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Abstract

Breast cancer is a major cause of mortality in women. The transcription factor SNAI2 has been 

implicated in the pathogenesis of several types of cancer, including breast cancer of basal origin. 

Here we show that SNAI2 is also important in the development of breast cancer of luminal origin 

in MMTV-ErbB2 mice. SNAI2 deficiency leads to longer latency and fewer luminal tumors, both 

of these being characteristics of pre-tumoral origin. These effects were associated with reduced 

proliferation and a decreased ability to generate mammospheres in normal mammary glands. 

However, the capacity to metastasize was not modified. Under conditions of increased ERBB2 

oncogenic activity after pregnancy plus SNAI2 deficiency, both pretumoral defects-latency and 

tumor load- were compensated. However, the incidence of lung metastases was dramatically 
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reduced. Furthermore, SNAI2 was required for proper post-lactational involution of the breast. At 

three days post-lactational involution, the mammary glands of Snai2-deficient mice exhibited 

lower levels of pSTAT3 and higher levels pAKT1, resulting in decreased apoptosis. The presence 

of abundant non-involuted ducts was still present at 30 days post-lactation, with a greater number 

of residual ERBB2+ cells. These results suggest that this defect in involution leads to an increase 

in the number of susceptible target cells for transformation, to the recovery of the capacity to 

generate mammospheres, and to an increase in the number of tumors. Our work demonstrates the 

participation of SNAI2 in the pathogenesis of luminal breast cancer, and reveals an unexpected 

connection between the processes of post-lactational involution and breast tumorigenesis in Snai2-

null mutant mice.
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Introduction

Breast cancer is one of the leading causes of death among women worldwide. It is a 

complex and heterogeneous disease with substantial variations in its molecular and clinical 

characteristics.1 ERBB2/NEU/HER2 (henceforth ERBB2)-positive breast cancers constitute 

20-30% of all mammary gland tumors, and ERBB2 amplification and overexpression are 

markers of poor prognosis.2 Breast cancer evolution is characterized by different stages of 

progression; the final one is distant metastasis, responsible for the poor survival seen in this 

disease.

The transcription factor SNAI2/SLUG is involved in the process of epithelial to 

mesenchymal transition (EMT) by repressing E-cadherin expression.3, 4 SNAI2 has been 

associated with tumor invasion and metastasis and the poor prognosis of several tumor 

types, including breast carcinoma.3 Furthermore, SNAI2 has additional cellular functions 

such as the inhibition of apoptosis,5-7 the regulation of cell movement, adhesion, 

proliferation8 and stem-cell properties,9, 10 all of them important in tumor pathogenesis and 

evolution.11 SNAI2 has also been linked to early differentiation and morphogenesis in 

several tissue types.4

The importance of SNAI2 in the determination of the basal phenotype in breast cancer of 

both sporadic and BRCA1-mutated origins has been demonstrated previously.12, 13 However, 

SNAI2 is rarely expressed in luminal breast cancer cells14 (Supplementary Figure S1a). In 

the mammary gland, SNAI2 is expressed in normal breast tissue and is localized in the 

proliferative basal compartment during mammary gland morphogenesis,9, 15 but it is not 

known whether SNAI2 might play a role in the development of luminal tumors. To address 

this point, we studied the participation of SNAI2 in the development of breast cancer in 

MMTV-ErbB2 mice,16 which develop breast tumors of the luminal phenotype.17 Here, we 

demonstrate that SNAI2 is important for the development of luminal tumors induced by 

ERBB2. In particular, SNAI2 deficiency protected mice from breast tumorigenesis, led to an 

extended tumor latency and overall survival with fewer tumors, with only a very weak effect 
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on dissemination. Since tumor latency and yield have their origin in pre-tumoral stages, this 

demonstrates the participation of SNAI2 in early phases of breast cancer development of 

luminal origin. Interestingly, in response to an increased expression of the ERBB2 transgene 

during pregnancy, this protective effect observed in the absence of SNAI2 disappeared, but 

the defect in the dissemination of metastases was exacerbated. We also report results 

demonstrating the importance of SNAI2 for proper mammary gland involution, and a 

connection between this process and breast tumorigenesis in Snai2 knockout (KO)ERBB2+ 

mice.

Results

SNAI2 deficiency alters the susceptibility and evolution of breast cancer of luminal origin 
induced by ERBB2

To determine whether SNAI2 was involved in the susceptibility to and evolution of luminal 

breast cancer, we crossed B6;129S1-Snai2tm2Grid/J18 with FVB/N-Tg(MMTVneu)202Mul/J 

transgenic mice, which develop luminal tumors.16, 17 Thus, we established a Snai2-deficient 

line that overexpresses the ERBB2 protooncogene (henceforth Snai2 KOERBB2+). To avoid 

the C57BL/6 resistance effect in breast cancer development,19-21 F1 transgene-positive/

Snai2-deficient males were backcrossed with FVB females to obtain the F4 generation with 

more than 90% FVB genetic background,22 as described in the Methods section. To better 

evaluate the effect of SNAI2 in the different features of breast cancer, we differentiated 

several pathophenotypes in the disease. We evaluated latency, disease duration and lifespan, 

and tumor traits of progression, such as the number of tumors, local growth and metastases. 

We observed that Snai2 KOERBB2+ mice had a longer tumor latency than Snai2 WTERBB2+ 

animals (median of 54.1 versus 47.7 weeks, respectively), with no significant differences in 

the duration of the disease, thus leading to longer life-spans (Figures 1a-c and Table 1). In 

addition, Snai2 KOERBB2+ mice developed significantly fewer tumors than Snai2 

WTERBB2+ mice, with no differences in local tumor growth (Figure 1d and Table 1). 

Because SNAI2 has been implicated in metastasis,4, 5, 8, 23 we compared the frequency of 

metastasis in the Snai2 WTERBB2+ and Snai2 KOERBB2+ mice. Unexpectedly, we did not 

find differences in the median and incidence of metastasis (62.5% of Snai2 WTERBB2+ mice 

developed metastasis versus 50.0% of Snai2 KOERBB2+ mice). No differences were seen in 

the multiplicity of metastatic impacts in the lungs either (i.e. the percentage of mice already 

having metastasis with two or more impacts) (Figures 1e and 1f, and Table 1).

Interestingly, SNAI2 was expressed in the mammary gland but not in the bulk of the tumor 

(Figure 1g and Supplementary Figure S1b). The breast tumors generated in Snai2 

KOERBB2+ mice were ER-negative, PR-negative, and ERBB2-positive. They were positive 

for the luminal cytokeratins CK8 and CK18 and negative for the basal cytokeratin CK6. In 

addition, there were no significant differences in the expression levels of several luminal 

markers, such as Gata3, Sox9, and CK18, between tumors from the Snai2 KOERBB2+ and 

Snai2 WTERBB2+ mice (Supplementary Figures S1c-g). To gain further insight into the 

characterization of ERBB2-positive tumors generated in the absence of Snai2, we evaluated 

the distribution of the epithelial cell hierarchy in the tumors. The bulk of the epithelial 

population in the ERBB2+ tumors was formed by CD24hiCD29lo luminal cells in agreement 

Castillo-Lluva et al. Page 3

Oncogene. Author manuscript; available in PMC 2016 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with previous studies,24 and there were no differences in the luminal, basal (CD24loCD29hi) 

and stem-cell-enriched populations (CD24loCD49fhiCD29hi) between tumors from Snai2 

WTERBB2+ and Snai2 KOERBB2+ mice (Figure 1h). These results suggested that Snai2 

KOERBB2+ mice develop tumors of luminal origin, as has been reported previously for Snai2 

WTERBB2+ mice.17

Pregnancy recovers local breast tumorigenesis in Snai2 KOERBB2+ mice but increases the 
proportion of metastasis-free mice

It has been reported that pregnancy increases the expression of the ErbB2 protooncogene, 

driven by the MMTV promoter, resulting in a more aggressive disease.16, 25 We therefore 

wondered to what extent SNAI2 would be necessary for luminal breast cancer development 

generated under increasing oncogenic activity of ERBB2 after pregnancy. As expected, we 

observed an exacerbation of the disease in both Snai2 WTERBB2+ and Snai2 KOERBB2+ 

parous mice, resulting in a statistically significant decrease in latency and lifespan, but with 

no modification in the duration of the disease (Supplementary Figures S2a-f, and Table 1).

In the MMTV-ErbB2 transgenic mice, these effects of SNAI2 deficiency on luminal tumor 

development were compensated after pregnancy. Parous Snai2 WTERBB2+ mice displayed a 

significantly shorter latency than their nulliparous counterparts, as reported,16, 26 but no 

significant modifications in the number of tumors were observed (Supplementary Figures 

S2a and S2g). By contrast, parous Snai2 KOERBB2+ mice showed both a shorter latency and 

a significant increase in the number of tumors with respect to their nulliparous analogues 

(Supplementary Figures S2b and S2h). In fact, the effect on both the latency and tumor 

numbers in parous Snai2 KOERBB2+ mice was more evident than in their parous wild-type 

equivalents (Figure 2a). This meant that the differences in latency and tumor number 

previously observed between nulliparous Snai2 WTERBB2+ and nulliparous Snai2 

KOERBB2+ mice had disappeared in their parous counterparts (Figures 2b, 2d and 2e, and 

Table 1). However, the induction of ERBB2 by pregnancy did not modify the duration of the 

disease (Figure 2c and Supplementary Figures S2e and S2f, and Table 1). This is in 

agreement with the observation that, because metastases are well tolerated in this model, 

local tumor growth is the main pathophenotype that determines the duration of the disease, 

and latency is the one that mainly determines lifespan (Table 1).27

Regarding tumor dissemination, parity significantly increased the incidence and multiplicity 

of metastases in Snai2 WTERBB2 mice with respect to their nulliparous counterparts (Table 

1). The absence of SNAI2 increased the percentage of metastasis-free mice under increasing 

ERBB2 oncogenic activity. Thus, the incidence of metastasis in parous Snai2 KOERBB2+ 

mice was significantly lower than in parous Snai2 WTERBB2+ animals (61% versus 90.47%, 

respectively; P = 0.0276) without modification of multiplicity (Figures 2f and 2g, and Table 

1).

Moreover, there were no significant differences in ERBB2 expression between tumors from 

nulliparous and parous mice of both the WT and KO Snai2 genotypes (Supplementary 

Figures S1c and S2i-k). This is in agreement with the fact that there were no significant 

differences in the local growth speed, proliferation and apoptosis between tumors from 

nulliparous and parous Snai2 WTERBB2+ and Snai2 KOERBB2+ mice (Supplementary 
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Figures S2l and S2m). Furthermore, we analyzed the tumor epithelial cell hierarchy from 

parous mice. Again, the bulk of the population was formed by epithelial cells without 

significant differences between tumors from parous Snai2 WTERBB2+ and parous Snai2 

KOERBB2+ mice. Surprisingly, we saw a slight but significant difference in the basal 

(CD24loCD29hi) and the stem-cell-enriched (CD24loCD49fhiCD29hi) subpopulations in 

favor of the tumors from the Snai2 KOERBB2+ mice after pregnancy conditions (Figures 2h 

and 2i).

Mammary glands from nulliparous Snai2 KOERBB2+ mice show defects in cellular turnover

Since the Snai2 deficiency modified tumor characteristics originating in pretumoral stages, 

such as latency and the number of tumors, we evaluated the morphology of mammary 

glands from adult nulliparous mice at two months of age. Normally, the extension of fat pad 

filled by ducts is used as a criterion for assessing the ability of mammary epithelial cells to 

undergo ductal growth.28 The fat pads of the Snai2 KOERBB2+ mice were completely filled 

by ducts, similar to wild-type mice (Figure 3a), but the ducts in the glands of the Snai2 

KOERBB2+ female mice were characterized by a reduced presence of side-branching as 

compared with their Snai2 WTERBB2+ counterparts (Figures 3b), as recently reported in non-

transgenic Snai2 KOWT mice.9 However, we did not find differences in the number of 

terminal end-buds (Supplementary Figures S3a and S3b). Previously, an impairment in 

ductal growth has been reported in Snai2 WTERBB2+ transgenic mice with respect to their 

control Snai2 WTWT non-transgenic counterparts,29 as reflected by a shorter average ductal 

length (defined as the distance from the center of the lymph node to the leading edge of the 

gland); this shortening was also confirmed here (P = 0.018) (Figure 3c). In addition, mice 

that overexpressed ERBB2 in the context of Snai2 deficiency showed a similar shortening of 

average ductal length with respect Snai2 WTWT non-transgenic mice, but there was only a 

statistical trend (P = 0.083) (Figure 3c). Furthermore, there were no significant differences 

in the expression levels of several markers of luminal lineage described previously,9 such as 

the progesterone receptor (PR), Gata3 and Ck18, between mammary glands from Snai2 

KOERBB2+ and Snai2 WTERBB2+ mice (Supplementary Figure S3c). In addition, transgenic 

expression of ErbB2 in the mammary gland did not modify the SNAI2 localization already 

described in the basal compartment9 (Supplementary Figure S3d).

Latency is the time required for the initiated target cells to acquire the fully transformed 

phenotype, which is related to the baseline proliferation of a tissue. Thus, the higher the 

proliferation itself, or in the presence of promoting agents, the easier it becomes for the cells 

to acquire new secondary oncogenic events and the shorter the latency time.30 In light of 

this, we analyzed cellular turnover in terms of the rate of cell proliferation and apoptosis in 

histologic sections of mammary glands from Snai2 WTERBB2+ and Snai2 KOERBB2+ mice. 

Interestingly, according to Ki67 staining (Figure 3d) mice deficient in Snai2 showed a 

significantly decreased proliferation in the mammary epithelia of nulliparous mice and lower 

levels of CYCLIN D1 (Figure 3e). Surprisingly, nulliparous Snai2 KOERBB2+ mice showed 

discretely but significantly lower levels of baseline apoptosis (active CASPASE-3 staining) 

than their wild-type counterparts (Figure 3f).

Castillo-Lluva et al. Page 5

Oncogene. Author manuscript; available in PMC 2016 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Nulliparous Snai2 KOERBB2+ mice have defects in stem-cell populations in the mammary 
gland

Mammary stem cells have been implicated in the origin of breast cancer,31 and the number 

of stem cells is reflected in the number of mammospheres generated in vitro.32 Moreover, 

SNAI2 participates in the stem-cell biology of the mammary gland.9, 10, 33 Because latency 

and tumor numbers are both traits of breast cancer determined in pretumoral stages, we 

evaluated the generation of mammospheres in the mammary glands of nulliparous Snai2 

KOERBB2+ mice. Snai2 KOERBB2+ mice had a diminished capacity to generate 

mammospheres, but these maintained their ability to expand in vitro (Figures 3g and h). 

Interestingly, the expression of SNAI2 in mammospheres was enriched in comparison with 

its levels of expression in mammary gland epithelial cells (Figure 3i), in agreement with the 

role of SNAI2 in mammary stem-cell biology.9, 10, 34 Nevertheless, we did not observe 

differences in mammosphere formation in Snai2 KOWT non-transgenic mice 

(Supplementary Figure S3e).

Since normal mammary glands from Snai2 KOERBB2+ mice generated fewer 

mammospheres than nulliparous Snai2 WTERBB2+ mice, suggesting that the nulliparous 

Snai2 KOERBB2+ animals would have fewer target mammary stem cells susceptible to 

transformation than Snai2 WTERBB2+ mice, we used flow cytometry to evaluate the number 

of stem cells and other subpopulations in the mammary glands of the nulliparous mice. We 

did not observe clear differences in the percentage of the CD24+/CD49fhi/CD29hi 

subpopulations identified as mammary stem cells in the literature31, 35 (Supplementary 

Table S1). Thus, in the Snai2 KOERBB2+ mice we evaluated other cell subpopulations 

described in the mammary gland from Snai2 WTERBB2+ transgenic mice.24, 36-39 The 

nulliparous Snai2 KOERBB2+ mice had no differences in the population of Sca1pos cells, 

reported to be enriched for functional stem/progenitor cells with increased regenerative 

potential,36, 37 and we also failed to find differences in the CD24+Sca1+ subpopulation, 

specifically described to have self-renewal capability in Snai2 WTERBB2+ mice.24 

Moreover, neither did we find differences in the CD49f+CD61hi population described as 

being enriched in tumor-initiating cells in Snai2 WTERBB2+ transgenic mice.38 Finally, we 

did not find differences in the number of luminal progenitors CD24hiCD29med with self-

renewal capability.39 EpCAM has recently been described as a better marker that permits 

greater resolution of the epithelial mammary gland subpopulations in the mouse.40, 41 Thus, 

we re-analyzed all these populations with the anti-EpCAM antibody, but failed to find any 

difference either (Supplementary Table S1). We were also unable to demonstrate differences 

in the mammary glands from nulliparous Snai2 KOERBB2+ mice in luminal cells in spite of 

the function of SNAI2 described in the luminal and stem-cell compartments10, 12, 33 

(Supplementary Table S1).

All the data presented above suggested that there seem to be no-differences in the number of 

putative targets of tumors in MMTV-ErbB2 mice in the absence of Snai2. Nevertheless, the 

fact that we observed a diminished capability in mammosphere production (Figure 3g) 

suggests that there is a functional defect in self-renewal capability in MSCs from Snai2 

KOERBB2+ mice. Moreover, because we observed that the propagating capability of 
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mammospheres was normal (Figure 3h), this suggests the defect in MSCs would be non-

cell-autonomous due to other compartments, probably in the niche.

The defect in mammosphere yield in nulliparous Snai2 KOERBB2+ mice is compensated 
after pregnancy

Since the defect in latency and number of tumors disappeared after pregnancy, we assessed 

the cellular turnover and the ability to generate mammospheres in parous mice. To evaluate 

the behavior of the mammary gland after the most active phases of involution, we carried 

out this study at thirty days after the end of lactation. Under these conditions, and despite a 

higher epithelial cellularity (addressed in the next section), there was also a reduced 

proliferation in the mammary glands of parous Snai2 KOERBB2+ mice (Figure 4a), 

associated with lower levels of CYCLIN D1 (Figure 4b). Parous Snai2 KOERBB2+ mice also 

exhibited less apoptosis in the mammary glands, but this was not statistically significant 

(Figure 4c).

In addition, the generation of mammospheres by parous Snai2 WTERBB2+ and parous Snai2 

KOERBB2+ mice was equivalent, indicating similar stem-cell activity in the mammary glands 

(Figure 4d and Supplementary Figure S3f). This is consistent with the fact that no statistical 

differences were observed in the number of tumors generated between parous Snai2 

WTERBB2+ and parous Snai2 KOERBB2+ mice (Figure 2e). Neither were there any 

differences between the number of mammospheres generated by nulliparous Snai2 

WTERBB2+ mice versus parous Snai2 WTERBB2+ mice (Supplementary Figure S3g), and 

again this was correlated with the absence of differences in the number of tumors generated 

(Supplementary Figure S2g). Increased mammosphere production was only seen in the 

parous Snai2 KOERBB2+ mice (Supplementary Figure S3h), which, as indicated, could 

explain the increase in tumor susceptibility observed in these rodents as compared to 

nulliparous Snai2 KOERBB2+ mice (Supplementary Figure S2h).

Parous Snai2 KOERBB2+ mice display a delay in mammary gland involution

We next evaluated the histology of the mammary glands of parous mice. The observation of 

the mammary glands of Snai2 KOERBB2+ mice at thirty days post-lactation revealed the 

presence of more residual ducts with proteinaceous material inside than in the mammary 

glands from the wild-type mice, suggesting a delay in involution (Figures 5a and 5b). 

Mammary gland involution is a complex process in which the lactating gland returns to a 

previous morphologically pre-pregnant state. This process is characterized by substantial 

apoptosis in epithelial cells, the regeneration of adipose mammary tissue, and global tissue 

remodeling.42 Although remains of the lactating mammary gland can be found as vestiges in 

normal involuted breast tissue,43 the mammary glands of Snai2 KOERBB2+ mice showed 

vestiges much more frequently than the Snai2 WTERBB2+ glands (Figures 5a and 5b).

In light of the foregoing, we evaluated the delay in the involution of the mammary gland in 

greater detail. We first assessed the global morphology of the mammary gland in the Snai2 

KOERBB2+ mice immediately after lactation, at three days of involution. In whole-mount 

evaluations, we observed smaller hypoplastic glands at necropsy (Supplementary Figure 

S4a), with a less dense branching pattern. This was particularly evident at the periphery of 
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the gland, indicating a less hyperplastic mammary gland. This permitted the lymph node to 

be visualized in 6 out of 11 mammary glands, whereas the node was visible only in 1 out of 

10 mammary glands from independent parous Snai2 WTERBB2+ female mice 

(Supplementary Figures S4b and S4c). This result is in agreement with a recent report that 

suggested that Snai2 deficiency affects mammary gland development during pregnancy.34 

Despite this, as indicated above, in the mammary glands of Snai2 KOERBB2+ mice we 

observed more residual ducts than in the mammary glands from the wild-type mice due to a 

delay in involution (Figures 5a and 5b).

In addition, the mammary glands of the Snai2 KOERBB2+ mice also showed 

histopathological features of delayed involution at three days post-lactation, exhibiting fewer 

apoptotic cells inside, as well as a lower overall staining of active-CASPASE-3 as compared 

with their wild-type counterparts (Figures 5c-f). Importantly, the delay in the involution 

process was already present in non-transgenic parous Snai2 KOWT mice (Supplementary 

Figures S5a-c), indicating that SNAI2 was necessary for normal mammary gland involution. 

This is in agreement with the broad expression of SNAI2 at three days of post-lactational 

involution in the mammary gland observed here (Figure 5d).

SNAI2 is required for STAT3 activation during post-lactational involution of the mammary 
gland

To study the molecular mechanism that led to a defect in the involution of the mammary 

gland under Snai2 deficiency, we studied the levels of some targets primarily involved in the 

involution process. Activation of STAT3 is essential for triggering post-lactational 

involution; pSTAT3 in turn interferes with the PI3K pathway, leading to lower levels of 

pAKT1 and apoptosis in mammary epithelial cells.44-46 Here we show that mammary glands 

from parous Snai2 KOERBB2+ mice had significantly lower levels of pSTAT3(Y705), 

together with higher levels of pAKT1(S473) than their wild-type counterparts at three days 

of post-lactational involution. This could explain the delay in mammary gland involution in 

the Snai2 KOERBB2+ mice (Figures 5g-i). The delay in the involution process already 

present in non-transgenic parous Snai2 KOWT mice also showed the same defect in STAT3 

activation, indicating that this was specifically due to the SNAI2 deficiency (Supplementary 

Figures S5d and S5e). We did not observe differences in the baseline levels of pAKT1 or 

pSTAT3 in the mammary glands of nulliparous mice (Supplementary Figures S6a and S6b).

We observed that the defect in mammary gland involution in parous Snai2 KOERBB2+ mice 

was still detectable at thirty days post-lactation (Figure 5a). Accordingly, we analyzed the 

ERBB2 status and found that there was more ERBB2 expression, and more ERBB2+ cells at 

30 days post-involution in parous Snai2 KOERBB2+ mice, probably as consequence of a 

defect in elimination during the involution process (Figures 6a and 6b). These results could 

explain the later increased latency and tumor numbers. Furthermore, the highest levels of 

pAKT1(S473) were also detected at 30 days post-involution, together with abnormally high 

levels of pSTAT3 in the mammary glands of parous Snai2 KOERBB2+ mice (Figure 6c). The 

activation of both AKT1 and STAT3 at 30 days is probably a consequence of the presence 

of more ERBB2+ cells. Indeed, STAT3 expression is correlated with ERBB2 expression in 

human tumors.47, 48
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To further study the influence of SNAI2 levels in AKT1 and STAT3 activation, we used 

HC11 cells, a clonal epithelial cell line derived from a mid-pregnant mouse mammary gland 

capable of lactogenic differentiation under hormonal stimuli.49 In this cell line, both 

prolactin and progesterone were able to induce the phosphorylation of AKT and increase the 

levels of SNAI2 (Figure 6d and Supplementary Figure S6d). Interestingly, after down-

regulation of Snai2 by shRNA, the activation of AKT and the decrease in pSTAT3 were 

more evident (Figure 6d and Supplementary Figures S6c and S6d). Furthermore, this effect 

was also seen even in the absence of prolactin (Supplementary Figure S6c), suggesting that 

the downregulation of Snai2 would be sufficient to raise pAKT1(S473) and reduce 

pSTAT3(Y705) levels. In conclusion, SNAI2 participates in mammary gland involution, 

helping to activate STAT3 and to inhibit pAKT1. However, the mechanism by which 

SNAI2 exerts these effects remains unknown.

Snai2 deficiency modifies AKT1 levels in tumors from Snai2 KOERBB2+ mice through a 
non-cell autonomous mechanism

Since the Snai2 deficiency modified the levels of activated STAT3 and AKT1 in the 

mammary gland, we wondered whether the status of these molecules in the tumors was 

affected. Interestingly, tumors from parous Snai2 KOERBB2+ mice showed significantly 

higher total and phosphorylated levels of AKT1 than tumors from parous Snai2 WTERBB2+ 

animals, which could contribute to increasing their relative local aggressiveness and the 

lower capacity to disseminate.50, 51 However, we did not see differences in the levels of 

activated STAT3 (Figures 6e and 6f). Since SNAI2 is not expressed in tumors from Snai2 

WTERBB2+ mice (Figure 1g and Supplementary Figure S1b), this effect on AKT1 levels 

would be exerted by a non-cell autonomous mechanism. In this sense, a recent report has 

described a non-cell autonomous effect of SNAI2 in skin cancer progression by promoting 

the recruitment of myeloid cells.52 Accordingly, we evaluated myeloid infiltration in breast 

tumors and we did not see differences between the wild-type and KO mice or between 

nulliparous and parous mice (Supplementary Figure S6e). Thus, other studies will be needed 

to clarify the non-cell autonomous effect of SNAI2 deficiency in breast cancer development.

Discussion

In this work we found that Snai2 KOERBB2+ mice were partially protected from breast 

tumorigenesis, exhibited an extended latency and therefore lifespan, and had fewer tumors 

than their Snai2 WTERBB2+ counterparts. Since both disease pathophenotypes have their 

origin in pretumoral stages, and because SNAI2 is expressed in the mammary gland but not 

in the bulk of the tumor (Figure 1g and Supplementary Figure 1b), these results demonstrate 

the participation of SNAI2 in the early stages of luminal breast cancer development. 

Surprisingly, in this model of luminal breast cancer, Snai2 deficiency did not affect the 

metastatic capacity in these mice.

The increased oncogenic activity of ERBB2 after pregnancy compensated the lower local 

tumor susceptibility previously demonstrated in nulliparous Snai2 KOERBB2+ mice 

regarding tumor latency and the number of tumors; by contrast, it exacerbated the defect in 

metastatic capacity. These results suggest that a complete inhibition of SNAI2 (e.g. a 

Castillo-Lluva et al. Page 9

Oncogene. Author manuscript; available in PMC 2016 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pharmacological inhibition) could significantly raise the incidence of metastasis-free 

individuals in luminal breast cancer. This effect of SNAI2 deficiency on luminal tumor 

dissemination is in agreement with the fact that a minority of cells inside luminal tumors 

express basal epithelial genes, and proves that targeting the basal invasive program in 

luminal tumors could limit metastatic progression.53 However, we were unable to detect 

SNAI2 expression in the invasion front either (Supplementary Figure S1b).

Mice deficient in Snai2 showed a significantly decreased proliferation in the mammary 

epithelium of nulliparous mice. It has been reported that SNAI2 could be located 

downstream of ERBB2 in breast cancer cells and could contribute to ERBB2 

tumorigenesis.54 Thus, the absence of SNAI2 might contribute directly to reducing ERBB2 

signaling. However, this low proliferation has also been reported in wound healing in Snai2 

KO mice without the ERBB2 transgene,55 indicating that this low proliferation could affect 

other tissues without the influence of ERBB2, at least in vivo. This effect of Snai2 

deficiency on a lower proliferation rate could be explained in terms of the lower levels of 

CYCLIN D1 observed here (Figure 3e), in agreement with a previous report that SNAI2 

increases CYCLIN D1 levels by inhibiting its ubiquitination.56 Moreover, CYCLIN D1 is 

necessary for tumor development in MMTV-ERBB2 transgenic mice.57, 58 It is possible that 

the low baseline proliferation in mammary glands under Snai2-deficient conditions would 

hinder the acquisition of secondary events for the complete transformation of the target cells 

already initiated by the first oncogenic event (i.e. the ErbB2 transgene), leading to longer 

tumor latency.30, 59 Despite the function of SNAI2 as an inhibitor of apoptosis,5, 60 

nulliparous Snai2 KOERBB2+ mice showed lower levels of baseline apoptosis than their 

wild-type counterparts (Figure 3f), in agreement with the effect of Snai2 deficiency on the 

skin observed in a recent report.55

Interestingly, the nulliparous Snai2 KOERBB2+ mice showed a lower capacity to generate 

mammospheres, but these maintained their ability to expand in vitro, suggesting a smaller 

number of functional stem cells in vivo but a normal propagation capacity ex vivo (Figures 

3g and 3h). Thus, we cannot exclude the possibility of the existence of an extrinsic effect of 

Snai2 deficiency through other compartments, such as the local niche where stem cells 

reside. We did not observe differences in mammosphere formation in Snai2 KOWT non-

transgenic mice (Supplementary Figure S3e), which is partially in agreement with a recent 

report9 describing some differences in what the authors referred to as microspheres. Thus, 

the differences in the mammosphere yield observed here in Snai2 KO mice were only 

present in the context of ERBB2 overexpression. In this sense, ERBB2 has also been related 

to mammosphere formation and stem-cell expansion in mice.61-64 In addition, CYCLIN D1 

is required for the self-renewal of mammary stem cells, which are targets of MMTV-ErbB2 

tumorigenesis.65 It is possible that the observed defect in CYCLIN D1 (Figure 3e) could 

contribute to the lower mammosphere yield in nulliparous Snai2 KOERBB2+ mice. Finally, 

lower numbers of mammospheres and cancer-initiating cells have been described in MMTV-

ErbB2 mice deficient in IKK-alpha, these animals also showing a reduction in mammary 

tumor incidence and multiplicity.64 In conclusion, we found a positive association between 

the number of mammospheres, and therefore functional mammary stem cells, and the 

number of tumors originating in the ErbB2 transgenic mice. Furthermore, in response to 
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pregnancy the Snai2 KOERBB2+ mice compensated the defect in the number of 

mammospheres observed in their nulliparous counterparts. It is possible that the defect in 

CYCLIN D1 (Figures 3e and 4b) could contribute to the lower mammosphere yield in 

nulliparous Snai2 KOERBB2+ mice but that it could somehow be compensated in parous 

Snai2 KO ERBB2+ mice.

We later observed that SNAI2 was necessary for normal mammary gland involution. Here 

again, the lower apoptosis observed during the involution process in Snai2 KO mice is 

paradoxical, considering the function described for SNAI2 as an inhibitor of apoptosis in 

other systems.5, 11, 60 The relative expansion of mammospheres, and hence mammary stem 

cells in parous Snai2 KOERBB2 mice, could thus be explained in terms of the defect in post-

lactational involution. There are many examples of mouse models where delayed involution 

has been associated with greater subsequent tumor susceptibility, due to a defect in the 

elimination of cell populations susceptible to transformation.66 Remarkably, in the 

transgenic mouse model used in this work,16 a specific defect in elimination during the 

involution of tumor cells that form in situ carcinomas, but normal elimination of mammary 

cells surrounding tumoral ones have been reported. 67 This indicates that the already fully-

transformed cells may not be eliminated easily after post-lactational involution. Although 

there were more ERBB2-positive cells in the mammary glands of parous Snai2 KOERBB2+ 

mice than in the Snai2 WTERBB2+ animals at 30 days post-lactational involution, both 

showed the same capacity to generate mammospheres (Figure 4d). This would suggest the 

same number of target stem cells, in agreement with the fact that there were no differences 

in terms of latency and tumor numbers.

It has been reported that overexpression of activated AKT1 leads to short tumor latency in 

MMTV-ErbB2 transgenic mice.50 Here, we report that the mammary glands from parous 

Snai2 KOERBB2+ mice exhibited higher levels of pAKT1 than parous Snai2 WTERBB2+ 

mice, which could explain the tumor latency compensation seen after pregnancy (Figure 2a). 

Moreover, this increase in pAKT1 levels could contribute to the observed delay in 

mammary gland involution,45, 46 which could lead to more target cells becoming available. 

pAKT1 levels would be increased by pSTAT3 through the regulation of PI3K, modifying 

the levels of some regulatory subunits;46 as reported in a recent paper, this could also be 

performed directly by SNAI2 in colon cancer cells.68

In conclusion, we have demonstrated that SNAI2, although not expressed in the tumors, is 

important for the pathogenesis of breast cancer of luminal origin. This demonstrates the 

usefulness of SNAI2 inhibition for therapy or prevention in luminal breast cancer and for 

preventing metastasis. We also found that tumors from parous Snai2 KOERBB2+ mice had 

higher levels of total and phosphorylated AKT1, suggesting that this alteration in AKT1 

levels would be exerted by a non-cell autonomous mechanism. It remains to be clarified how 

SNAI2 deficiency in other local or long-distant compartments might also contribute to the 

pathogenesis of luminal breast cancer. Finally, the connection observed here, as in other 

models, between a defect in mammary remodeling and increased susceptibility to breast 

cancer highlights the possibility of modifying this physiological process to develop 

preventive strategies against breast cancer.66
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Materials and Methods

Animals

All mice were housed at the Animal Research Facility of the University of Salamanca. All 

practices were accepted by the Institutional Animal Care and Bioethical Committee of the 

University of Salamanca. FVB/N-Tg(MMTVneu)202Mul/J, which are FVB mice carrying 

the ErbB2 protooncogene under the control of the Mouse Mammary Tumor Virus (MMTV) 

3′promoter,16 were obtained from the Jackson Laboratory (Bar Harbor, ME, USA), and 

wild-type (WT) FVB/N mice were purchased from Charles River (Wilmington, MA, USA). 

B6;129S1-Snai2tm2Grid/J Snai2-deficient mice were generated by Dr. Gridley (Scarborough, 

ME, USA).18 Mice were weaned at 3-4 weeks of age and analyzed for the presence of the 

ErbB2 transgene. The initial F1-Snai2-deficient mice were generated by mating C57BL/6 

Snai2 KO males with MMTV-ErbB2 transgenic females in a FVB genetic background. To 

avoid the C57BL/6-resistance effect in breast cancer development,19-21 F1 transgene-

positive/Snai2-deficient males were backcrossed with FVB females to obtain the F4 

generation with a 90% FVB genetic background;72 mice were intercrossed to obtain Snai2 

WTERBB2+ and Snai2 KOERBB2+ Because Snai2 KO mice are born at lower than the 

expected frequency and show perinatal mortality, only those KO mice that surpassed five 

weeks of life were included in the experiments. To generate the parous cohort, Snai2 

WT ERBB2+ and Snai2 KOERBB2+ female mice were bred twice, and after the second 

lactation the cohort was followed for mammary tumor formation. All mice were maintained 

in ventilated filter cages under SPF conditions and were fed ad libitum. We estimated the 

number of mice based on Statgraphics Centurion software (Statpoint Technologies, 

Warrenton, VA, USA); thus, a minimum of total sample size of 23 animals per group was 

necessary to provide a 90% chance of detecting difference ≥ 1.5 standard deviations 

between the two populations means with 95% confidence. Taking this into account, we 

adapted the sample size based on the results of our previous study.27 The usual mammary 

gland studies were performed in mice after a single pregnancy and lactation. All analyses 

were performed by certified pathologists (M.C. from the CNIO and an additional pathologist 

from the Comparative Pathology Core Facility) blinded to sample identity.

Protein analyses

The epithelial mammary gland component (organoids) and tumors were collected at 

necropsy, snap-frozen in liquid nitrogen and kept at -80 °C. Proteins were extracted from 

frozen tissues. Ceramic beads (Precellys, Bertin Technologies, #03961-1-009, Montigny le 

Bretonneux, France) were added to tissues (10-50 mg) and these were homogenized for 10 

seconds, 5.5 m/s (twice), using the FastPrep Homogenizer (Thermo Savant, Thermo Fisher 

Scientific Inc., Waltham, MA, USA) in RIPA buffer (150 mM NaCl, 1% (v/v) NP40, 50 

mM Tris-HCl at pH 8.0, 0.1% (v/v) SDS, 1 mM EDTA, 0.5% (w/v) Deoxycholate) 

containing cocktails of protease and phosphatase inhibitors (Roche, Basel, Switzerland) for 

tumors and organoids. Samples were incubated for 20 minutes on ice and centrifuged for 10 

min at 13000 r.p.m. and 4°C. Supernatants were collected and quantified using the BCA 

Protein Assay Kit (Thermo Fisher Scientific Inc.,catalog number 23228, Waltham, MA, 

USA). Equivalent amounts of proteins were resolved by SDS-PAGE, and transferred to 

polyvinylidene difluoride membranes (Immobilon-P, Millipore, Darmstadt, Germany). 
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Immunoblotting was performed using the following primary antibodies: anti-phospho-

AKT(Ser473) (D9E, #3787), anti-AKT (11E7, #4685), anti-AKT1 (2H10, #2967), anti-

SNAI2 (#9585), anti-pSTAT3(Y705) (#9145) from Cell Signaling (Danvers, MA, USA); 

anti-ERBB2 (ab2428), anti-phospho-ERBB2(Tyr1248) (ab47755) from Abcam (Cambridge, 

United Kingdom); anti-TUBULIN (DM1A, #T6199, Sigma, St Louis,MO, USA), anti-

ACTIN (C4, sc-47778, Santa Cruz, Dallas, TX, USA), anti-GAPDH (sc-25778, Santa Cruz, 

Dallas, TX, USA), and anti-CYCLIN D1 (C-20, sc-717, Santa Cruz, Dallas, TX, USA), anti-

Estrogen Receptor alpha (ab39642, Abcam, Cambridge, United Kingdom) and subsequently 

with horseradish peroxidase-conjugated anti-mouse, anti-rabbit or anti-goat secondary 

antibodies (1:10000 dilution) (BIO-RAD, Berkeley, CA, USA), and visualized by enhanced 

chemiluminescence (Thermo Scientific). A total amount of protein of 100 μg from the 

organoids was assayed for active CASPASE-3 using the fluorometric CASPASE 3 Assay 

Kit (ab39383, Abcam) according to the manufacturer's instructions. For ELISA assays, the 

levels of phosphorylated and total AKT1 were measured using Sandwich ELISA Kits 

(#7142 and #7143, respectively, PathScan, Cell Signaling).

Mammary cell preparation and culture

Mammary glands were dissected out from female mice at the ages specified along the 

manuscript. After mechanical dissociation with two scalpels (Swann-Morton, #0511, 

Sheffield, United Kingdom), the tissue was placed in culture medium (DMEM/F12, 10% 

FBS, 1% penicillin/streptomycin, 1% Glutamine) containing 600 units/ml collagenase 

(Sigma, C2674, St Louis, MO, USA) and 200 units/ml hyaluronidase (Sigma, H3506, St 

Louis, MO, USA) and digested for 3 hours at 37° C for the mammosphere protocol, and 6 

hours for FACS analysis. Organoid suspensions were obtained by differential 

centrifugation.69 Mammosphere formation was achieved as previously described70 with the 

following modifications: 10000 cells were seeded per well in triplicate on ultralow 

attachment plates (Corning, #3471, Corning, NY, USA), and after 7 days of culture only 

mammospheres with a diameter greater than 50 μm were counted. The mammosphere 

medium was prepared as previously described.71

X-Gal staining

For whole mount X-gal staining, Snai2 KOERBB2+ mice, which carry the LacZ gene in the 

Snai2 locus, 18 and Snai2 WTERBB2+ mice were sacrificed and the fourth mammary gland or 

tumor samples were harvested and processed with the β-Galactosidase Staining kit 

according to the manufacturer's instructions (#9866 Cell Signaling Technology).

Mammary gland whole-mounts

The fourth (abdominal) mammary glands were removed surgically, stretched onto a glass 

slide and fixed with Carnoy's fixative (ethanol / chloroform / glacial acetic acid, at 

proportions 6/3/1, respectively) for 24 hours at room temperature. Then, they were 

rehydrated with a graded series of ethanol solutions, washed for 5 minutes in distilled water 

and stained overnight in alum carmine solution (Sigma, C1022). The following day, the 

mammary glands were dehydrated with a graded series of ethanol solutions. Mammary 

glands were cleared in xylene until the fat had been sufficiently removed from the glands. 
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Images were analyzed using ImageJ software (National Institutes of Health, Bethesda, MD, 

USA).

Immunostaining

Mammary glands or tumors were fixed in 4% paraformaldehyde overnight at room 

temperature and washed in 70% EtOH before paraffin inclusion. Sections of 3 μm were 

deparaffinized and processed for antigen retrieval by incubation in a microwave with citrate 

buffer (pH 6) for cleaved CASPASE-3 and ERBB2, but at pH 8 for pSTAT3. The primary 

antibodies were incubated using the Ventana Discovery automated immunohistochemistry 

research slide-staining system (Tucson, AZ85755) with the following antibody dilutions: 

1/50 Ki-67 (MAD020310Q, Master Diagnostica, Granada, Spain), 1/50 cleaved 

CASPASE-3(Asp175) (#9662, Cell Signaling), 1/75 ERBB2 (ab2438, Abcam), 1/50 

pSTAT3(Y705) (D3A7, #9145, Cell Signaling), 1/50 CK6 (SPM269, ab75703, Abcam), 

1/100 CK8 (ab59400, Abcam) and 1/100 Progesterone Receptor (Y85, MAD210302Q, 

Master Diagnostica). Ki-67-, CASPASE-3- and ERBB2-positive cells from tumors were 

quantified with the ARIOL software at the Centro Nacional de Investigaciones Oncológicas 

(CNIO, Madrid, Spain). To accomplish this, tumors from Snai2 WTERBB2 and Snai2 

KOERBB2 nulliparous and parous mice (10 tumors from each group) were stained in 

triplicate on tissue-array sections.

Cell culture and retroviral infection

The HC11 cell line was obtained from Dr. Montoliú (Centro Nacional de Biotecnología, 

Spain) in February 2014. Experiments were performed during the ensuing 3 months. The 

cells showed the correct phenotype, with the expected morphology and growth curves; and 

were previously tested for mycoplasma contamination. HC11 cells were cultured with 

RPMI-1640 medium with 10% heat-inactivated FCS, 5 μg/ml insulin, 20 ng/ml epidermal 

growth factor, and 1% penicillin-streptomycin. HC11 cells were infected with retrovirus 

carrying Snai2 shRNA or a control.72 Recombinant retroviruses were produced from 

Phoenix-A cells, which were transiently transfected with plasmid DNA (shRNA Snai2) 

using LT-1 reagents (Mirus, Madison, WI, USA). HC11 cells were infected in the presence 

of polybrene (30 μg/ml). Two days later, the medium was replaced with fresh virus-

containing medium and the cells were allowed to grow to confluence for three days in the 

presence or absence of prolactin at 5 μg/ml or progesterone at 10-8 M (Sigma).

Statistical analyses

Mammary tumor latency, disease duration and lifespans were compared in the Snai2 

WTERBB2+ and Snai2 KOERBB2+ female mice using the Kaplan-Meier estimator and the 

Log-Rank test. The number of tumors, the number of lung metastases and other 

determinations were evaluated with the Mann-Whitney U test for two groups, and with the 

Kruskal-Wallis test more than two groups, followed by Dunn's multiple comparison post-

test. Incidence and multiplicity were evaluated using Fisher's exact tests. For all analyses, P 

values ≤ 0.05 were considered statistically significant. The analyses were performed using 

the SPSS (IBM, Armonk, NY, USA) and JMP/SAS (SAS Institute, Cary, NC, USA) 

statistical packages.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. SNAI2 participates in the early stages of luminal breast cancer development
Comparison of different tumor pathophenotypes in nulliparous female mice: (a) Latency. (b) 

Duration of disease. (c) Survival. (d) Number of tumors. (e) Incidence of metastases. (f) 
Multiplicity of metastases. (g) Detection of SNAI2 in mammary glands and luminal tumors 

(western blot). (h) Comparison between tumors from Snai2 WT ERBB2+ and Snai2 

KOERBB2+ mice of the percentage of viable Lin- cells corresponding to the luminal lineage 

(CD24hi CD29lo), basal lineage (CD24lo CD29hi), and the stem-cell-enriched population 

(CD24lo CD29hi CD49fhi).
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Figure 2. Effect of pregnancy in breast cancer development under Snai2 deficiency
(a) Tumor latency in nulliparous and parous mice. Note that Snai2 KOERBB2+ mice showed 

the greatest shortening of tumor latency after pregnancy. (b-h) Comparison of different 

tumor pathophenotypes in parous female mice: (b) latency; (c) duration of disease; (d) 

lifespan; (e) number of tumors; (f) incidence of metastases; (g) multiplicity of metastases. 

(h) Representative dotplots of viable Lin- tumor cells from parous Snai2 WTERBB2+ (upper 

panel) and parous Snai2 KOERBB2+ (lower panel) mice, showing the gating strategy 

followed to quantify luminal, basal, and stem-cell-enriched populations. (i) Comparison 

between tumors from parous Snai2 WTERBB2+ and Snai2 KOERBB2+ mice of the percentage 

of viable Lin- cells corresponding to the luminal lineage (CD24hi CD29lo), basal lineage 

(CD24lo CD29hi), and the stem-cell-enriched population (CD24lo CD29hi CD49fhi).
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Figure 3. Mammary glands from nulliparous Snai2 KOERBB2+ mice show defects in cellular 
turnover and stem-cell populations
(a) Fat pad in mammary glands normally filled by ducts (whole-mount). (b) Defect in side 

branching in Snai2 KOERBB2+ mice. (c) Average length of primary ducts. Distances were 

estimated based on whole-mount preparations. (d) Ki67 detection in mammary glands from 

female mice (immunohistochemistry) (left). Percentage of Ki67-positive cells per gland 

determined in five different mice (right). (e) Detection of CYCLIN D1 in mammary glands 

by western blot. Each number represents an epithelial mammary gland from an individual 

mouse. (f) Cleaved CASPASE-3, in nulliparous mice (immunohistochemistry) (left). 

Percentage of cleaved CASPASE-3-stained cells per gland of five different mice (right). (g) 

Ability to generate mammospheres ex vivo. Mammospheres were obtained from the 

mammary glands of 6-week-old mice. (h) Propagating ability of mammospheres in vitro. (i) 
SNAI2 protein expression in epithelial mammary glands versus mammospheres obtained 

from the same preparation by western blot.
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Figure 4. Snai2 KOERBB2+ mice compensate the defect in the number of mammospheres after 
pregnancy
All analyses from this figure were performed using parous mice at 30 days post-lactation. 

(a) Immunohistochemical staining for Ki67 (left). Percentage of Ki67-positive cells per 

gland (right). (b) Detection of CYCLIN D1 by western blot. Each number represents an 

epithelial mammary gland from an individual mouse. (c) Tissue staining against cleaved-

CASPASE-3 (left). Percentage of CASPASE-3-positive cells per gland (right). (d) 

Mammosphere yield obtained from mammary glands.
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Figure 5. SNAI2 is necessary for normal mammary gland involution
(A) Mammary glands from parous mice at 30 days post-lactation (hematoxilin-eosin). (b) 

Quantification of intact mammary ducts: 10 fields were counted per mammary gland from 

five individual mice of each genotype. (c) Mammary glands from parous mice at three days 

post-lactation (hematoxilin-eosin). Arrowheads in Snai2 WTERBB2+ mice indicate an 

apoptotic body. (d) SNAI2 expression at 3 days post-lactational involution (X-Gal staining 

and hematoxilin-eosin). (e) Cleaved CASPASE-3 in mammary glands from parous female 

mice at 3 days post-lactation involution (immunohistochemistry). (f) Quantification of 

CASPASE-3 activity per gland from parous female mice by ELISA (fluorometric assay). (g) 

pSTAT3(Y705) in mammary glands from parous mice at 3 days post-lactation 

(immunohistochemistry). Arrowheads indicate positive cells. (h) Quantification of 

pSTAT3(Y705) positive cells in parous mice at three days post-lactation (10 fields were 

counted per gland in three different mice). (i) Detection of pAKT1(S473) and 

pSTAT3(Y705) in organoids from mammary glands at 3 days post-lactation. Each number 

corresponds to an individual mammary gland from four individual mice.
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Figure 6. Downregulation of Snai2 in HC11 cells leads to an increase in phosphorylation of 
AKT1 and a decrease in pSTAT3
(a) Detection of ERBB2 from parous mammary glands at 30 days post-lactation by western 

blot. Each number corresponds to an individual mammary gland from an individual mouse. 

(b) ERBB2 expression in mammary glands from parous mice at 30 days post-lactation 

(immunohistochemistry). Arrowheads indicate complete membrane stain-positive cells. (c) 

Detection of AKT and pSTAT3 from parous mammary glands at 30 days post-lactation by 

western blot. Each number corresponds to an epithelial mammary gland from an individual 

mouse (N = 4). pAKT and pSTAT3 bands were quantified, and normalized intensities were 

calculated as averages from 4 individual mice. (d) HC11 cells transfected with Snai2 

shRNA were treated with prolactin for three days; GFP-positive cells were sorted by flow 

cytometry, and AKT and pSTAT3 protein levels were assessed. (e) Levels of total and 

pAKT1 (S473) from tumor samples (ELISA). (f) Detection of pSTAT3 from nulliparous and 

parous tumors by western blot.
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