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Abstract: From the hybrid nature of cubic sets, we develop a new generalized hybrid structure of
cubic sets known as cubic vague sets (CVSs). We also define the concept of internal cubic vague
sets (ICVSs) and external cubic vague sets (ECVSs) with examples and discuss their interesting
properties, including ICVSs and ECVSs under both P and R-Order. Moreover, we prove that the R
and R-intersection of ICVSs (or ECVSs) need not be an ICVS (or ECVS). We also derive the different
conditions for P-union (P-intersection, R and R-intersection) operations of both ICVSs (ECVSs) to
become an ICVS (ECVS). Finally, we introduce a decision-making based on the proposed similarity
measure of the CVSs domain and a numerical example is given to elucidate that the proposed
similarity measure of CVSs is an important concept for measuring entropy in the information/data.
It will be shown that the cubic vague set has the novelty to accurately represent and model
two-dimensional information for real-life phenomena that are periodic in nature.

Keywords: cubic set; external cubic; fuzzy set; internal cubic; interval-valued; periodic; similarity
measure; vague set

1. Introduction

In order to transact with several complicated problems involving uncertainties in many fields such
as engineering, economics, social and medical sciences, classical methods are found to be inadequate.
In 1965, Zadeh [1] presented fuzzy sets which helped to handle uncertainty and imprecision. Fuzzy sets
had since been applied in many directions especially in decision making such as multi fuzzy sets [2],
complex multi fuzzy sets [3-7], vague soft set [8-11], multiparameterized soft set [12], multi Q-fuzzy
soft matrix [13] and intuitionistic fuzzy sets [14].

In fuzzy set theory, the grade of membership of an object to a fuzzy set indicates the belongingness
degree of the object to the fuzzy set, which is a point (single) value selected from the unit interval [0, 1].
In real life scenarios, a person may consider that an element belongs to a fuzzy set, but it is possible
that person is not sure about it. Therefore, hesitation or uncertainty may exist in which the element
can belong to the fuzzy set or not. The traditional fuzzy set is unable to capture this type of hesitation
or uncertainty using only the single membership degrees. A possible solution is to use an intuitionistic
fuzzy set [14] or a vague set [15] to handle this problem. The vague set [15] is an extension of fuzzy
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sets and regarded as a special case of context-dependent fuzzy set which has the ability to overcome
the problems faced when using fuzzy sets by providing us with an interval-based membership which
clearly separates the evidence for and against an element.

From the above existing literature, we can see that those studies mainly focus on the fuzzy set,
interval fuzzy set, vague set and their entropies [16-18]. Later on, Jun et al. [19] gave the idea of cubic
set and it was characterized by interval valued fuzzy set and fuzzy set, which is a more general tool to
capture uncertainty and vagueness, since fuzzy set deals with single-value membership while interval
valued fuzzy set ranges the membership in the form of intervals. They presented the ideas of internal
and external cubic sets and their characteristics. The hybrid platform provided by a cubic set has the
main advantage since it contains more information than a fuzzy set and an interval-valued fuzzy set.
By using this concept, different problems arising in several areas can be solved by means of cubic sets
as in the works of Rashid et al. [20], Ma et al. [21], Khan et al. [22], Jun et al. [23,24], Gulistan et al. [25],
Khaleed et al. [26], Fu et al. [27] and Ashraf et al. [28].

As for the Pythagorean fuzzy set (PFS) and its generalizations, an entropy measure was defined by
Yang and Hussein [29]. Thao and Smarandache [30] proposed a new entropy measure for Pythagorean
fuzzy which discarded the use of natural logarithm, while Wang and Li [31] introduced Pythagorean
fuzzy interaction power Bonferroni mean aggregation operators in multiple attribute decision making.

Vague sets have a more powerful ability than fuzzy sets to process fuzzy information to some
degree. Human cognition is usually a gradual process. As a result, how to characterize a vague concept
and further measure its uncertainty becomes an interesting issue worth studying. Nevertheless,
the concept of simple vague set is insufficient to provide the information about the occurrence of
ratings or grades with accuracy because information is limited, and it is also unable to describe the
occurrence of uncertainty and vagueness well enough, when sensitive cases are involved in decision
making problems. Hence, there is a pertinent need for us to introduce the novel concept of cubic
vague set (CVS) by incorporating both the ideas of cubic set and vague set. The aim of this model to
introduce the notion of cubic vague set by extending the range of the truth-membership function and
the false-membership function from a subinterval of [0, 1] to the interval-based membership structure
that allows users to record their hesitancy in assigning membership values. This feature and its ability
to represent two-dimensional information makes it ideal to be used to handle uncertain and subjective
information that are prevalent in most time-periodic phenomena in the real world. These reasons
served as the motivation to choose the cubic vague set model and use it in decision making problem.

The contribution of the novel cubic vague set (CVS) in the decision making process is its ability to
handle uncertainties, imprecise and vagueness information considering both the truth-membership
and falsity-membership values, whereas cubic set can only process the uncertainties information
without able to take into account the truth-membership and falsity-membership values. The core
advantage of using CVS against CS will be illustrated by an example. Hence, this concept of cubic
vague set (CVS) will further enrich the use of various fuzzy methods in decision making such as
those current trends which include group decision making using complex g-rung orthopair fuzzy
Bonferroni mean [32], air pollution model using neutrosophic cubic Einstein averaging operators [33]
and medicine preparation using neutrosophic bipolar fuzzy set [34].

The flow of our research is as follows. Firstly, we examine the concept of cubic vague set (CVS),
which is a hybrid of vague set and cubic set. Secondly, we define some concepts related to the notion
of CVS as well as some basic operations namely internal cubic vague sets (ICVSs) and external cubic
vague sets (ECVSs). The CVS will be used together with a generalized algorithm to determine the
similarity measures between two CVSs for a pattern recognition problem. Finally, a numerical example
is given to elucidate that the proposed similarity measure of CVS is an important concept for measuring
the entropy of uncertain information.

The organization of the paper will be as follows. Fundamentals of vague set, cubic set and
interval-valued vague set are presented in Section 2. In Section 3, the concept of a cubic vague set with
P- and R-union and P- and R-intersection for CVSs, with various properties are introduced. In Section 4,
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the similarity measure between CVSs is shown, along with an illustrative example studied, followed
by the conclusion in Section 5.
2. Preliminaries

In this section we now state certain useful definitions, properties and several existing results for
vague sets and cubic sets that will be useful for our discussion in the next sections.

The notion of vague set theory was first introduced by Gau and Buehrer in 1993 [15] as an extension
of fuzzy sets. It is an improvement to deal with the vagueness of problems involving complex data
with a high level of uncertainty and imprecision. Some of the basic concepts are as follows:

Definition 1. (See [15]) A vague set A (VS) in the universe of discourse U is a characterized by two membership
functions given by:

1. A truth membership function
ta:U—[0,1]

and
2. afalse membership function
fa:U—1[0,1]

where t 4 (u) is a lower bound of the grade of membership of u derived from the “evidence for u”, and fa(u) is a
lower bound of the negation of u derived from the “evidence against u” and

ta(u) + fa(u) < 1.

Thus, the grade of membership of u in the vague set A is bounded by a sub interval [t (u),1 — fa(u)] of [0,1].
This indicates that if the actual grade of membership is u(u), then

ta(u) < p(u) <1 = fa(u).

The vague set A is written as
A= {(u, [ta(u), 1 = fa(u)])|u € U},

where the interval [t (1), 1 — fa(u)] is called “vague value” of u in A and denoted by V(u).

Definition 2. (See [15]) The complement of a vague set A is denoted by A° and is defined by tsc = f4,
and 1 —fAc =1- tg.

Definition 3. (See [15]) The intersection of two VSs A and B area VS C, written as C = A N B, whose truth
and false-membership functions for A and B by tc = min (ta,tg),and 1 — fc = min (1 — fa,1— fp) =
1 —max (fa, fB)-

Definition 4. (See [15]) The union of two VSs A and B are a VS C, written as C = A U B, whose truth
and false-membership for A and B by tc = max (ta,t(B), and 1 — fc = max (1 — fs,1—fg) = 1—
min (fArfB)-

Jun et al. [19] introduced the concept of a cubic set, as a novel hybrid structure of an interval-valued
fuzzy set (IVFS) and a fuzzy set.

Definition 5. (See [19]) Let X be a non-empty set. A structure
A= {(x,A(x),A(x))|x € X}

be a cubic set in X in which A is an IVFS and A is a fuzzy set in X.
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We will now introduce the concept of the interval-valued vague set to handle uncertainty of
information, the grade of membership and the negation of x.

Definition 6. (See [15]) Let X be the universe of discourse, 1[0, 1] denotes the set of all closed subintervals of
[0,1]. An interval valued vague set Ay (IVVS) in X is a structure

Ay = {(x,ta,(x),fa, (%)) : x € X}

where ty, : X — 10,1] and fa, : X — I[0,1] are truth-membership function and false-membership
function of x concerning Ay, respectively. ta, (x) = [t; (x),t5 (x)], t, (x)andty (x) denote the lower
and upper bound of the grade of membership of x derived from “the evidence for x”, respectively. Similarly,
fa, (x) = [fa,(x), fXV(x)], fa, (x) and fXV(x) denote, respectively, the lower and upper bound of the
negation of x derived from “the evidence against x”, and tzv (x)+ f;{v (x) <1

3. Cubic Vague Sets

In this section, we will define the concept of a cubic vague set (CVS) and internal/external cubic
vague sets.

Definition 7. Let X be a universal set. A cubic vague set AV defined over the universal set X is an ordered
pair which is defined as follows
AV = {{x, Ay(x), Ay (%)) : x € X}

1- - -
where Ay = <A§,,AV f> = {(x [t5, (), 5 (O] [1 = o, (x),1 = fi (x)]) : x € X} represents IVVS
defined on X while Ay = {(x,ty,(x),1— fa,(x)) : x € X} represents VS such that tjgv (x) + f;{v(x) <1
and ty, (x) + fa, (x) < 1. For clarity, we denote the pairs as AV = (Ay, Ay), where Ay = (Ita, tjgv], 11—
fay 1= fa, D)y and Ay = (ty,, 1= fo,). CX denotes the sets of all cubic vague sets in X.

Example 1. Let X = {a,b} be a universe set. Suppose an IVVS Ay in X is defined by
Ay = {([0.1,0.3],[0.3,0.7]) /a, ([0.3,0.4], [0.5,0.6]) /b}
and a VS Ay is a set of X is defined by
Ay ={(05,0.7) /a,(0.1,0.3) /b}.
Then the cubic vague set AV =< Ay, Ay > will have the tabular representation as in Table 1.

Table 1. Cubic vague set AV =< Ay, Ay >.

X Ay Av

a  ([0.1,03],[0.3,0.7)) (05,07
b ([0.3,0.4],[0.5,0.6]) (0.1,0.3)

Definition 8. Let X be a universal set and V be a non-empty vague set. A cubic vague set AV =< Ay, Ay >
is called an internal cubic vague set (brief. ICVS) if Ay, (x) < Ay (x) < A (x) forall x € X.

Definition 9. Let X be a universal set and V be a non-empty vague set. A cubic vague set AV =< Ay, Ay >
is called an external cubic vague set (brief. ECVS) if Ay (x) & (A (x), Ay (x)) forall x € X.

Remark 1. Let X be a universal set and V be a non-empty set. A cubic vague set AV =< Ay, Ay > is said to
be neither ICVS nor ECVS if Ay, (x) < Ay(x) < A (x) and Ay (x) & (Ay (x), Af (x)) forall x € X.
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Example 2. Let AV = {< (x),Ay(x),Av(x) >: x € X} be a cubic vague set in X. If Ay(x) =
[0.2,0.5],[0.1,0.6] and Ay (x) = [0.2,0.5] for all x € X, then AV is an ICVS. If Ay (x) = [0.3,0.4],[0.2,0.5]
and Ay (x) = [0.8,0.8], Vx € X, then A" is an ECVS. If Ay (x) = [0.3,0.7],[0.4,0.5] and Ay(x) = [0.4,0.8],
Vx € X, then AV is not an ICVS or an ECVS.

Theorem 1. Let AV =< Ay, Ay > is be a CVS in X which is not an ECVS. Then 3 x € X s.t Ay(x) €
(45 (), A7 ().

Proof. Straightforward. [
Theorem 2. Let AY =< Ay, Ay >isa CVSin X. If AV is an ICVS and ECVS, then
(Vx € X)(A(x) € W(A)UM(A))

where

W(A) = {A} (x)|x € X} and M(A) = {A} (x)|x € X}.
Proof. Suppose that A" is an ICVS and ECVS. By using Definition 8 and Definition 9, we get Ay, (x) <
Ay(x) < Af(x) and Ay (x) ¢ (A (x), Af(x)) Vx € X. Thus, Ay(x) = Ay (x) or Ay(x) = A (x),
andso Ay (x) € W(A)UM(A). O

Definition 10. Let AY = {< (x), Ay(x),Ay(x) >:x € X,v € V}and BV = {< (x), By(x),vy(x) >:
x € X,v € V} be two cubic vague sets in X and V. Then we have

1.  (Equality) AV =BY < Ay(x) = By(x) and Ay (x) = vy (x).
2. (P-order) AV CpBY & Ay(x) C By(x) and Ay(x) C vy(x).
3. (R-order) AV Cr BY & Ay(x) C By(x) and Ay (x) D vy(x).

Definition 11. The complement of AV = {< (x), Ay (x), Ay (x) >: x € X,v € V} is defined to be the cubic
vague set (AV)" = {< (x), A5 (x), A (x) > x € X,0 € V}, where (AY) (x) = [1 - (AV)+ (x),1—
(AV) " (x)] and AS(x) is the vague complement tac(x) = fa(x) and 1 — fac(x) =1 — t4(x).

Definition 12. Let AY = {< (x), Ay(x),Ay(x) >:x € X,v € V}and BV = {< (x), By (x), vy (x) >:
x € X,v € V} be two cubic vague sets in X and V. Then we have

AV UpBY = {< (x),sup(Ay(x), By(x
AVNpBY = {< (x),inf(Ay(x ) v(x)
AV URBY = {< (x),sup(Ay(x), Bv(x
AV NgBY = {< (x),inf(A () )

), sup(Ay(x), uy(x)) > |x € X, v € V} (P-union).

), inf(Ay (x), uy(x)) > |x € X, v € V} (P-intersection).
), inf(Ay (x), uy(x)) > |x € X, v € V} (R-union).

in v(x)),sup(Ay(x), uy(x)) > |x € X,v € V} (R-intersection).
AV ApBY = {< min(Ay(x), By(x)), min(Ay(x), uy(x)) > |x € X,v € V} (P-AND).
AVVvpBY = {< max(AV(x) v(x)), max(Ay(x), uy(x)) > |x € X,v € V} (P-OR).

AV AR BY = {< min(Ay(x), By(x)), max(Ay(x), u V(x)) > |x € X,v € V} (R-AND).

AV VrBY = {< max(Ay(x), By(x)), min(Ay(x), py(x)) > |x € X,v € V} (R-OR).

O NS N =
SN—

Theorem 3. Let AV =< Ay, Ay > bea CVS in X. If AV is ICVS (resp. ECVS), then AV is also an
ICVS (resp. ECVS).

Proof. Since AV =< Ay(x),Ay(x) > is also an ICVS (resp. ECVS) in X, we have A, (x) < Ay(x) <
Al (x) (resp. Ay (x) & (A (x), A (x))) for all x € X. That means

1—Aj(x) <Ay(x) <1-Ap(x)
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(resp. 1 — Ay (x) & (1 — A (x),1— Ay (x))). Thus,
AV = {((x), A5 (x), A5 (x)) s x € X, 0 € V}
is an ICVS (resp. ECVS)in X. O

Theorem 4. Let AY = (A;y, Aiv|i € A) be a group of ICVSs in X. Then the P-union and intersection of
AY = (Ajy, Ajv|i € A) are ICVSs in X.

Proof. Since A is an ICVSin X, we have A;},(x) < A;v(x) < A;j(x) fori € A. That means

- +
(U Ai) (x) < (\/ /\z‘v> (x) < (U Ai) (x)
i€cA i€cA i€cA

- +
<ﬂ Ai) < (/\ AiV) (x,0) < <ﬂ Ai) (x)
icA icA icA

Hence | pAV and N pAV are ICVSsin X. O
i€cA i€cA

and

The following example shows that the P-union and P-intersection of two ECVSs need not be
an ECVS.

Example 3. Let AV = (Ay(x),Av(x)) and BY = (By(x),vy(x)) be two ECVSs in X such that Ay (x) =
[0.3,0.4],[0.5,0.8] and A(x) = [0.9,0.9], By (x) = [0.8,0.8],[0.9,0.9] and v(x) = [0.3,0.4] Vx € X.

1. Note that AV Up BV = {((x),B(x),A(x)|x € I)} and A(x) € (B~(x),B*(x)) Vx € I. Then
AV UpBY is not an ECVS in I.

2. Note that AY NpBY = {{(x),A(x),v(x)|x € I)} and v(x) € (A= (x),A*(x)) Vx € I. Then
AY NpBY is not an ECVS in I.

The example below shows that the R-union and intersection of two ICVSs need not be an ICVS.

Example 4. Let AV = (Ay(x),Av(x)) and BY = (By(x),vy(x)) be ICVSs in I = [0,1] x [0,1] in which
Ay (x) = [04,0.5],[0.4,0.7), A(x) = [0.6,0.7], By (x) = [0.7,0.9],[0.8,1] and v(x) = [0.8,0.8] for all x € L.

1. Note that AV Ur BY = {{(x), B(x),A(x)|x € I)} and A(x) ¢ (B~ (x), BT (x))Vx € I. Then AV Ug
BY is not an ICVS in I.

2. Note that AV Ng BY = {{(x), A(x),v(x)|x € I)} and v(x) ¢ (A= (x),AT(x))Vx € I Then
AY Mg BY is not an ICVS in I.

The example below will show that the R-union and intersection of two ECVSs may not necessarily
be an ECVS.

Example 5.

1. Let AV = (Ay(x),Ay(x)) and BY = (By(x),vy(x)) be ECVSsin I = [0,1] x [0, 1] whereas Ay (x) =
[0.4,0.7],[1,1], A(x) = [0.8,0.9], By(x) = [0.5,0.8],[0.6,0.9] and v(x) = [0.4,1]Vx € I. Since
AV URBY = {{(x),By(x),A(x)|x € I)} and A(x) € (B~ (x),BT(x))Vx € I. Then AV Ur B is not
an ECVSin L.

2. Let AV = (Ay(x),Ay(x)) and BV = (By(x),vy(x)) be ECVSsin I = [0,1] x [0, 1] whereas Ay (x) =
[0.5,0.7], A(x) = [0.8,0.9], By(x) = [0.2,0.3] and v(x) = [0.6,0.6] for all x € I. Since AV Ng BV =
{{(x), A(x),v(x)|x € )} and v(x) € (A~ (x), AT (x))Vx € . Then AV Ngr BY is not an ECVS in I.
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We give a condition of a R-union of two ICVSs to become an ICVS.

Theorem 5. Let AV = (Ay(x), Ay (x)) and BY = (By(x),vy(x)) be two ICVSs in X such that

max{Ay (x),By (x)} < (AAv)(x)
Vx € X. Then the R-union of AV and B is an ICVS in X.

Proof. Let AV = (Ay(x),Ay(x)) and BY = (By(x),vy(x)) be two ICVSs in X which satisfy the
condition of Definition 7. Then Ay, (x) < Ay(x) < A (x) and By, (x) < vy(x) < B’ (x) which means
(Av(x) Avy(x)) < (AUB)T(x). Now apply the condition of Definition 7 that is (AU B) ™ (x) =
max{Ay, (x), By, (x)} < (Av(x) Avy(x)) < (AUB)T(x) so that AV Ug BY = {((x), (AUB)(x), (A A
v)(x))|x € X}isanICVSin X. O

We give a condition of a R-intersection of two ICVSs to become an ICVS.

Theorem 6. Let AV = (Ay(x),Ay(x)) and BV = (By(x),vy(x)) be two ICVSs in X satisfying
min{ A}, (x), Bj (x)} > (A Vv)(x)Vx € X. Then the R-intersection of AV and BV is an IVCS in X.

Proof. Let AV = (Ay(x), Ay (x)) and BV = (By(x),vy(x)) be ICVSs in X which satisfy the condition
of Definition 1. Then A} (x) < Ay(x) < A{(x) and By, (x) < vy(x) < B (x) so (ANB)~ (x) <
(Av(x) Avy(x)). Now apply the condition of Definition 1 we get (AN B) ™ (x) < (Ay(x) Avy(x)) <
min{ A}, (x), B (x)} = (AN B)*(x) and therefore AV Ng BY = {((x), (AN B)(x), (A Vv)(x))|x € X}
isanICVSin X. O

Given two CVSs AV = (Ay(x),Ay(x)) and BV = (By(x),vy(x)). Suppose we exchange the
v for A in the two CVSs and we denote the CVSs A* = (Ay(x),vy(x)) and B* = (By(x), Ay (x)),
respectively. Then, for to ECVSs AV and B in X, two cubic vague sets A* and B* may not be ICVSs in
X as shown in the example below.

Example 6.

1. Let AV = (Ay(x),Ay(x)) and BY = (By(x),vy(x)) be two EVCSs in I = [0,1] x [0,1] in which
A(x) = [0.2,0.2],[0.5,0.5], A(x) = [0.3,0.4], B(x) = [0.7,0.8],[0.9,0.9] and v(x) = [0.1,0.1]¥x € L.
Thus, A* = (Ay(x),vy(x)) and B* = (By(x), Ay (x)) are not ICVSs in X since vy (x) = [0.1,0.1] ¢
0.2,0.3],[0.5,0.5] and Ay (x) = [0.3,0.4] ¢ [0.7,0.8],[0.9,0.9].

2. Let X = {l,m} beaset. Let AV = (A V(x),)\ (x)) and BY = (By(x),vy(x)) be ECVSs in X
defined by Table 2. Thus, A* = (Ay(x ),vv(x ) and B* = (By(x), Ay (x)) are not ICVSs in X since
v(l) = [0.9,0.9] ¢ [0.2,0.5],[0.5,0.5] = A(I) and A(I) = [0.1,0.7] ¢ [0.8,0.9], [0.8,0.8].

Table 2. VCSs AV and BY.

X Av(x) Av(x) X By (x) vy (x)
[ ([02,05],[0505]) (01,07 I ([08,09],[0808]) (09,009)
m  ([03,04],[03,03]) (07,08 m ([0.3,04],[0506]) (0.8 09)

We give an example to show that the P-union of two ECVSs in X does not necessarily become an
ICVSin X.

Example 7. Let X = {k,1,m} beaset. Let AV = (Ay(x
in X defined by Table 3. Then we will have (AY Up BY)

), Av(x)) and BY = (By(x), vy (x)) be two ECVSs
ICVS in X since (A Vv) (m) = [0.2,09] ¢ ([0.1,0.1], [0;

A
((Ay(x) UBy(x)), (Av(x) Vvy(x))) is not an
0.8])
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Table 3. VCSs AV and BV.

X Av(x) Av(x) X By (x) vy (x)
k ([03,05],[02,02]) (0507 k ([0.607],[0.407]) (0.35045)
I ([02,04],0.1,01]) (01,05 I  (0,06],[0.7,08]) (0.3, 035)
m  ([0.1,01],[01,03]) (04,06) m ([01,01],(0.7,08]) (0.2,009)

We give a condition for P-union of two ECVSs to become an ICVS.

Theorem 7. For two ECVSs AV = (Ay(x),Av(x)) and BV = (By(x),vy(x)) in X, if A*
(Av(x),vy(x)) and B* = (By(x),Av(x)) are IVCSs in X, then the P-union AV Up BY of AV =
(Ay(x), Ay (x)) and BY = (By(x),vy(x)) isan ICVS in X.

Proof. Let AV = (Ay(x),Ay(x)) and BY = (By(x),vy(x)) be an ECVSs in X such that A* =
(Av(x),vy(x)) and B* = (By(x),Ay(x)) are ICVSs in X. Then Ay (x) ¢ (A (x), Af(x)), py(x) ¢
(By (x),Bi(x)), By, (x) < Ay(x) < Bj(x) and Ay (x) < py(x) < Af(x) for all x € X. Now, for a
given x € X, we consider the cases:

1. Ay(x) <Ap(x) <v ( ) < Ay (x)and vy (x) < By (x) < Ay(x) < B (x).
2. Ay(x) < vv(x) < Al (x) < Ay(x) and By, (x) < Ay(x) < B (x) < vy (x).
3. /\v( ) <Ay (x) <wy ( ) < Ay(x) and By v (%) < Ay(x) < By (x) < vy(x).
4. Ay(x) < vV(x) < A (x) < Ay(x)and VV( ) < By (x) < Ay(x) < Bj(x).

We will illustrate the proof of the first case only because proofs of the remaining three cases are similar.
Now, we get ity (x) = Ay, (x) = By, (x) = Ay(x). Since A* = (Ay(x),vy(x)) and B* = (By(x), Av(x))
are ICVSs in X, we have vy (x) < A{(x) and Ay (x) < By (x). It follows that

(AYUBY) " (x) = max{Ay (x), By (x)} = (Av (x), v (x)) (1)
< max{ A} (x), B (1)) = (A" UBY) " ()

Hence AV Up BV isan ICVSin X. O

We give the condition of a P-intersection of two ECVSs to become an ICVS.

Theorem 8. Let AV = (Ay(x),Ay(x)) and BY = (By(x),vy(x)) be CVSs in X such that A* =
(Ay(x),vy(x)) and B* = (By(x),Ay(x)) are ICVSs in X. Then the P-intersection of AV and BY is
an ICVS in X.

Proof. The proof is similar to that of Theorem 7. [

For two ECVSs AV and BY in X, two CVSs A* = (Ay(x),vy(x)) and B* = (By(x), Ay (x)) may
not be ECVSs as shown in the following example.

Example 8. Let X = {I,m} be a set. Let AV = (Ay(x),Ay(x)) and BV = (By(x),vy(x)) be ECVSs
in X given in Table 4. Thus, A* = (Ay(x),vy(x)) and B* = (By(x), Ay(x)) are not ECVSs in X since
v(m) = [0.3,0.3] € [0.3,0.3],[0.4,0.5] = A(m) and A(I) = [0.6,0.7] € [0.6,0.8],[0.7,0.8].

Table 4. CVSs AV and BV.
X Ay (x) Av(x) X By(x) vy (x)

I ([02,04],[04,05]) (06,07 [ ([0.6,08],[0.7,08]) (0.2,0.3)
m  ([0.3,03],[04,05]) (02,02) m ([0.2,0.2],[0.1,03]) (0.4,0.5)




Entropy 2020, 22, 963 90f17

Theorem 9. Let AV = (Ay(x),Ay(x)) and BV = (By(x),vy(x)) be two ECVSs in X such that A* =
(Ay(x),vy(x)) and B* = (By(x), Ay (x)) are ECVSs in X. Thus, the P-union AV and BY is an ECVS in X.

Proof. For each x € X, we get Ay(x ) ¢ (Ay(x), A (x)), vwix) & (By(x),B)(x)), vy(x) ¢
(Ay (x), Ay (x)) and Ay (x) ¢ (By (x), By (x))

(AVv)(x) ¢ (max{Aj (x), By, (x)}, max{A (x), By (x)})
which means (A Vv) (x) ¢ ((A UB)™ (x),(AUB) (x)) Then AV UpBY isan ECVSin X. [

We have given an example that shows the P-intersection for two ECVSs may not become an ECVS
as in Example 3. Now we will add a condition for the P-itersection of two ECVSs to be an ECVS by
using Definition 2.

Theorem 10. Let AV = (Ay(x),Ay(x)) and BY = (By(x),vy(x)) be two ECVSs
in X such that min{max{A} (x), B, (x)},max{A; (x),B}(x)}} > (A V v)(x) >
max{min{A} (x), B, (x)}, min{A} (x),B;(x)}}Vx € X. Thus, the P-intersection AV and BV is
an ECVS in X.

Proof. For each x € X, substitute

P = min{max{ A (x), By ()}, max{ A7 (x), Bf (x)}}
and

Prx) 1= max{min{A{ (x), B;,(x)}, min{A} (x), B{; (x)}}
Then ¢(,) which is one of the Ay, (x), By, (x), Ay (x) and Bj;(x). We consider ¢,) = Ay (x) or
P = A7 (x) only since the proof of the other cases are similar.

If ) = Ay (x), thus
By (x) < B (x) < Ay (x) < A (x)

and so ¢y = By (x). Then B, (x) = (ANB)~(x) < (ANB)*(x) = By (x) = ¢y < (AAV) (%),
thus (A Av) (x) € ((ANB)~(x), (ANB)*(x)).

Al (x), thus By, (x Al (x) < Bf(x) and so ¢(r) = max{Ay (x), By, (x)}. Suppose
that, 4)(x) (

_ ) < _
Ay (x). Thus, B, ( ) <AL (x) < (AAv) (x) < A ) < B} (x) then we get
By (x) < Ap(x) < (A Av) (x) < Af(x) < BE (x)

or

By, (x) < Ay (x) < (AAV) (x) = A (x) < B (x)

of the case By, (x) < Ay (x) < (AAV) (x) < Al (x) < B (x). This is the contradiction to A” and BY
are ECVSs in X. For the case

By (x) < Ay (3) < (AAv) (3) = A7 (x) < Bf (¥)
we get (AAV) (x) € ((ANB)~(x), (ANB)*(x)) because (A Av) (x) = A (x) = (ANB) T (x).
Suppose that, ¢,y = By, (x). Thus,

Ay (x) < By (x) < (AAv) (x) < Af (x) < B (x)
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then we get
Ay (x) < By (x) < (AAV) (x) < A (x) < B (x)

Ay (x) < By (x) < (AAv) (x) = Af(x) < By (x)

of the case Ay, (x) < By, (x) < (AAV) (x) < Af;(x) < B (x). This is the contradiction to A" and BY
are ECVSs in X. For the case

Ay (x) < By (x) < (AAv) (x) = Ay (x) < By (x)

we get (AAV)(x) & ((ANB) (x),(ANB)"(x)) because (A Av)(x) = A (x) = (ANB)T(x).
Then P-intersection of AV and BY are ECVSsin X. [

We add a condition of a P-intersection of two CVSs to become both an ECVS and ICVS.

Theorem 11. Let AV = (Ay(x),Ay(x)) and BY = (By(x),vy(x)) be two VCSs
in X such that min{max{Aj} (x), B} (x)}, max{A (x), B} (x)}} = A AvV)(x) =
max{min{ A7 (x), By, (x)}, min{ A}, (x), By, (x)}} for all x € X. Then P-intersection AV and BV is
an ECVS and an ICVS in X

Proof. For each x € X, substitute

¥(x) = min{max{ Ay (x), By, (x) }, max{ Ay (x), By (x) } }
and

Prx) 1= max{min{ Ay}, (x), B, (x)}, min{ Ay, (x), B}, (x)}}
Then ¢,y which is one of the Ay (x),By (x), Ay (x) and By (x). We take ¢, = Ay (x) or
Py = A$(x) only.

If (o) = Ay (x), thus
By (x) < By (x) < Ay(x) < Ay (x)
and so ¢,y = B (x). This implies that Ay, (x) = () = (A A V) (x) = ¢y = B (x). Thus,
By (x) < BY(x) = (AAv) (x) = Ay (x) < A ().
implies that (A Av) (x) = By (x) = (AN B)™ (x). Thus,
(A Av) () ¢ ((ANB) (x), (AN B)* (x))

and (ANB)™ (x) < (AAV) (x) < (ANB)T (x).
If ) = Ay (x), thus, B, (x) < Aj(x) < By (x) and so (AAV) (x) = Ay (x) = (ANB)*(x).
Then (AAV)(x) ¢ ((ANB) (x),(ANB)T(x)) and (ANB) (x) < (AAvV)(x) < (AN B)"(x).

Therefore, the P-intersection of AY and BY is an ECVS and ICVSin X. O

We provide the condition of a P-union of two ECVSs to become an ECVS.

Theorem 12. Let AV = (Ay(x),Av(x)) and BY = (By(x),vy(x)) be two EVCSs
in X such that min{max{A} (x ),B‘;( x)}, max{A,(x),By(x)}} > (A Av)(x) >
max{min{ A} (x), By, (x)}, min{ Ay, (x), B}, (x)}}Vx € X. Then the P-union AV and BV is an ECVS in X.
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Proof. For each x € X, substitute

¥(x) = min{max{ Ay (x), By, (x) }, max{ Ay (x), By (x) } }
and
Prx) 1= max{min{ Ay}, (x), B, (x)}, min{ Ay, (x), B}’ (x)}}

Then () is one of the Ay (x), By, (x), Ay (x) and B (x). We consider ¢,y = Ay (x) or ¢y =
Al (x) only.
If #J(x) = A;(x), thus,
By (x) < Bfi(x) < Ay (x) < Af (%)

and so ¢,y = B (x). This implies that

(A,UB)™ (x) = Ay (x) = ) > (A AV) (x),

hence,
(AVv) (x) & ((AUB)™(x), (AUB)" (x)).

If ) = A (x), thus By, (x) < A (x) < By (x) and so ¢,y = max{Ay (x), B, (x)}. Suppose
that ¢(,) = Ay, (x). We have,

By (x) < Ay(x) < (AVv) (x) < A (x) < B (x),
and

By (x) < Ay (x) < (AVv) (x) < AJ(x) < By (x)

By (x) < Ay (x) = (AVv) (x) < Af(x) < By (x

That is a contradiction for that fact AY = (Ay(x),Ay(x)) and BV = (By(x),vy(x)) are ECVSsin X in
the first case. For the next case, we will show that (A Vv) (x) ¢ ((AUB)™ (x), (AUB)"(x)) because
(AUB)~(x) = Ay (x) = (A V) (x). Suppose ¢(,) = By, (x). We have,

Ay (x) < By (x) < (AVv) (x) < Af(x) < B (x),
which means
Ay (x) < By (x) < (AV) (x) < Af(x) < By (%)

Ay(x) < By(x) = (AVv) (x) < A (x) < Bf ().

It contradicts Ay, (x) < By, (x) < (A V) (x) < Af(x) < Bj(x), for the fact A = (Ay(x),Ay(x)) and
BY = (By(x),vy(x)) are ECVSs in X. In the case
A7 (x) < By (x) = AV o) (x) < AT (x) < B (),

we get (AAV) (x) ¢ ((AUB)™(x),(AUB)™(x)) since (AUB)~(x) = By, (x) = (AVv) (x). Thus, a
P-union of A and B is an ECVSin X. [

Theorem 13. Let AV = (Ay(x),Ay(x)) and BY = (By(x),vy(x)) be two ECVSs in X. If
for each x € X such that min{max{Aj (x), By (x)}, max{A;(x), By (x)}} > (A Av)(x) >
max{min{A{ (x), B, (x)}, min{ A}, (x), B{; (x)}}, then the R-union AV and B is an ECVS in X.
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Proof. For each x € X, substitute

¥(x) = min{max{ Ay (x), By, (x) }, max{ Ay (x), By (x) } }

Prx) 1= max{min{A{, (x), B, (x)}, min{A} (x), B{; (x)}}.
Then ;) is one of the A} (x), By, (x), Ay (x) and By, (x). Consider the case of ¢, = By (x) or

Ay (x) < Aj(x) < By (x) < Bfi(x)

and ¢(,) = Ay (x). Then the first part of inequality

(AUB)™(x) = By (x) = ¢(x) > (A Av)(x)

Ay (x) < By (x) < Ay (x)
and ¢,y = max{Ay, (x), By, (x)}. Suppose ¢,y = A}, (x). Thus,
By (x) < Ay (x) < (AAv)(x) < Bfi(x) < Ay (x)
which implies that
By (x) < Ay (x) < (AAv)(x) < BY (x) < Af (x)

or
By (x) < Ap(x) = (AAV)(x) < Bf (x) < AF (%)

For the case B, (x) < A (x

) < (AAV)(x) < Bf(x) < A{(x), it contradicts the fact that
AV = (Ay(x),Av(x)) and B = (By (x

), vy (x)) are ECVSs in X. For the case
By (x) < Ay (x) = (AAv)(x) < By (x) < Af ()

we have (A Av) (x) ¢ ((AUB) ™ (x),(AUB)™(x)) since (AUB) ™ (x)) = Ay, (x) = (AAv)(x).
Suppose ¢(,) = By, (x). We have,

Hence,

Ay (x) < By (x) = (AAv)(x) < B (x) < A (x).

For the case A (x) < By (x) < (AAv)(x) < Bj(x) < Aj(x), it is a contradiction since AV =
(Ay(x),Ay(x)) and BY = (By(x),vy(x)) are ECVSs in X. For the case

Ay (x) < By (x) = (AAv)(x) < Bf(x) < Af(x),

we notice that (A Av) (x) ¢ ((AUB)™(x),(AUB)"(x)) since ((AUB)™(x)) = B, (x) = (A Av)(x).
Hence the R-union of A” and B is an ECVSin X. O

For the R-intersection we provide the condition of two ECVSs to be an ECVS.
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Theorem 14. Let AV = (Ay(x),Ay(x)) and BY = (By(x),vy(x)) be two ECVSs in X.
If for each x € X such that min{max{A{(x), B, (x)}, max{A; (x), B}, (x)}} > (AAv)(x) >
max{min{ A7 (x), By, (x)}, min{ Ay, (x), B{;(x)}}, then the R-intersection of AV and BY is an ECVS in X.

Proof. The proof is similar to that of Theorem 13. O

For R-intersection we provide the condition of two CVSs to be both an ECVS and ICVS.

Theorem 15. Let AV = (Ay(x),Ay(x)) and BV = (By(x),vy(x)) be CVSs in X. If for
each x € X such that min{max{A{ (x), By (x)}, max{A}(x),B}(x)}} = (AAv)(x) =
max{min{A}, (x), B, (x)}, min{A} (x), B;(x)}}, Vx € X, then the R-intersection of AV and BY is an
ECVSand an ICVS in X.

Proof. The proof is similar to that of Theorem 11. O

For the R-union we provide the condition of two ICVSs to be an ECVS.

Theorem 16. Let AV = (Ay(x),Ay(x)) and BY = (By(x),vy(x)) be ICVSs in X. If (A Av)(x) <
max{Aj, (x), By, (x)} Vx € X, then the R-union of AV and BY is an ECVS in X.

Proof. Straightforward. [

For the R-intersection we provide the condition of two ICVSs to be an ECVS.

Theorem 17. Let AV = (Ay(x),Av(x)) and BY = (By(x),vy(x)) be ICVSs in X. If (AVv)(x) <
min{A{;(x), By (x)} for all x € X, then the R-intersection of AV and BY is an ECVS in X.

Proof. Straightforward. [

For the R-union we provide the condition of two ECVSs to be an ICVS.

Theorem 18. Let AV = <Av(x),)\v( )> and BV = (By(x),vy(x)) be ICVSs in X such that
min{max{ A, (x), By, (x)}, max{A;, (x), B;(x)}} < (A Vv)(x) < max{A{ (x), B (x)} forall x € X,
then the R-union of AV and B is an ICVS in X.

Proof. Straightforward. O

4. Similarity Measure of Cubic Vague Sets

The most important mathematical tool for solving problems in pattern recognition and clustering
analysis is similarity measure. Therefore, in this section we will propose the similarity measures
between two CVSs, which will then be applied to a pattern recognition problem.

Definition 13. A real valued function S : Ci — [0,1] is a similarity measure between two CVSs A and AY
if S satisfies all of the following axioms:

(S1) 0 < |S(AY,AY)| <1;

(S1) S(AY,AY) = S(AY,AY)),;
(S3) S(A }’A;’)_M:)AVfAV
(54)

4 ‘V’AV AvandAV S CX,1fA¥ - Ag - AC‘{,
then S(AV AV) < S(AY,AY)and S(AY,AY) < S(AY,AY)

Next, we give the similarity measurement between two CVSs.
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Definition 14. Let X = {x1, x2, x3} be the universe of the objects, A} = (AL, A},) and AY = (A3, A}) are
two families of cubic vague sets in X. The similarity measurement between AY and Ag is defined by the function
S(AY,AY), where

S(AY,A)) =1-g; Ty (\f;\%/(xi)—f;zv(xi) Fo, () = frp ()l -1t (x) = £ (i) = [y (x1) =
X%/(xi)” + it (i) = B (xi) = [fu (xi) —fAZV(xi)]|)

Application of the Similarity Measurement Method in a Pattern Recognition Problem

The measures of fuzzy sets and their hybrid methods help us to solve problems in many real-life
areas, especially in the field of pattern recognition and image processing, among others. In this section,
we will examine the similarity measures of two CVSs of a pattern recognition problem. We construct
an algorithm, and suppose that S(AY,AY) > 0.6 is the ideal pattern.

Step 1. Firstly, we construct an ideal VCS AV = (Ay, Ay).

Step 2. Then, we construct cubic vague sets AV <A] A v) i =12,..,k on X for a sample patterns
which are under consideration. )

Step 3. The similarity measures between the sample patterns AV <A] ) j=1,2,.., kand ideal

pattern A = (Ay, Ay) are calculated using the formula given in Definition 14.
Step4. IfS(AY, A]V) < 0.6 then the pattern A]V is to be recognized to belong to the ideal Pattern A"

and if S(AY, A]V) > 0.6 then the pattern A/V is not to be recognized for an ideal Pattern A"

Now, we provide a numerical application example for similarity measurement of two CVSs in a
pattern recognition problem. Through the example, we will illustrate which one of the sample patterns
belongs to the ideal pattern.

Example 9. Consider a simple pattern recognition problem involving three sample patterns and an ideal pattern.
The objective of the problem is to determine which one of the three sample patterns belongs to the ideal pattern.
Let X = {x1,x2,x3} be the universe. Three patterns denoted as pattern 1, pattern 2 and pattern 3 are the
designated sample patterns, whereas pattern 4 is the designated ideal pattern. These three patterns are modeled
using the CVS model, with the CVSs A{; AY; AY and AV representing the information and data of patterns 1,
2, 3 and 4, respectively.

[Step 1.] Construct an ideal CVS AV = (Ay, Ay) on X as;
AV — < { ([0303],0707]) ([04041[0506]) ([0101]0805]) }’ { (0.80.8) (0.60.6) (09,1) }>

+ ’ ’ + X ’ X 7T x
Xq X,y X3 1 2 3

[Step 2.] Construct CVSs AV (A] A V), j=1,2,3 0n X for the sample patterns as;

AV = < { (j0.1,0.3,[0.3,03])  ([0.0,0.2],[0.2,04]) (]0.0,0.1],[0.1,0.1]) } { (0.1,01) (0.1,0.1) (0,0.1) }>

+ 7 =+ 7 -+ 7
xq Xy X3 X1 X2 X3

AY = < { (]0.4,0.4],[0.5,0.6]) <[0.1,0.2],+[0.1,0.7]> (10.2,0.4],[0.4,0.5)) } { (0.1,08) (0.7,0.7) (05,1) }>

+ 7 7 + 7
xq Xy X3 X1 X2 X3

AY = < { (/0.1,0.2],(0.1,0.2]) <[0.1,o.2],+[0.2,o.2]> (j0.1,0.1], [0103]> } { (0.1,04) (0.1,02) (0.0,0.1) }>

¥y ’ %3 ’ Xt A X3
[Step 3.1 Calculate the degree of similarity S between the three sample patterns AJV and the ideal pattern A,
Vj =1,2,3. then the results obtained are

S(AY,AY) = 0.561

S(AY,AY) =0.833

S(AV,AY) = 0572
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[Step 4.] Since S(AY, A¥) < 0.6, S(AY, Ag) < 0.6 and S(AY, AX) > 0.6, the sample patterns whose
corresponding CV'S sets are represented by Ay and AY are recognized as similar patterns of the family of ideal
pattern whose CVS set is represented by AV and the pattern whose CVS is represented by AY does not belong to
the family of ideal pattern AV

To show the advantage of our proposed method using CVS as compared to that of a cubic
set [19], let us consider the decision making problem above. It can be seen that cubic set is unable to
describe this problem, since it fails to capture the false membership portion of the data in assessing the
alternative in the decision-making process.

Note that the CVS is a generalization of a cubic set by adding the concept of vague set to the
definition of cubic set. Thus, as shown in the decision making problem above, the CVS has the ability to
handle uncertainties, imprecise and vagueness information considering both the truth-membership and
falsity-membership values, whereas cubic set can only handle the uncertainties information without
taking into account the truth-membership and falsity-membership values. This indeed illustrates the
core advantage of CVS against that of CS.

5. Conclusions

A new concept of a cubic set namely the cubic vague set is introduced by incorporating the
features of a vague set and a cubic set. Several properties and theorems of cubic vague set are defined
and proven involving ECVS or ICVS. We have derived different conditions for different operations of
two ICVSs (ECVSs) to be an ICVS (ECVS). We have shown that the proposed set and corresponding
algorithm can be applied to a decision making problem containing uncertainties. Our future research
is finding ways to apply cubic vague set to groups, rings, numerical analysis [35-37] and more real
life applications.
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