sensitive group, and the two groups separated clearly; (D) Volcano plot of the 990 differential 
expression genes; (E) KEGG enrichment analysis; (F,G) GSEA of up-regulated and down-regulated genes. (H,I) GO enrichment of up-
regulated and down-regulated genes. BRS, BRAFi resistance score; PCA, principal component analysis; OPLS-DA, Orthogonal Partial 
Least Squares-Discriminant Analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology; BRAFi, V-raf murine 
sarcoma viral oncogene homolog B1 inhibitor; GSEA, gene set enrichment analysis.
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Figure 3 Oncoplot of BRAFi resistant and sensitive group cells. A Chi-squared test was employed. *, P<0.05; **, P<0.01. BRAFi, V-raf 
murine sarcoma viral oncogene homolog B1 inhibitor.

group was significantly more than the sensitive group 
(P=0.02). The commonest mutations were TP53, BRAF, 
PKHD1, and KRAS in order, with mutation frequency over 
10%. Among all mutation types, missense mutation was 
the leading cause. Notably, a variety of components were 
statistically different between the two groups. For example, 
the rates of TP53 and KRAS mutation were significantly 
higher in resistant cells; mutations of BRAF, AOX1, and 
CASP8 were more common in the sensitive group. This 
result indicated that MAPK pathway activation (KRAS 
mutants), conformational changes of target gene (BRAF 
wild type) as well as broken tumor growth-apoptosis 
balance (TP53 and CASP8 mutants) may determine 
resistance occurrence. Besides, the possible role of AOX1, 
a promoter of peroxide and superoxide which was found 
to influence the resistance of PI3K inhibitors (29,30), in 
BRAFi resistance was first reported.

Feature selection and the 37-feature ML models

The 235 cell lines were grouped by the above method. We 
used the expression value of 990 differential expression 
genes as input variables in feature selection by the method 
of XGboost. To interpret ML models, SHAP values were 

used to visualize and explain how these features affect 
events according to the permutation importance method in 
the XGboost model (Figure 4A). Overall, 37 variables were 
selected based on the SHAP value >0.1 for the outcome 
(available online: https://cdn.amegroups.cn/static/public/
tcr-24-961-4.xlsx). Then we built a ML model of BRAF 
inhibitor response classifier. In the selection of an optimal 
model, eight applicable algorithms were employed to 
calculate the predictive performance (Figure 4B,4C). For 
drug response, the discriminative performance of the 
nine ML models was displayed by the receiver operating 
characteristic (ROC) curves in Figure 4B. XGboost model 
exhibited the best discrimination analysis with AUC 
0.99, followed by RF (AUC 0.98), CatBoost (AUC 0.98), 
SVM (AUC 0.96), LDA (AUC 0.95) and LR (AUC 0.95). 
The Decision Tree and Adaboost model performed the 
worst with AUC =0.77 and 0.87. In general, XGboost 
model had the best performance among the models when 
comprehensively evaluating the AUC, accuracy, specificity, 
sensitivity, precision, and F1 score. Also, the PR curve of all 
the models was shown in Figure 4C. According to the ROC 
curve, XGboost classifier was the best to predict BRAF 
response (AUC =0.99). Thus, we chose XGboost method to 
construct the response model.
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External validation of the 37 variables 

Based on Bosil’s method, we validated the accuracy of the 
37 variables. Bayesian Ridge regression was performed to 
predict IC50. According to the prediction model, we divided 
6,029 patients from TCGA into resistant and sensitive 
groups. Then, we used 37 variables to predict drug response 
in this dataset. Strikingly, the AUC of XGboost achieved 
0.88 based on 37 variables as in Figure 4D. The performance 
of the model in external validation datasets underscores 

the robustness and highlights the potential for using these 
gene expression profiles to identify high-risk patients. 
Meanwhile, based on well-proven genetical changes 
associated with drug response, 545 patients from TCGA 
database were also divided into the resistant and sensitive 
groups. The performance of XGboost model achieved 0.95, 
even higher than the above classification model (Figure 4E). 
Further, Kaplan-Meier (KM) curve was used to evaluate 
the prognosis of the two classified groups. The 10-year OS 
rate of the resistant group was dramatically poorer than the 

Figure 4 37-variable prediction model and validation. (A) SHAP score of XGboost in feature selection; (B) ROC of eight different ML 
models, with XGboost is the highest AUC; (C) PR curve of eight different ML models; (D) ROC of established predictor-based external 
validation; (E) ROC of literature evidence-based external validation; (F,G) KM curve of the two validation datasets. AUC, area under the 
curve; SVM, support vector machine; SHAP, SHapley Additive exPlanations; ROC, receiver operating characteristic; ML, machine learning; 
PR, precision-recall curve; KM, Kaplan-Meier.
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sensitive group (Figure 4F). Similarly, the prognosis in the 
resistant group was poorer than the sensitive group during 
the 10-year follow-up (Figure 4G). The poor prognosis of 
BRAFi resistant patients indicated the significant impact of 
drug resistance on disease progression and treatment. 

Relationship between drug response and OS

To identify the effect of the 37 variables in BRAFi 
resistance, multivariate logistic regression analysis was 
applied to explore the potential risk factors of drug 
resistance as shown in available online: https://cdn.
amegroups.cn/static/public/tcr-24-961-4.xlsx. There are 11 
genes that were identified as independent risk and protective 
factors of BRAFi resistance (Figure 5A). ACTA2, MSC, 
SLC2A4, and SPTB are protective factors of resistance with 
adjusted P value =0.01, 0.007, 0.009, and 0.03, respectively; 
meanwhile, EPHA10, H2AC13, OXTR, TBX2, WNT9A, 
ZNF471, and THRSP are risk factors of resistance with 
adjusted P value =0.02, 0.04, 0.003, 0.002, 0.005, 0.03, 
and 0.03, respectively. The subsequent survival analysis 
aimed at demonstrating the direct effect of these factors on 
prognosis and the utility of our method. We obtained data 
of 10,434 patients from TCGA database and used the KM 
curve to identify the relationship between 37 variables and 
OS in the 10-year follow-up period (Figure S1). Notably, 
the high expression of OXTR, H2AC13 and TBX2, and low 
expression of SLC2A4 were associated with an unfavorable 
prognosis in cancer patients, echoed influences on resistance  
(Figure 5B-5E). The consistency of OXTR, H2AC13, TBX2, 
and SLC2A4 on resistance and prognosis may indicate the 
four factors report resistant status in a relatively direct way.

In order to verify the authenticity of the research 
findings, we employed the PCR technique to evaluate the 
mRNA expression level of TBX2, H2AC13, OXTR, and 
SLC2A4 (Figure 5F-5I). This analysis was conducted in both 
dabrafenib-generated BRAFi resistant and corresponding 
sensitive SKMEL-5 and WM983B cell lines (Figure S2). 
In concurrence with the outcomes of logistic regression 
and survival analysis, we observed significant upregulation 
of OXTR, H2AC13, and TBX2, while SLC2A4 exhibited 
notably diminished expression within both kinds of BRAFi 
resistant cell lines. These trends collectively indicate 
potential contributions of OXTR, H2AC13, TBX2, and 
SLC2A4 in influencing the phenomenon of BRAFi 
resistance, which may warrant a more in-depth validation 
process.

Discussion

Even though BRAFi-targeted therapies (e.g., dabrafenib) 
have improved the OS of patients, they are limited by 
heterogeneous response patterns and drug resistance. With 
the rising care costs, the development of tools to improve 
risk and drug response prediction is invaluable, as these 
tools may accurately identify patients who are at high  
risk (31). In this study, we used PCA, HCA, and OPLS-
DA to select 235 resistant and sensitive cell lines of multiple 
cancer types from the public database. With analyses of 
RNA-seq data, we obtained resistant-prone changes from 
a transcription profile. In the age of precision medicine, 
ML is useful for converting extensive data into required 
structural data, making it possible to predict drug resistance 
timely and accurately (32). We established a gene-expression 
model using ML methods, consisting of 37 variables based 
on an RNA-seq database, which was externally validated and 
could be used to predict BRAFi resistance. Additionally, our 
approach effectively demonstrates how publicly available 
pharmacogenomic datasets can be utilized to identify and 
validate biological pathways contributing to drug resistance. 
By leveraging publicly available pharmacogenomic datasets 
such as CCLE and GDSC, we utilized a comprehensive 
set of RNA sequencing data from a variety of cancer cell 
lines. This broad dataset enhances the generalizability of 
the model across different cancer types. By integrating 
differential gene expression analysis, pathway enrichment, 
and ML, we were able to uncover novel insights into BRAFi 
resistance, which could guide the development of targeted 
therapies and improve patient outcomes. The machine-
learning model developed in this study demonstrated 
robust predictive power, successfully classifying cell lines 
into BRAFi-resistant and sensitive groups. This predictive 
capability is a significant strength, as it provides a reliable 
method for identifying high-risk patients who may not 
respond well to BRAFi therapy. 

Currently, the majority of studies have focused on 
the molecular mechanism of genomic or epigenetic 
abnormalities and tumor microenvironment which are 
related to drug resistance (13). Of that, the reactivation 
of the MAPK signal pathway plays an important role 
in drug resistance and has been intensively studied for 
BRAF inhibitors in recent years (26,33). When the MAPK 
pathway is reactivated, the resistance process begins 
to emerge. BRAFV600E splices isoform-induced drug 
resistance by forming BRAF dimers since homo- and 

https://cdn.amegroups.cn/static/public/tcr-24-961-4.xlsx
https://cdn.amegroups.cn/static/public/tcr-24-961-4.xlsx
https://cdn.amegroups.cn/static/public/TCR-24-961-Supplementary.pdf
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heterodimers could activate MEK in the presence of BRAF  
inhibitors (34). In addition, alterations in COT, NRAS, 
KRAS, TP53 and NF1 also reactivate the MAPK pathway or 
alternative pathway (35,36). Meanwhile, a higher mutation 
frequency of TP53 and KRAS as well as less mutation of 

BRAF was found in resistance cell lines, which means the 
function of pathway molecules is still of great significance 
in our study. These gene-based alterations could potentially 
serve as inherited risk factors, contributing to tumor 
initiation and reduced therapeutic efficacy in subsequent 

Figure 5 Logistic regression, univariate survival analysis based on pan-cancer data and PCR verification. (A) Forest plot of multivariate 
logistic regression; (B-E) KM curve of OXTR, H2AC13, TBX2, and SLC2A4 based on pan-cancer data. (F-I) The mRNA level of OXTR, 
H2AC13, TBX2, and SLC2A4 in BRAFi resistant and corresponding sensitive cell lines (mean ± SD, n=3). Student’s t-test between BRAFi 
resistant and sensitive cell lines, *, P<0.05; **, P<0.01; ***, P<0.001. OR, odds ratio; CI, confidence interval; PCR, polymerase chain reaction; 
KM, Kaplan-Meier; BRAFi, V-raf murine sarcoma viral oncogene homolog B1 inhibitor. 
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generations. Additionally, cancer-associated fibroblasts and 
immune cells can secrete factors that protect tumor cells 
from treatment, facilitating resistance. Hypoxia within the 
TME also promotes drug resistance by stabilizing HIF-
1α, which triggers survival pathways (37). Epigenetic 
modifications such as DNA methylation and histone 
acetylation can alter gene expression, leading to drug 
resistance. These changes may silence tumor suppressor 
genes or activate oncogenes, allowing cancer cells to 
survive despite therapy (38). Overexpression of efflux 
transporters like P-glycoprotein (P-gp) reduces intracellular 
drug concentrations, decreasing the effectiveness of 
chemotherapy. Moreover, the B7-H1/PD-1 signaling axis 
is recognized as a central mechanism by which tumors 
evade immune surveillance. Upon encountering tumor 
antigens, effector T cells specific to the tumor upregulate 
PD-1 expression and secrete interferon-γ (IFN-γ), which 
in turn induces B7-H1 expression in tumor and myeloid 
cells within the tumor microenvironment. B7-H1 binds 
to PD-1 on T cells, leading to their functional inhibition 
and disruption of antitumor activity. This localized 
immunosuppression facilitates tumor immune evasion, a 
process termed ‘adaptive immune resistance’, where the 
tumor environment manipulates immune checkpoints to 
escape immune-mediated destruction (39). The PD-1/
PD-L1 signaling pathway is critical in regulating immune 
tolerance and facilitating immune escape within the 
tumor microenvironment. The interaction between 
PD-1 receptors, expressed on activated T cells, and 
PD-L1 receptors, found on the surface of cancer cells, 
suppresses the cytotoxic activity of T-lymphocytes. 
This suppression impairs the immune system’s ability 
to attack malignant cells, thereby promoting immune 
evasion and contributing to tumor survival (40). Cellular 
plasticity, including epithelial-mesenchymal transition 
(EMT), transdifferentiation, and phenotypic switching, 
represents a key mechanism of targeted therapy resistance 
in various cancers. This plasticity enables tumor cells to 
adopt alternative phenotypic states that no longer rely on 
drug-targeted pathways. As a result, these drug-resistant 
cells form a population of slow-cycling cells that may 
either regain drug sensitivity when treatment is paused or 
develop permanent resistance, ultimately leading to disease  
relapse (41). CYP450 is a well-established enzymatic 
system that controls the phase I metabolic conversion of 
xenobiotics. Approximately 80% of oxidative metabolism 
and 50% of common drug elimination can be attributed 
to the CYP450 family (42). As drug metabolism causes 

a decrease in therapeutic effects, the high enrichment of 
the CYP450 pathway in the resistant group is explicable. 
Overactivation of CYP450 enzymes could induce rapid 
drug clearance, and a higher dose of inhibitor is needed to 
maintain effective plasma concentration. 

As the clinical use of BRAFi has expanded, addressing 
BRAFi resistance is crucial for improving patient outcomes, 
especially in cancers like melanoma where BRAFv600E 
mutations. Combining BRAF inhibitors with MEK 
inhibitors is a well-established approach that has shown 
efficacy in delaying resistance. Resistance to BRAFi can arise 
through the activation of alternative pathways, such as the 
PI3K/AKT pathway. Combining BRAFi with inhibitors of 
these parallel pathways could prevent the cancer cells from 
bypassing the blocked BRAF pathway (43). Combining 
BRAFi with immune checkpoint inhibitors like anti-
PD-1 or anti-CTLA-4 or cytokines anti-CCL2 has shown 
promising results. Drugs that reverse epigenetic changes, 
such as histone deacetylase (HDAC) inhibitors or DNA 
methyltransferase inhibitors, could restore sensitivity to 
BRAFi (44). Emerging gene-editing technologies like 
CRISPR/Cas9 could correct epigenetic modifications 
or directly target resistance-conferring mutations, 
providing a more personalized approach to overcoming 
BRAFi resistance (45). Ongoing research aims to identify 
biomarkers that predict resistance to BRAFi. These 
biomarkers could be used to tailor therapy regimens, 
allowing for earlier intervention with alternative therapies 
in patients likely to develop resistance (46). Monitoring 
ctDNA can provide real-time insights into the development 
of resistance, allowing for timely adjustments to treatment 
strategies (47). Synthetic lethality targeting a second 
gene, along with the BRAF pathway, leads to cell death. 
This approach could be particularly effective in cells that 
have developed resistance through alternative survival  
pathways (48). Advanced drug delivery systems using 
nanoparticles can enhance the delivery of BRAFi and co-
delivered drugs to the tumor site, improving efficacy and 
overcoming drug resistance by ensuring sustained and 
targeted delivery (49). Modulating the TME, such as 
inhibiting CAFs or reducing hypoxia, can make tumors 
more susceptible to treatment. Normalizing blood vessels 
within tumors can also improve drug delivery and reduce 
resistance. Developing inhibitors of efflux transporters 
like P-gp can increase the intracellular concentration of 
chemotherapy drugs, thereby enhancing their effectiveness. 
Tailoring treatments based on specific genetic and 
tumor molecular profiles can help in reducing resistance. 
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Continued research and clinical trials will be crucial to 
refine these strategies and integrate them into standard 
cancer care, ultimately improving outcomes for patients 
with BRAFi resistance.

Our study identified for the first time the involvement 
of AOX1 in BRAFi resistance. Aldehyde oxidase (AOX) 
has become increasingly important in drug metabolism. 
It can oxidize aldehyde into corresponding carboxylic 
acids, which is a crucial process in xenobiotic and drug  
metabolism (50). In cancers such as glioblastoma and 
breast cancer, overexpression of AOX1 could be exploited 
to activate anti-neoplastic prodrugs in situ. However, for 
urogenital, ovarian, and prostate carcinoma, AOX1 may 
inactivate targets for antitumor agents (46). It has been 
reported that the loss of AOX1 expression is related to a 
poorer prognosis of bladder cancer and renal cell carcinoma 
(51,52). When it comes to BRAFi resistance, a higher 
frequency of mutation, mostly missense, was observed in 
sensitive cell lines. In concert with endoplasmic CYP450, 
AOX1 could play a part in inactivating and eliminating 
BRAF inhibitors via hepatic clearance. Nonetheless, the 
effect of AOX1 should be more complicated, due to the 
uncertainty of mutation, its two-sided potential for drug 
activity, as well as different cancer responses. A clear role of 
AOX1 in BRAFi resistance needs to be further investigated.

BRAF resistance may lead to poor prognosis in cancer 
patients, which our research has proved. By multivariate 
logistic regression and survival analysis, 4 genes showed 
consistency of drug-resistant prone and prognostic risk. A 
factor that influences prognosis may induce resistance in a 
more direct manner. Among all the features, OXTR owns the 
highest SHAP score, endowing it with the most important 
factor. OXTR is a G-protein coupled receptor binding to 
oxytocin hormone, which could activate the proliferation 
pathway via ERK1/2 phosphorylation (53). ERK reactivation 
is a manifestation of BRAFi resistance. The high expression 
of OXTR is associated with the enrichment of hormone 
metabolism. It has been reported that OXTR genetic 
alterations have led to poorer OS in hepatocellular 
carcinoma and pancreatic cancer (53,54). TBX2 gene is 
a member of the T-box family of transcription factors 
and has been reported to play critical roles in embryonic 
development and cell cycle of cancer. TBX2 is reported to 
regulate WNT signal proteins to induce bone metastasis of 
prostate cancer (55). Its ability to suppress the expression of 
cell cycle regulators p21 and p16 could promote malignant 
growth, and depletion of TBX2 leads to cell cycle arrest and 
senescence (56). It is well known that glycolysis plays an 

important role in tumor progression. Solute carrier family-2 
(SLC2) can encode glucose transporter (GLUT) protein. 
Among them, SLC2A4 is significantly downregulated in 
many types of cancers such as lung cancer, liver cancer, 
and stomach cancer (57). Additionally, SLC2A4 could be 
an important prognosis biomarker for cancer in our study. 
H2AC13, a necroptosis-related gene signature, has been 
reported to relate to poorer prognosis of cervical cancer 
patients (58). In our study, we first found that H2AC13 
directly contributes to drug resistance and poor prognosis. 
Our findings warrant further studies on the poorly defined 
molecular mechanism underlying the influence of OXTR, 
TBX2, SLC2A4, and H2AC13 in BRAFi resistance. The 
study identified AOX1 and other genes (OXTR, H2AC13, 
TBX2, SLC2A4) as potential biomarkers associated with 
BRAFi resistance. The findings contribute to a deeper 
understanding of the molecular mechanisms underlying 
resistance and provide potential targets for future 
therapeutic interventions.

Our study still has some limitations. First, although the 
ML model showed robust performance in external validation 
datasets, its applicability to diverse patients remains to be 
fully validated. The cell line-based model may not fully 
capture the complexity of tumors, where factors such as 
tumor heterogeneity and the tumor microenvironment play 
significant roles. Second, given the large number of features 
(37 genes) used in the model, there is a risk of overfitting, 
where the model may perform well on the training data 
but less effectively on new, unseen data. Third, while the 
model was validated using cell lines, it has not yet been 
validated in vivo. This gap may raise questions about the 
model’s relevance to clinical practice. Fourth, integrating 
data from different sources posed challenges in consistency 
and integrity across datasets. Variability in experimental 
conditions, data processing, and measurement techniques 
could introduce biases. Therefore, further validation in 
diverse patients and in vivo of the model is necessary. 
Regularization or the inclusion of more diverse training 
data is valuable to mitigate overfitting. The identified 
biomarkers suggest the directions of future research and 
integrating data from the tumor microenvironment could 
further improve the accuracy of the model.

Conclusions

In this study, the 37 variants-based BRAFi resistance 
classification method passed external validation successfully. 
Apart from previously reported genetic factors, AOX1 is 
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first reported in our study to have a vital role in BRAFi 
metabolism and resistance. OXTR, H2AC13, TBX2, and 
SLC2A4 showed consistency of drug-resistant prone 
and prognostic risk. These findings provide potential 
biomarkers for clinical use and enhance our understanding 
of the underlying biological pathways that contribute to 
BRAFi resistance. Overall, the ML algorithm may be useful 
in predicting BRAF resistance and helping us to better 
understand BRAF resistance and improve the prognosis of 
cancer patients.

Acknowledgments

Funding: This research was supported by the National 
Natural Science Foundation of China (No. 82073072).

Footnote

Reporting Checklist: The authors have completed the 
TRIPOD reporting checklist. Available at https://tcr.
amegroups.com/article/view/10.21037/tcr-24-961/rc

Peer Review File: Available at https://tcr.amegroups.com/
article/view/10.21037/tcr-24-961/prf

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at https://tcr.amegroups.
com/article/view/10.21037/tcr-24-961/coif). The authors 
have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1.	 Sakai T, Matsumoto S, Ueda Y, et al. Clinicogenomic 
Features and Targetable Mutations in NSCLCs Harboring 
BRAF Non-V600E Mutations: A Multi-Institutional 
Genomic Screening Study (LC-SCRUM-Asia). J Thorac 
Oncol 2023;18:1538-49.

2.	 Gunderwala A, Cope N, Wang Z. Mechanism and 
inhibition of BRAF kinase. Curr Opin Chem Biol 
2022;71:102205.

3.	 Halle BR, Johnson DB. Defining and Targeting BRAF 
Mutations in Solid Tumors. Curr Treat Options Oncol 
2021;22:30.

4.	 Gan X, Shen F, Deng X, et al. Prognostic implications 
of the BRAF-V600(E) mutation in papillary thyroid 
carcinoma based on a new cut-off age stratification. Oncol 
Lett 2020;19:631-40.

5.	 Yaeger R, Kotani D, Mondaca S, et al. Response to Anti-
EGFR Therapy in Patients with BRAF non-V600-
Mutant Metastatic Colorectal Cancer. Clin Cancer Res 
2019;25:7089-97.

6.	 Mazieres J, Cropet C, Montané L, et al. Vemurafenib in 
non-small-cell lung cancer patients with BRAF(V600) and 
BRAF(nonV600) mutations. Ann Oncol 2020;31:289-94.

7.	 Ottaviano M, Giunta EF, Tortora M, et al. BRAF 
Gene and Melanoma: Back to the Future. Int J Mol Sci 
2021;22:3474.

8.	 Jung T, Haist M, Kuske M, et al. Immunomodulatory 
Properties of BRAF and MEK Inhibitors Used for 
Melanoma Therapy-Paradoxical ERK Activation and 
Beyond. Int J Mol Sci 2021;22:9890.

9.	 Bai X, Flaherty KT. Targeted and immunotherapies in 
BRAF mutant melanoma: where we stand and what to 
expect. Br J Dermatol 2021;185:253-62.

10.	 Subbiah V, Baik C, Kirkwood JM. Clinical Development 
of BRAF plus MEK Inhibitor Combinations. Trends 
Cancer 2020;6:797-810.

11.	 Zhong J, Yan W, Wang C, et al. BRAF Inhibitor Resistance 
in Melanoma: Mechanisms and Alternative Therapeutic 
Strategies. Curr Treat Options Oncol 2022;23:1503-21.

12.	 Czarnecka AM, Bartnik E, Fiedorowicz M, et al. Targeted 
Therapy in Melanoma and Mechanisms of Resistance. Int 
J Mol Sci 2020;21:4576.

13.	 Alqathama A. BRAF in malignant melanoma progression 
and metastasis: potentials and challenges. Am J Cancer Res 
2020;10:1103-14.

14.	 Ren Z, Xu Z, Chang X, et al. STC1 competitively binding 

https://tcr.amegroups.com/article/view/10.21037/tcr-24-961/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-24-961/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-24-961/prf
https://tcr.amegroups.com/article/view/10.21037/tcr-24-961/prf
https://tcr.amegroups.com/article/view/10.21037/tcr-24-961/coif
https://tcr.amegroups.com/article/view/10.21037/tcr-24-961/coif
https://creativecommons.org/licenses/by-nc-nd/4.0/


Translational Cancer Research, Vol 13, No 12 December 2024 6659

© AME Publishing Company.   Transl Cancer Res 2024;13(12):6645-6660 | https://dx.doi.org/10.21037/tcr-24-961

βPIX enhances melanoma progression via YAP nuclear 
translocation and M2 macrophage recruitment through 
the YAP/CCL2/VEGFA/AKT feedback loop. Pharmacol 
Res 2024;204:107218.

15.	 Friedman A, Siewe N. Overcoming Drug Resistance to 
BRAF Inhibitor. Bull Math Biol 2020;82:8.

16.	 Cui JW, Li Y, Yang Y, et al. Tumor immunotherapy 
resistance: Revealing the mechanism of PD-1 / PD-L1-
mediated tumor immune escape. Biomed Pharmacother 
2024;171:116203.

17.	 Dohm AE, Nakashima JY, Kalagotla H, et al. Stereotactic 
radiosurgery and anti-PD-1 + CTLA-4 therapy, anti-PD-1 
therapy, anti-CTLA-4 therapy, BRAF/MEK inhibitors, 
BRAF inhibitors, or conventional chemotherapy for the 
management of melanoma brain metastases. Eur J Cancer 
2023;192:113287.

18.	 Hakeem H, Feng W, Chen Z, et al. Development and 
Validation of a Deep Learning Model for Predicting 
Treatment Response in Patients With Newly Diagnosed 
Epilepsy. JAMA Neurol 2022;79:986-96.

19.	 Haug CJ, Drazen JM. Artificial Intelligence and Machine 
Learning in Clinical Medicine, 2023. N Engl J Med 
2023;388:1201-8.

20.	 An X, Chen X, Yi D, et al. Representation of molecules 
for drug response prediction. Brief Bioinform 
2022;23:bbab393.

21.	 Goyal RK, Kalaria SN, McElroy SL, et al. An exploratory 
machine learning approach to identify placebo responders 
in pharmacological binge eating disorder trials. Clin Transl 
Sci 2022;15:2878-87.

22.	 Kuenzi BM, Park J, Fong SH, et al. Predicting Drug 
Response and Synergy Using a Deep Learning Model of 
Human Cancer Cells. Cancer Cell 2020;38:672-684.e6.

23.	 Yang H, Gan L, Chen R, et al. From multi-omics 
data to the cancer druggable gene discovery: a novel 
machine learning-based approach. Brief Bioinform 
2023;24:bbac528.

24.	 Wang Y, Chen H, Sun T, et al. Risk predicting for acute 
coronary syndrome based on machine learning model with 
kinetic plaque features from serial coronary computed 
tomography angiography. Eur Heart J Cardiovasc Imaging 
2022;23:800-10.

25.	 Bolis M, Garattini E, Paroni G, et al. Network-guided 
modeling allows tumor-type independent prediction 
of sensitivity to all-trans-retinoic acid. Ann Oncol 
2017;28:611-21.

26.	 Proietti I, Skroza N, Bernardini N, et al. Mechanisms 
of Acquired BRAF Inhibitor Resistance in Melanoma: A 

Systematic Review. Cancers (Basel) 2020;12:2801.
27.	 Dulgar O, Kutuk T, Eroglu Z. Mechanisms of Resistance 

to BRAF-Targeted Melanoma Therapies. Am J Clin 
Dermatol 2021;22:1-10.

28.	 Sorf A, Vagiannis D, Ahmed F, et al. Dabrafenib inhibits 
ABCG2 and cytochrome P450 isoenzymes; potential 
implications for combination anticancer therapy. Toxicol 
Appl Pharmacol 2022;434:115797.

29.	 Narci K, Kahraman DC, Koyas A, et al. Context 
dependent isoform specific PI3K inhibition confers drug 
resistance in hepatocellular carcinoma cells. BMC Cancer 
2022;22:320.

30.	 Davis BH, Beasley TM, Amaral M, et al. Pharmacogenetic 
Predictors of Cannabidiol Response and Tolerability 
in Treatment-Resistant Epilepsy. Clin Pharmacol Ther 
2021;110:1368-80.

31.	 Freeman M, Laks S. Surveillance imaging for metastasis in 
high-risk melanoma: importance in individualized patient 
care and survivorship. Melanoma Manag 2019;6:MMT12.

32.	 Katta MR, Kalluru PKR, Bavishi DA, et al. Artificial 
intelligence in pancreatic cancer: diagnosis, limitations, 
and the future prospects-a narrative review. J Cancer Res 
Clin Oncol 2023;149:6743-51.

33.	 Oliveira ÉA, Chauhan J, Silva JRD, et al. TOP1 
modulation during melanoma progression and in 
adaptative resistance to BRAF and MEK inhibitors. 
Pharmacol Res 2021;173:105911.

34.	 Vido MJ, Le K, Hartsough EJ, et al. BRAF Splice Variant 
Resistance to RAF Inhibitor Requires Enhanced MEK 
Association. Cell Rep 2018;25:1501-1510.e3.

35.	 Kozar I, Margue C, Rothengatter S, et al. Many ways to 
resistance: How melanoma cells evade targeted therapies. 
Biochim Biophys Acta Rev Cancer 2019;1871:313-22.

36.	 Vlašić I, Horvat A, Tadijan A, et al. p53 Family in 
Resistance to Targeted Therapy of Melanoma. Int J Mol 
Sci 2022;24:65.

37.	 Wu Q, You L, Nepovimova E, et al. Hypoxia-inducible 
factors: master regulators of hypoxic tumor immune 
escape. J Hematol Oncol 2022;15:77.

38.	 Hong Z, Liu F, Zhang Z. Ubiquitin modification in 
the regulation of tumor immunotherapy resistance 
mechanisms and potential therapeutic targets. Exp 
Hematol Oncol 2024;13:91.

39.	 Sanmamed MF, Chen L. A Paradigm Shift in Cancer 
Immunotherapy: From Enhancement to Normalization. 
Cell 2018;175:313-26.

40.	 Rogala P, Czarnecka AM, Cybulska-Stopa B, et al. Long 
Term Results and Prognostic Biomarkers for Anti-PD1 



Zhao et al. ML-based study of BRAF inhibitor resistance6660

© AME Publishing Company.   Transl Cancer Res 2024;13(12):6645-6660 | https://dx.doi.org/10.21037/tcr-24-961

Immunotherapy Used after BRAFi/MEKi Combination in 
Advanced Cutaneous Melanoma Patients. Cancers (Basel) 
2022;14:2123.

41.	 Boumahdi S, de Sauvage FJ. The great escape: tumour cell 
plasticity in resistance to targeted therapy. Nat Rev Drug 
Discov 2020;19:39-56.

42.	 Zhao M, Ma J, Li M, et al. Cytochrome P450 Enzymes 
and Drug Metabolism in Humans. Int J Mol Sci 
2021;22:12808.

43.	 Arasi MB, De Luca G, Chronopoulou L, et al. MiR126-
targeted-nanoparticles combined with PI3K/AKT 
inhibitor as a new strategy to overcome melanoma 
resistance. Mol Ther 2024;32:152-67.

44.	 Embaby A, Huijberts SCFA, Wang L, et al. A Proof-of-
Concept Study of Sequential Treatment with the HDAC 
Inhibitor Vorinostat following BRAF and MEK Inhibitors 
in BRAFV600-Mutated Melanoma. Clin Cancer Res 
2024;30:3157-66.

45.	 Goh CJH, Wong JH, El Farran C, et al. Identification of 
pathways modulating vemurafenib resistance in melanoma 
cells via a genome-wide CRISPR/Cas9 screen. G3 
(Bethesda) 2021;11:jkaa069.

46.	 Mansoori B, Mohammadi A, Davudian S, et al. The 
Different Mechanisms of Cancer Drug Resistance: A Brief 
Review. Adv Pharm Bull 2017;7:339-48.

47.	 Di Nardo L, Del Regno L, Di Stefani A, et al. The 
dynamics of circulating tumour DNA (ctDNA) during 
treatment reflects tumour response in advanced melanoma 
patients. Exp Dermatol 2023;32:1785-93.

48.	 Karpel-Massler G, Ishida CT, Bianchetti E, et al. 
Inhibition of Mitochondrial Matrix Chaperones and 
Antiapoptotic Bcl-2 Family Proteins Empower Antitumor 
Therapeutic Responses. Cancer Res 2017;77:3513-26.

49.	 Wang C, Li Q, Xiao J, et al. Nanomedicine-based 
combination therapies for overcoming temozolomide 
resistance in glioblastomas. Cancer Biol Med 

2023;20:325-43.
50.	 Gajula SNR, Nathani TN, Patil RM, et al. Aldehyde 

oxidase mediated drug metabolism: an underpredicted 
obstacle in drug discovery and development. Drug Metab 
Rev 2022;54:427-48.

51.	 Vantaku V, Putluri V, Bader DA, et al. Epigenetic loss 
of AOX1 expression via EZH2 leads to metabolic 
deregulations and promotes bladder cancer progression. 
Oncogene 2020;39:6265-85.

52.	 Xiong L, Feng Y, Hu W, et al. Expression of AOX1 
Predicts Prognosis of Clear Cell Renal Cell Carcinoma. 
Front Genet 2021;12:683173.

53.	 Harricharran T, Ogunwobi OO. Oxytocin and oxytocin 
receptor alterations, decreased survival, and increased 
chemoresistance in patients with pancreatic cancer. 
Hepatobiliary Pancreat Dis Int 2020;19:175-80.

54.	 Hu B, Yang XB, Sang XT. Molecular subtypes based 
on immune-related genes predict the prognosis for 
hepatocellular carcinoma patients. Int Immunopharmacol 
2021;90:107164.

55.	 Nandana S, Tripathi M, Duan P, et al. Bone Metastasis 
of Prostate Cancer Can Be Therapeutically Targeted 
at the TBX2-WNT Signaling Axis. Cancer Res 
2017;77:1331-44.

56.	 Lu S, Louphrasitthiphol P, Goradia N, et al. TBX2 
controls a proproliferative gene expression program in 
melanoma. Genes Dev 2021;35:1657-77.

57.	 Shi Z, Liu J, Wang F, et al. Integrated analysis of 
Solute carrier family-2 members reveals SLC2A4 as an 
independent favorable prognostic biomarker for breast 
cancer. Channels (Austin) 2021;15:555-68.

58.	 Xing X, Tian Y, Jin X. Immune infiltration and a 
necroptosis-related gene signature for predicting the 
prognosis of patients with cervical cancer. Front Genet 
2023;13:1061107.

Cite this article as: Zhao Y, Yang K, Chen Y, Lv Z, Wang Q, 
Zhong Y, Chen X. Machine learning-based pan-cancer study 
of classification and mechanism of BRAF inhibitor resistance. 
Transl Cancer Res 2024;13(12):6645-6660. doi: 10.21037/tcr-
24-961


