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Abstract

Deep brain stimulation (DBS) surgery has been shown to dramatically improve the

quality of life for patients with various motor dysfunctions, such as those afflicted

with Parkinson's disease (PD), dystonia, and essential tremor (ET), by relieving motor

symptoms associated with such pathologies. The success of DBS procedures is

directly related to the proper placement of the electrodes, which requires the ability

to accurately detect and identify relevant target structures within the subcortical

basal ganglia region. In particular, accurate and reliable segmentation of the globus

pallidus (GP) interna is of great interest for DBS surgery for PD and dystonia. In this

study, we present a deep-learning based neural network, which we term GP-net, for

the automatic segmentation of both the external and internal segments of the globus

pallidus. High resolution 7 Tesla images from 101 subjects were used in this study;

GP-net is trained on a cohort of 58 subjects, containing patients with movement dis-

orders as well as healthy control subjects. GP-net performs 3D inference in a patient-

specific manner, alleviating the need for atlas-based segmentation. GP-net was

extensively validated, both quantitatively and qualitatively over 43 test subjects

including patients with movement disorders and healthy control and is shown to con-

sistently produce improved segmentation results compared with state-of-the-art

atlas-based segmentations. We also demonstrate a postoperative lead location

assessment with respect to a segmented globus pallidus obtained by GP-net.
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1 | INTRODUCTION

In the past several decades, deep brain stimulation (DBS) therapy has

shown clear clinical efficacy in the mediation of symptomatic motoric

behavior associated with Parkinson's disease (PD), essential tremor

(ET), dystonia, and other conditions (Benabid et al., 1987; Deuschl

et al., 2006; Hariz et al., 2008; Mueller et al., 2008; Obeso

et al., 2001; Volkmann et al., 2012). One of the most prominent DBS

targets for PD and dystonia is the globus pallidus (GP) (Patriat

et al., 2018). The GP is divided into two compartments, the internal

Received: 16 October 2020 Revised: 16 February 2021 Accepted: 1 March 2021

DOI: 10.1002/hbm.25409

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.

2862 Hum Brain Mapp. 2021;42:2862–2879.wileyonlinelibrary.com/journal/hbm

https://orcid.org/0000-0003-0240-0852
https://orcid.org/0000-0002-6034-3801
mailto:solom267@umn.edu
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/hbm


segment (GPi) and the external segment (GPe), of which the former is

typically the actual target for electrode placement. The GPe and GPi

are separated by a thin layer, called the internal medullary lamina

(Lozano & Hutchinson, 2002; Patriat et al., 2018). Several past studies

have reported that lesions applied to the GPi led to improvement in

motor function (Baron et al., 1996; Obeso et al., 2001; Vitek

et al., 2003). The application of lesions (or pallidotomy) is associated

with nonreversible risks of applying the lesion outside of the intended

target. DBS surgery, on the other hand, has risen as an alternative

with similar benefits, whose application can be reversed or even

stopped if erroneously applied to the wrong region (Benabid

et al., 1987; Obeso et al., 2001). Recent studies have shown that accu-

rate placement of the DBS electrode within the sensorimotor region

of the target (e.g., subthalamic nucleus [STN] or GPi) is directly corre-

lated with the success of the DBS procedure and reduction of adverse

effects (Ellis et al., 2008; Marks et al., 2009; Paek et al., 2013; Patel

et al., 2015; Richardson et al., 2009; Rolston et al., 2016; Welter

et al., 2014). Correct anatomical target identification is characterized

not only by the target's center of mass, but also by its boundaries

(Kim et al., 2019). Thus, precise identification of both GPe and GPi

and their lamina boundary is of great importance.

A fully automated segmentation process of the GP (both the

internal and external segments) has several clear advantages, among

which are accurate and fast inference. From a clinical point of view,

an automated process has the potential to streamline clinical

workflow and increase patient throughput, both in preoperative sur-

gery planning and postoperative assessment of the DBS lead location

with respect to the target. Such a process can also eliminate human

bias associated with the segmentation process, and provide more

accurate and consistent segmentation results.

Since some anatomical structures are not easily identified or visu-

alized on standard clinical images (e.g., 1.5 or 3 T MRI scanners), a

common approach to localize brain structures, and in particular those

located in the basal ganglia, is to rely on an atlas (Ewert et al., 2018;

Horn et al., 2019; Horn & Kühn, 2015).i An atlas provides an average

location of brain structures, often based on multiple inputs, such as

different MRI scans and histology, merged from numerous subjects.

For example, the authors of (Chakravarty et al., 2006) combined a his-

tological atlas with a 3 T based multimodal subcortical atlas built from

MRIs of PD patients (Xiao et al., 2017). In addition, they also com-

bined high resolution multimodal MRIs and structural connectivity

data as well (Ewert et al., 2018). Atlases can be deterministic (Xiao

et al., 2017), that is, each pixel corresponds to a single brain structure,

or probabilistic (Ewert et al., 2018), where each pixel is associated

with a vector of probabilities which indicate how likely that pixel is

associated with different brain structures. For example, (Horn, Kühn,

et al., 2017) took a probabilistic approach to map DBS electrode loca-

tions onto the Montreal Neuorological Institute (MNI) space.

Atlases, which are typically defined in a normalized space, have

shown great importance in retrospective population studies (Horn,

Kühn, et al., 2017; Horn, Neumann, et al., 2017; Horn, Reich,

et al., 2017; Kim et al., 2019). However, recent works have shown

that variablity exists in the size and shape of deep brain structures

between different subjects (Abosch et al., 2010; Duchin et al., 2018;

Lenglet et al., 2012; Patriat et al., 2018). This inherent interpatient

variability is not fully captured by atlas-based segmentations, as they

provide a single, averaged shape of brain structures, be it determinis-

tic or probabilistic. Accounting for interpatient variability is typically

done by registering the atlas to specific patient anatomy (i.e., via an

MRI scan), although this approach cannot often account for the dis-

crepancy between the template and the individual patient brain, and

is also affected by registration errors (Dadar et al., 2018; Ewert

et al., 2018; Kim et al., 2019). Several other approaches have been

introduced in recent years. However, these approaches either seg-

ment the GP as an entire structure and do not provide distinction

between the GPe and the GPi (Manjón & Coupé, 2016; Visser

et al., 2016), or still rely on registration to a template for segmenting

the GPe/GPi and other structures (Bazin et al., 2020). These draw-

backs motivate the development of a truly patient-specific segmenta-

tion technique for GPe/GPi structures.

In recent years, the fields of image analysis and computer vision

have undergone a monumental and profound change with the intro-

duction of deep-learning (DL), and in particular deep fully con-

volutional neural networks (CNNs; Krizhevsky et al., 2012; Lecun

et al., 2015). These types of networks consist of many aggregated

layers of convolution filters of various sizes and nonlinear

elementwise activation functions, such as the rectified linear unit

(ReLU). In many computer vision tasks (e.g., segmentation/classifica-

tion), CNNs are trained end-to-end in a fully supervised manner, over

pairs of input images and (often manual) delineations or labels. Such

trained CNNs have shown state-of-the-art performance in many

tasks, such as semantic segmentation (Long et al., 2015), image classi-

fication (Krizhevsky et al., 2012; Zhong et al., 2015), and image regis-

tration (Balakrishnan et al., 2018; Dalca et al., 2018) to name a few.

As opposed to iterative algorithms, CNNs perform inference in a sin-

gle forward step without any need for time-consuming iterations.

Moreover, since CNNs are composed from convolution operations

and elementwise nonlinearities, they are implemented very efficiently,

which leads to fast execution times during inference.

In this study, we present GP-net,ii a fully convolutional deep neu-

ral network for the efficient and accurate 3D segmentation of both

the GPe and GPi. GP-net is based on a variant of one of the most

prominent deep network architectures, the U-net (Ronneberger

et al., 2015), which exploits skip connections in order to prevent loss

of contextual information at multiple image scales. In particular, we

exploit the attention gated (AG) U-net proposed in (Schlemper

et al., 2019), which has previously shown improved segmentation per-

formance in medical imaging. Attention mechanisms are able to auto-

matically learn to focus, or direct attention, without additional

supervision. This ability allows AGs to highlight salient features during

inference time in the input images or intermediate feature maps, and

have been applied successfully in numerous machine learning disci-

plines, such as natural language processing and machine vision

(Bahdanau et al., 2015; Wang & Shen, 2018). For example, in

(Schlemper et al., 2019) it was shown that the added AGs improve

model sensitivity and accuracy in medical computerized tomography

SOLOMON ET AL. 2863



(CT) and ultrasound segmentation, by suppressing irrelevant feature

activations in irrelevant areas.

In addition, we augment the attention gated U-net with the

recently introduced deformable convolutions (Dai et al., 2017;

Pominova et al., 2019), by replacing some of the intermediate 3D con-

volution layers in the network with 3D deformable convolutions. Clas-

sical convolution filters rely on convolving the learned kernel with

input which lies on a regular Cartesian grid. In (Dai et al., 2017) it was

shown that by learning the grid sample offsets, instead of using a fixed

grid, improved performance in vision-based tasks such as classification

and segmentation can be achieved. In that sense, deformable convolu-

tions can be thought of as another form of an attention mechanism.

Recent advances in ultra-high MRI machines and acquisition pro-

tocols have allowed 7 T imaging methods to directly visualize and

identify small subcortical deep brain structures. Structures such as the

STN or the lamina border between the GPe and GPi cannot be clearly

visualized in lower field MRI machines, but can be more clearly identi-

fied with the use of 7 T due to improved contrast and resolution

(Abosch et al., 2010; Patriat et al., 2018). Ultra-high field MR has

already been used for deep brain structure identification; for example

(Duchin et al., 2018) have shown that direct visualization of the STN

is possible, and (Kim et al., 2019) have shown that by relying on 7 T

manual delineations and machine learning techniques, direct segmen-

tation of the STN on 3 T images is possible, with 7 T accuracy and

precision. Atlas-based approaches have also exploited the benefits of

7 T imaging and superior contrast to construct state-of-the-art altases.

One such example is the study of (Keuken et al. 2014) which con-

structed an atlas that relies on multi-contrast 7 T acquisitions to ana-

lyze the anatomical variability of subcortical structures.

In this study, we rely on acquired T2 volumes from an ultra-high

field 7 T MRI machine, specifically tailored to visualize the basal gang-

lia region. The training cohort consists of movement disorder patients

as well as healthy control subjects, such that for each subject manual

delineations of both left and right GPe and GPi are obtained by

experts to train the network end-to-end. An overall illustration of the

proposed process is given in Figure 1. In the next sections, we outline

the mechanism behind GP-net, provide extensive experimental valida-

tion and finish with a discussion and concluding remarks.

2 | METHODS

2.1 | Overview

GP-net is trained end-to-end in a fully supervised manner. Manual 3D

delineations performed by domain experts for both the GPe and GPi

are extracted per each patient's 7 T T2 scan. Thus, the network is fed

with pairs of 7 T T2 volumes and corresponding 3D manual segmenta-

tions in the training procedure.

To evaluate the performance of GP-net, as well as the quality of

its patient-specific segmentations, the resulting automatic delinea-

tions are compared against manual GP segmentations, performed on

F IGURE 1 Proposed GP-net for the automatic and patient-specific segmentation of the GPe and GPi from acquired 7 T T2 volumes. GP-net
is an attention gated U-net, trained end-to-end from pairs of 7 T T2 scans and manual 3D delineations of both GPe and GPi. To increase training
size, each training pair is augmented by flipping the images along its sagittal plane. Resulting network's output are the automatically segmented
GPe (orange) and GPi (blue) 3D volumes
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7 T T2 scans by the same group of experts, from a test set, which was

excluded from the training phase of the network. The following met-

rics against the manual delineations are compared: dice score, center

of mass Euclidean distance, volume and mean surface differences. In

addition, we provide extensive quantitative comparison between GP-

net and four state-of-the-art atlases. GP-net shows significant

improvement over existing atlas-based techniques. A test–retest

experiment was performed to assess the consistency of GP-net in

segmenting the same structure of the same patient over several dif-

ferent scans acquired over the course of days. Moreover, to evaluate

the clinical utility of the proposed method we compared the DBS lead

location postsurgery as determined based on manual segmentation

and the automatic GP-net segmentations.

2.2 | Scanning protocol

Patients were scanned on a 7 T MRI scanner (Magnetom 7 T Siemens,

Erlangen, Germany) using our previous published protocols (Abosch

et al., 2010; Duchin et al., 2018). The scanner was equipped with

SC72 gradients capable of 70 mT/m and a 200 T/m/s slew rate using

a 32-element head array coil (Nova Medical, Inc., Burlington, MA). On

the day of scanning, the patients were instructed to take their usual

medication in order to optimize patient comfort and minimize motion.

Whenever patient head size enabled enough space in the coil, dielec-

tric pads were utilized in order to enhance signal in the temporal

regions (Teeuwisse et al., 2012). The scan protocol consists of:

T1-weighted whole brain scan (0.6 mm3 isotropic) and T2-weighted

axial slab covering from the top of the thalamus to the bottom of the

substantia nigra with 0.39 × 0.39 × 1 mm3 resolution. The T1

weighted scan was used only for atlas-based registration when com-

paring GP-net with different atlases and was not used in the net-

work's training, inference or validation phases (details are given in

Sections 2.6 and 3).

2.3 | Database and preprocessing

A cohort of 101 subjects, including 24 healthy controls and 77 move-

ment disorder (PD and ET) patients participated in this study. All sub-

jects were scanned on the 7 T scanner; patients were scanned prior to

their DBS surgeries. Even though ET patients do not typically undergo

GPi-DBS, we also chose to include their imaging data in our dataset.

Out of the 101 participants, images from 58 participants were used for

training and 43 for testing; demographic details are given in Tables 1

and 2. In addition, one subject was scanned three times on 2 days with

the same scanning protocol to assess the network's stability. For each

subject in the cohort, manual delineations of both the left and right GPe

and GPi were obtained by three independent experts from the scanned

T2 volumes. Final manual delineations for training and testing per each

subject were obtained by a consensus between all experts.

To increase the number of training pairs (T2 images and manual

delineations), each training pair was mirrored along the sagittal plane

(Figure 1). Thus, the number of training pairs was doubled and pro-

vided more training examples of spatially translated GP structures.

The T2 volumes and manual segmentations were resampled to an iso-

tropic grid of 0.39 × 0.39 × 0.39 mm3 with a nearest neighbor inter-

polation kernel prior to training and inference. All of the quantitative

analysis is performed on the resampled grid. This study was approved

by the Institutional Review Board at the University of Minnesota and

all participants gave their informed consent.

2.4 | Network architecture

As previously mentioned, GP-net is a fully convolutional 3D deep neu-

ral network. Its base architecture consists of an attention gated U-net,

in which some of the inner 3D convolution layers were replaced by

3D deformable convolutions. The basic U-net architecture is com-

posed of two paths, encoder and decoder paths, which consist of

aggregated layers of convolutions, max-pooling, and ReLU activations.

Each layer shrinks its input size by a factor of 2. Thus, at the end of

the encoder stage, the feature dimensions are shrunk by a factor of

2m, where m is the number of encoder stages (assuming isotropic

max-pooling in all input dimensions). The output of this stage is then

fed into the decoder, which consists of the same number of m layers,

each layer is built with convolution layers and upsampling by a factor

of 2. The final output of the network has the same dimensions as the

input. In this work, m = 4. Each encoder stage is composed of two

consecutive blocks of 3D convolution (same parameters in both

blocks), 3D batch normalization, ReLU activation followed by a max

pooling layer of size 2 × 2 × 2 pixels. Deformable convolution layers

consist of a 3D standard convolution kernel to estimate the offsets, a

deformable convolution layer, followed by another standard 3D con-

volution (all convolutions of same kernel size and padding). Detailed

parameters of the convolution layers are given in Table 3.

TABLE 1 Subjects demographics
Ages 20–40 Ages 41–60 Ages 61–80

Group type Training Testing Training Testing Training Testing

Control 9 0 2 7 1 5

ET 0 0 7 0 8 8

PD 0 0 11 8 20 15

Note: Age was determined at the day of the scan.

Abbreviations: ET, essential tremor; PD, Parkinson's disease.
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In addition, as illustrated in Figure 1, each layer in the encoder

stage is directly connected to its corresponding decoder stage, tradi-

tionally using skip connections. Skip connections allow more efficient

gradient flow through the network during the training stage and pre-

vent loss of contextual information at multiple image scales. Following

(Schlemper et al., 2019), in this study the encoder stages are con-

nected to the corresponding decoder stages via attention gates. A

detailed description of the attention gate architecture, as well as the

overall network architecture is given in (Schlemper et al., 2019). GP-

net has three attention gates, for the second, third, and fourth layers

of the decoder stage. Each block in the decoder stage is composed of

a 3D convolution kernel, followed by an upsampling operator by a fac-

tor of 2 × 2 × 2. At each decoder level, the resulting attention signal

and corresponding upsampled feature map from the previous lower

decoder stage are concatenated and convolved with a 3D convolution

filter of kernel size 1, no padding and no dilation. Deformable convo-

lutions in the decoder stage are structured the same way as deform-

able convolutions in the encoder stage. Between the encode and

decoder there is another stage (central stage) which is used as the gat-

ing signal for the fourth AG.

2.5 | Training loss function

GP-net is trained end-to-end using pairs of T2 volumes and

corresponding manual delineations. The training loss function used in

this study is a combination of several loss functions, detailed below.

Tversky loss (Salehi et al., 2017): In the case of binary segmenta-

tion (e.g., network's output and manual delineation), the Tversky index

between two groups A and B is written as:

Tverskyindex A,Bð Þ= tp A,Bð Þ
tp A,Bð Þ+ α � fp A,Bð Þ+ β � fn A,Bð Þ ,

where tp stands for true positives (correctly classified voxels), fp stands

for false positives (wrongly classified voxels), fn stands for false nega-

tives (wrongly missclassified voxels), and α and β are corresponding

weights. The Tversky loss is taken as 1 − Tverskyindex, as we wish to

minimize the loss function through gradient descent. The Tversky loss

was reintroduced and utilized in the context of deep-learning based

segmentation (Kim et al., 2020; Salehi et al., 2017) as an efficient tool

for handling imbalanced class labels, since the parameters α and β con-

trol the relative weights between false positives and false negatives. In

this study, we choose these parameters according to Table 4.

The Tversky index can be considered as a generalization of the

dice index (Dice, 1945), and indeed by taking α = β = 0.5 the Tversky

index coincides with the dice index. Additionally and similarly to (Kim

et al., 2019), to minimize possible overlap between two different clas-

ses in the segmentation, we penalize (minimize) the dice score

between each prediction to each other label. This term is weighed by

a factor of 0.01 relative to the Tversky loss.

Hausdorff distance (Karimi & Salcudean, 2020): The Hausdorff

distance measures the largest (in our case Euclidean) distance

TABLE 2 Subjects mean (av)
age ± SD, divided into training and
testing

Control ET PD

Training Testing Training Testing Training Testing

34.83 ± 15.68 59 ± 8.95 63.2 ± 9.45 68.75 ± 4.33 63.93 ± 8.11 64.08 ± 9.71

Abbreviations: ET, essential tremor; PD, Parkinson's disease; SD, standard deviation.

TABLE 3 GP-net convolution layers
parameters

Stage Block level Type Kernel size Padding size Dilation

Encoder 1 Regular 3D convolution 11 15 3

2 Regular 3D convolution 9 8 2

3 Deformable 3D convolution 5 2 –

4 Deformable 3D convolution 3 1 –

Central 5 Deformable 3D convolution 3 1 –

Decoder 4 Deformable 3D convolution 3 1 –

3 Deformable 3D convolution 3 1 –

2 Regular 3D convolution 5 2 1

1 Regular 3D convolution 7 3 1

Final Regular 3D convolution 1 0 1

Note: Kernel sizes are isotropic. All numbers are given in pixels. There is no dilation for the deformable

convolution kernels.

TABLE 4 Tversky loss parameters

Structure α β

Background 0.7 0.3

GPe 0.4 0.6

GPi 0.4 0.6
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between two given contours. Thus, minimizing the Hausdorff distance

can be thought of as minimizing the worst case, or largest outlier dis-

tance between the network's segmentation and the manual segmen-

tation, which is indicative of the largest segmentation error. Given

two point sets X and Y, the one sided Huasdorff distance is defined as

(Karimi & Salcudean, 2020; Rockafellar & Wets, 2009)

hd X,Yð Þ=max
x�X

min
y�Y

x−yk k2,

and the bidirectional Hausdorff distance is given by

HD X,Yð Þ=max hd X,Yð Þ,hd Y,Xð Þð Þ:

Since the Hausdorff metric is highly nondifferentiable, we require

some differentiable proxy in order to use back-propagation. We rely

on the proposed estimator given in equation (8) of (Karimi &

Salcudean, 2020). This estimator is a smooth approximation of the

Hausdorff distance, which allows back-propagation using gradient

descent. In practice, we found it most efficient to minimize the

Hausdorff distance for the entire GP (left and right sides together). Ini-

tial weight relative to the Tversky loss is 0.00001 and increases by a

factor of 5 every 50 epochs.

We train the network of 94 epochs using stochastic gradient

descent with learning rate of 0.0001 and momentum factor of 0.9.

Batch size is 1. GP-net was implemented in Python 3.6 with PyTorch

1.4 and trained on a single Nvidia V100 GPU with 32 GBs of memory.

It takes 3 days to train GP-net on this GPU (done only once).

2.6 | Validation

To evaluate GP-net, we performed an extensive quantitative analysis

of its performance over 43 subjects. These subjects were not included

in the training cohort and were only used for inference and evaluation

of the network's performance.

GP-net is compared to the manual segmentation performed by

domain experts and against four publicly available state-of-the-art

atlases to quantify its performance and validate its reliablity for

patient-specific GPe/GPi segmentation: (a) DBS intrinsic template

atlas (DISTAL, referred to as Ewert 2017) (Ewert et al., 2018);

(b) California Institute of Technology (CIT) probabilistic high-

resolution in vivo atlas of the human amygdala, also known as the

CIT168 reinforcement learning atlas (referred to as Pauli 2020) (Pauli

et al., 2018); (c) population-averaged atlas that was made with 3 T

MRI of 25 PD patients (referred to as Xiao 2017) (Xiao et al., 2017);

and (d) atlas of the basal ganglia and thalamus (referred to as He

2020) (He et al., 2020). All atlases were taken from the lead-DBS soft-

ware package, in which they are registered to the MNI ICMB2009b

template (Horn et al., 2019; Horn & Kühn, 2015).

Since GP-net is patient-specific and operates on the patient's T2

(isotropically resampled) volumetric scan, to perform a fair compari-

son, we first register the atlases to the same T2 space. This

registration process starts with a registration of the T1 MNI

ICBM2009b (3 T) template to a 0.39 mm isotropic MNI template (3 T)

using the Advanced Normalization Toolbox (ANTs) (Avants

et al., 2011), via the command antsApplyTransforms and the

LanczosWindowedSinc interpolation kernel. Next, the registered tem-

plate is registered to the patient-specific (0.39 mm isotropically res-

ampled) T1 scan (7 T). This is done via a combination of FLIRT and

FNIRT modules from the FSL toolbox (Jenkinson et al., 2012)

(implemented via HCP pipelines), using the ApplyWarp command and

a spline interpolation kernel. The final registration stage includes reg-

istering the patient's T1 scan into his/her (isotropically resampled) T2

scan (7 T) using ANTs with a B-spline interpolation kernel and linear

registration. The same transformations are applied to the atlases with

a nearest-neighbor interpolation kernel. All registrations were verified

visually.

We note that some of the atlases, such as the DISTAL (Ewert

2017, Ewert et al., 2018) and CIT168 (Pauli 2017, Pauli et al., 2018)

are probabilistic, while GP-net provides a deterministic segmentation

map. To make a fair comparison, we have thresholded these atlases

with a value of 0.001, meaning that for each class (GPe/GPi), voxels

with values below 0.1% probability are zeroed out, while voxels with

higher probability are given a value of 1 (GPe) or 2 (GPi). This thresh-

old value was validated visually for each atlas and compared with the

T2 ICBM2009b template. We also tried different values (such as

0.01), which yielded similar quantitative results. All registrations which

were applied to the atlases, were applied after the thresholding of the

probabilistic atlases, in order to make a fair comparison with the non-

probabilistic segmentations of GP-net.

On a final note, in some segmentation cases, we observe that the

output of GP-net might contain small segmented regions (“islands”)
which are clearly not related to either the GPe or GPi. These regions

are easily removed automatically with a small postprocessing step

which removes all segmentation regions except for the largest four

(left and right GPe and GPi) through the use of the connected compo-

nents algorithm (Rosenfeld & Pfaltz, 1966).

2.7 | Metrics and statistics

We use the following metrics to compare between the performance

of GP-net and the different atlases: (a) Dice score, (b) Center of Mass

distance (CoM) (mm), (c) Mean (Euclidean) Surface Distance (MSD)

(mm), (d) volume estimation (cm3), and (e) precision versus recall rates.

Dice, CoM, and MSD are also calculated against the manual GPe and

GPi segmentations. CoM distance describes how well the segmented

structure is being localized in space (i.e., inside the brain), while the

dice, MSD, and volume measurements describe how well the shape of

the structure is being captured by the different segmentation

techniques.

A one-way analysis of variance (ANOVA) was calculated for each

metric, followed by a multiple comparison correction and post hoc

tests with Tukey's honest significant difference to determine statisti-

cal significance between the different methods.

SOLOMON ET AL. 2867



The matrices (Figures 2 and 3) indicate the statistical significance

between each method. Each cell in the matrices corresponds to the

p value that the method written in its corresponding row is statisti-

cally different from the method written in its corresponding column. A

blue cell indicates p value lower than 0.1%, a green cell indicates

p value lower than 5% and a red cell indicates p value higher than 5%.

Figure 2d compares between GPe and GPi volume estimates. The

two leftmost boxplots (left of the dashed gray vertical line) correspond

to the volume estimates measured from the manual delineations,

while the other columns correspond to the estimates measured by the

different segmentation techniques. GP-net exhibits the closest simi-

larity between the GPe and GPi volume distributions. Note that

corresponding p values between the manual estimates and GP-net's

estimates (both for the GPe and GPi) indicate no statistical differ-

ences. Most of the atlas-based estimations show statistically signifi-

cant volume estimates errors, compared with the manual

segmentations, and thus do not fully capture the entire volume

distribution.

An additional metric which we utilize to compare between the

different segmentations is the precision versus recall rates of each

F IGURE 2 (a) Dice score

comparison between GP-net and the
different atlases for both GPe (blue)
and GPi (orange) against manual
segmentations. Values are compared
against the manual delineations for
both left and right sides of each
patient and presented both as box
plots and individual points. (b) Center
of mass (CoM) distance relative to
the manual delineations. (c) Mean
surface distance (MSD) relative to the
manual delineations. (d) Estimated
volumes. Dashed vertical gray line in
(d) separates between the manual
volume estimates (left) and the
different segmentation techniques'
estimates. (e–h) Statistical
significance matrices between the
different techniques for panels (a–d),
respectively. Note that the matrix of
panel (h) has 6 × 6 cells, since the
first column/row refers to the manual
volume estimates. Vol stands for
volume
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method. Given a binary segmentation scenario, precision is defined as

the ratio

Precision=
tp

tp+ fp
,

while recall (sensitivity) is defined as the ratio

Recall=
tp

tp+ fn
:

Precision measures a technique's rate of correctly segmenting only

GPe/GPi voxels as such, as opposed to classifying background voxels

as either GPe or GPi (hence, high precision rate implies low false posi-

tives rate), while recall measures a technique's rate of correctly cap-

turing and segmenting GPe/GPi voxels as such, without misclassifying

them as background (hence, high recall rate implies low false nega-

tives rate).

3 | RESULTS

In this section, we present a detailed quantitative and qualitative anal-

ysis of the performance of GP-net, compared against state-of-the-art

atlases and experts' segmentation, as well as a stability test for

GP-net.

F IGURE 3 (a, b) Dice scores
divided by pathology type: healthy
control in blue, PD in orange and ET in
green for the GPe and GPi,
respectively. (c, d) Dice scores divided
by age group (measured in years).
(e) Statistical significance matrices for
panels (a) and (b) between the healthy
control, PD and ET cohorts for GP-net

only. (f) Statistical significance
matrices for panels (c) and (d) between
the different age groups for GP-
net only
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3.1 | Quantitative analysis

We start by presenting comparative results between GP-net and

atlas-based segmentation with respect to the manual delineations, as

can be seen in Figures 2 and 3, comparing the dice score, CoM (mm),

MSD (mm), and volume (cm3). In all of these figures, the metrics are

calculated per patient, per structure (GPe and GPi), and per side (left

and right). Figure 2a shows dice scores for GP-net and the selected

atlas-based segmentations, both for the GPe and GPi, individually.

Panels (b), (c), and (d) show CoM differences, MSD differences, and

volume estimates based on the different segmentation techniques,

respectively. Matrices (e–h) indicate statistical significance (p values)

between each pair of the different methods for panels (a–d),

respectively.

GP-net has notably superior performance relative to the atlas-

based segmentations, with distinctly higher dice scores (for both GPe

and GPi) and lower dispersity, as well as lower values for the average

CoM difference, and MSD. In both cases, p value matrices show clear

statistical significant difference between GP-net and the other atlas-

based metrics. These results are further supported in Table 5 by lower

mean values and standard deviations of the CoM and MSD measure-

ments for GP-net compared with the atlas-based segmentations. We

provide further insight to the MSD metric in the Figure S1.

Figure 3 presents dice scores divided by disease and age groups.

Panels (a) and (b) present the dice scores categorized according to

condition (healthy control, PD, and ET), for the GPe and GPi, respec-

tively, while panels (c) and (d) present the dice scores categorized

according to four age groups. The two matrices in panel (e) indicate

statistical significance (p values), only for GP-net, between the differ-

ent pathologies, for panels (a) and (b), respectively. Likewise, the two

matrices in panel (f) indicate statistical significant difference (p values),

only for GP-net, between the different age groups for panels (c) and

(d), respectively. Panels (a) and (b) show that GP-net consistently

achieves higher dice scores compared with the different atlas based

segmentations, for healthy controls as well as PD and ET patients.

Panels (c) and (d) demonstrate that GP-net's performance is not

affected by the large distribution of age amongst the scanned subjects

(40 − 80 years). Atlas-based segmentations are not affected by age;

however, they exhibit lower dice scores than GP-net and higher distri-

bution variance. GP-net is shown to consistently produce higher dice

scores, without much variation between the different age groups.

Consistency of performance, as demonstrated for the proposed GP-

net, is critical for DBS and for real deployment.

Lastly, we compare the precision versus recall rates of each of the

methods. Figure 4 presents the precision versus recall rates of GP-net

and atlas-based segmentations (both GPe and GPi). GP-net's recall

and precision rates are both approaching 1 (ideal case) and are higher

than all other atlas-based segmentation rates. The average precision

rates are 0.82 ± 0.06, 0.71 ± 0.08, 0.68 ± 0.07, 0.80 ± 0.08 and 0.51

± 0.08 for GP-net, Ewert 2017, Pauli 2017, Xiao 2017 and He 2020,

respectively. The average recall rates are 0.82 ± 0.08, 0.58 ± 0.09,

TABLE 5 Mean scores and SDs of dice scores, CoM, MSD, and volume (Vol) estimate comparisons between GP-net, atlas-based
segmentations, and 7 T manual segmentation (applicable only for volume estimate)

7 T manual GP-net Ewert 2017 Pauli 2017 Xiao 2017 He 2020

Dice GPe – 0.81 ± 0.05 0.6 ± 0.08 0.62 ± 0.07 0.59 ± 0.06 0.51 ± 0.08

GPi – 0.83 ± 0.05 0.66 ± 0.08 0.66 ± 0.08 0.6 ± 0.08 0.45 ± 0.09

CoM (mm) GPe – 0.76 ± 0.45 2.82 ± 0.77 2.42 ± 0.64 2.57 ± 0.76 3.84 ± 0.79

GPi – 0.7 ± 0.38 1.63 ± 0.64 1.64 ± 0.57 2.1 ± 0.75 3.66 ± 0.83

MSD (mm) GPe – 0.44 ± 0.11 0.85 ± 0.18 0.77 ± 0.15 0.88 ± 0.16 1.11 ± 0.2

GPi – 0.38 ± 0.1 0.74 ± 0.21 0.8 ± 0.2 0.84 ± 0.21 1.32 ± 0.25

Vol (cm3) GPe 1.25 ± 0.19 1.29 ± 0.24 1.0 ± 0.13 1.0 ± 0.16 0.76 ± 0.1 1.17 ± 0.16

GPi 0.63 ± 0.12 0.62 ± 0.13 0.5 ± 0.08 0.62 ± 0.12 0.35 ± 0.06 0.52 ± 0.07

Note: n = 86.

F IGURE 4 Precision versus recall rates between the different
methods (each point represents the rates of either the GPe or the GPi
of a single patient, left and right sides combined). Notice that GP-net
does not exhibit a trade-off between the two rates and systematically
achieves higher values than all of the other atlas-based segmentations
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0.61 ± 0.09, 0.47 ± 0.07, and 0.46 ± 0.09 for GP-net, Ewert 2017,

Pauli 2017, Xiao 2017, and He 2020, respectively. Moreover, the

recall rates of GP-net are statistically significant from the recall rates

of all other atlas-based segmentations (p value <.001). Likewise, GP-

net's precision rates are statistically significant than all other atlas-

based segmentations' recall rates (p value <.001), except from the pre-

cision rates of Xiao 2017.

3.2 | Stability test

We further test the stability of the network to assess GP-net's sys-

tematic behavior. We acquired three independent and repeated 7 T

scans of a single healthy control subject over a period of 2 days, and

performed inference using GP-net. Figure 5 presents the averaged

(left and right hemispheres) dice, MSD, CoM, and volume estimations

for both GPe and GPi over the three scans.

The average deviations from the mean dice values in panel (a) are

3.09%/2.44% for the GPe and GPi, respectively. The average deviations

for the average MSD (panel [b]) are 11.76%/12.56% for the GPe and

GPi, respectively, and for the average CoM (panel [c]) are 7.78%/3.57%

for the GPe and GPi, respectively. Finally, the average deviations from

the mean value for the volume estimation (panel [d]) are 6.06%/8.62%

for the GPe and GPi, respectively. These ranges are well inside the devi-

ations reported in the literature for easier to compute brain characteris-

tics, such as total volume. This analysis demonstrates GP-net's ability to

produce reliable and consistent segmentations, not only between differ-

ent patients, as was previously shown, but also between different scans

of the same subject over time.

3.3 | Qualitative examples

Figure 6 illustrates segmentation results for a PD patient. The first col-

umn shows the 3D reconstructions of both left and right GPe (green for

manual/ground truth [GT] and orange GP-net/atlas) and GPi (yellow for

manual/GT and blue GP-net/atlas). The second and third columns show

selected axial and coronal views (respectively) of T2 slices, sup-

erimposed with the manual segmentation and GP-net/atlas segmenta-

tion, as well as the different metrics per each method. Judging visually,

GP-net is able to produce the most accurate segmentation of both GPe

and GPi, presenting excellent agreement with the manual delineation.

Since GP-net performs inference directly on the isotropically resampled

grid (0.39 mm3), its output is smooth, as can be seen in the 3D recon-

struction, as opposed to the manual delineation (first row), which was

segmented on the original 0.39 × 0.39 × 1 mm3 grid. To make a fair

comparison, the atlas-based segmentations were registered from

ICBM2009b to the isotropically resampled T2 grid through a 0.39 mm3

isotropic MNI template. However, even though we use the same grid

spacing, these segmentation results seem to be more pixelated.

Figure 7 presents a clinical scenario, a retrospective analysis of an

actual GPi-targeted DBS case. Manual 7 T (panel [a]) and GP-net (panel

[b]) 3D reconstructions of the GPe and GPi are shown. Electrode loca-

tions were extracted from a postsurgery CT acquired 4 weeks after the

implant and registered with the MRI scan (Duchin et al., 2018). Excellent

agreement of the electrode locations, with respect to the structures'

volumes and borders, as compared with the manual GPe and GPi delin-

eations is observed between both panels. This image exemplifies the

clinical potential of GP-net to produce high quality GPe and GPi seg-

mentations from 7 T T2 scans for accurate and reliable visualization of

image-based DBS targeting and postsurgery lead localization.

We finish this section by presenting two further unique examples.

The first is an example which clearly demonstrates the efficacy of

patient-specific segmentation over atlas-based segmentation. A sub-

ject with irregular blood vessel bifurcations which traverse into the

lower GP region is presented. This subject was not part of the previ-

ous statistical analysis and was not part of the training set. Figure 8

demonstrates the manual segmentation (upper row), GP-net segmen-

tation (middle row), and a selected atlas, Ewert 2017 (Ewert

et al., 2018) (bottom row). Traversing blood vessels were manually

segmented (shown in red), while the manual segmentation and auto-

matic segmentations follow the previously used color convention. As

the MNI template does not contain the irregular blood vessels, the

atlas-based segmentation is stretched above the vessels in the regis-

tration process and misses the true GP region. This can further be

observed in the corresponding 3D reconstructions, where the manual

and GP-net segmentations near the blood vessels are correct, while

the GP atlas-based segmentation is posed above them with a wide

gap between, missing sections of the GPi and GPe. Table 6 summa-

rizes the different metrics for this example.

The second unique example is illustrated in Figure 9. In this exam-

ple, two PD patients (panels a and b, respectively) had to be

rescanned, as the first T2 scan was noticeably blurry. For each patient

a second, free of motion (“sharp”) image was acquired to allow accu-

rate and reliable manual delineation of both the GPe and GPi. In each

of the panels a and b, each row corresponds to a 3D reconstruction, a

selected axial slice and a zoomed-in region of the same slice from the

manual segmentation (first row in both panels), GP-net segmentation

based on the sharp acquisition (second row in both panels) and GP-

net segmentation based on the blurry acquisition (third raw in both

panels), respectively. Corresponding dice scores, CoM, MSD and vol-

ume estimates are presented in the leftmost column. Interestingly, in

the patient of Figure 9a, while notable motion was present in the

image, GP-net performed similarly to the sharper image input with

equivalent performance while in the second case (Figure 9b), GP-net's

F IGURE 5 Test–retest scores. Av. indicates average over the left
and right GPe (blue)/GPi (red). (a) Av. dice score, (b) av. MSD, (c) av.
CoM, and (d) av. estimated volume; GPe in blue and GPi in red
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output was affected. This example serves to show that GP-net can

achieve reasonable performance, even in the presence of nonideal

acquisition conditions.

4 | DISCUSSION

Alterations in neuronal activity in the internal segment of the GP has

been shown to be correlated with motor symptoms of PD. For

example, animal models of PD have shown a characteristic increase in

neuronal activities in both the STN as well as in the GPi (Obeso

et al., 2001; Wichmann et al., 1994). Lesions applied to these regions

have shown striking improvement in motor function. Moreover, the

creation of lesions in the GPi of PD patients have been reported to

improve contralateral dyskinesia and provide moderate anti-

parkinsonian benefits (Baron et al., 1996, 2000; Obeso et al., 2001;

Vitek et al., 2003). However, adverse effects which may be caused by

lesions cannot be averted once surgery is performed (Kringelbach

F IGURE 6 Segmentation and
3D reconstruction of the GP of a
representative PD patient. Leftmost
column shows 3D reconstruction of
both the GPe (green in the manual
segmentation and orange in the
different reconstructions) and GPi
(yellow in the manual segmentation
and blue in the different

reconstructions). No smoothing was
applied at any stage to the
reconstructions or manual
delineations. Middle column shows a
selected T2 axial slice and
superimposed outlines of manual
delineation, the corresponding
segmentations of GP-net (second
row) and the different atlases (third
to sixth rows). Rightmost column
similarly illustrates a selected
coronal view. Blue arrow points in
the superior direction, green arrow
points in the anterior direction and
red arrow points in the right
direction
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et al., 2007; Munro-Davies et al., 1999). On the other hand, DBS was

shown to provide similar clinical benefit compared to a lesion-based

therapy while avoiding permanent brain damage which might occur

with lesioning (Benabid et al., 1987; Obeso et al., 2001; Vitek

et al., 2020). The success of DBS surgery directly relates to the accu-

rate identification of target regions (Paek et al., 2013; Patel

F IGURE 7 (a) 3D reconstruction of a DBS electrode placement with respect to the manually delineated GPe (green)/GPi (yellow) for a
specific PD patient (age: 54). (b) 3D reconstruction of the same DBS electrode with respect to GP-net's segmentation of the GPe (orange)/
GPi (blue)

F IGURE 8 GPe/GPi segmentation of a PD patient with irregular blood vessels. Upper row, left to right: 3D reconstruction of the manual
segmentation of the GPe (green) and GPi (yellow). Blood vessels are in red (smoothed only for visualization purposes, no other smoothing was
applied to any structure). Different panels correspond to selected axial T2 slices, going from the inferior side to the superior side of the brain.
Middle row: GP-net reconstruction (GPe in orange and GPi in blue). Bottom row: Segmentation based on the DISTAL atlas (Ewert 2017; Ewert
et al., 2018). Other atlases produced similar results to the DISTAL atlas, and were thus omitted for brevity. Blue arrow points in the superior
direction, green arrow points in the anterior direction, and red arrow points in the right direction

TABLE 6 Measured metrics
(GPe/GPi) for the example in Figure 8

Dice MSD (mm) CoM (mm) Vol (cm3)

GP-net 0.61/0.67 0.83/0.77 0.82/1.4 0.86/0.4

Ewert 2017 (DISTAL) 0.41/0.44 1.27/1.31 4.06/3.34 0.79/0.4

Note: Each value is an average for both the left and right segments. Manually measured volume estimates

are 1.07/0.63 (cm3) for the GPe and GPi, respectively.
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et al., 2015; Patriat et al., 2018; Richardson et al., 2009; Rolston

et al., 2016; Welter et al., 2014), thus greatly motivating the need for

an accurate, robust and reliable identification of these brain areas in

an automated manner.

GP-net is a deep-learning based segmentation technique specifi-

cally tailored to an accurate and robust segmentation of both the GPe

and GPi. Although GP-net was described here in the context of DBS

surgery, all clinical procedures which require presurgery GP trajectory

F IGURE 9 Robustness of GP-net segmentation under motion condition. Panels (a) and (b) correspond to two different PD patients for which
the first scan suffered significant motion blur. 3D Reconstruction column shows 3D reconstruction of both the GPe (green in the manual
segmentation and orange in the two GP-net reconstructions) and GPi (yellow in the manual segmentation and blue in the two GP-net
reconstructions). No smoothing was applied at any stage to the reconstructions or manual delineations. Axial view column presents selected T2
axial slice of the brain. Apparent motion blurring can be seen in the lowest panel. Axial zoom column illustrates the same slice, zoomed in, and
with superimposed outlines of the manual delineation, the corresponding segmentations of GP-net from the sharp image (second row) and from
the blurred image (third row). Rightmost column provides the metrics values
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planning, such as DBS surgery and magnetic resonance guided

focused ultrasound (Ebani et al., 2020; Miller et al., 2020; Zaaroor

et al., 2018) can benefit from this method. In this study, we have uti-

lized recent advances in ultra-high MRI scanner and acquisition proto-

cols and train the network in an end-to-end manner on pairs of 7 T T2

acquisitions and manual delineations produced by domain experts.

GP-net is based on several key components: it is a U-net structure

which relies on 3D convolutions (Goodfellow et al., 2016) as well as

the recently introduced 3D deformable convolutions. It also relies on

data augmentation to effectively increase the size of the training set.

By mirroring each T2 scan around the anterior–posterior axis, for

example, left to right (as well as the corresponding manual delinea-

tion), we effectively double the amount of training data. The trained

network is able to produce fast (a few seconds per subject), accurate

and reliable GPe and GPi segmentations from new 7 T T2 images.

The results presented in this study imply two key observations.

First, for all the metrics considered in this study, deep-learning based

GP-net was found to be superior to all the atlas-based segmentations

tested. GP-net has exhibited improved average dice (scores above

0.8) indicating its ability to more accuratly capture the shape of the

structure. A higher mean value along with reduced variance indicates

that not only does GP-net perform better on average, it is also more

stable and has far fewer outlier segmentations. This conclusion is also

supported by the p value matrices below panel (a) of Figure 2. The

first row clearly indicates that GP-net is statistically different than the

atlas-based segmentations. On the other hand, some atlas-based seg-

mentations do not significantly differ from one another (e.g., Ewert,

Ewert et al., 2018 and Pauli, Pauli et al., 2018), which is indicative of

similar performance. Different atlases are constructed from different

datasets, each with its own possible bias (e.g., an atlas based on PD

patients versus an atlas based on healthy subjects), modalities and

reconstruction technique, which may account for the variation in per-

formance between them.

Moreover, the average CoM difference, an indication of how well

the structure can be localized in the brain, was measured to be on the

order of �0.7 mm, which corresponds to a difference of less than two

voxels on the resampled grid (0.39 mm). This CoM localization error

(with respect to the manual delineations) is below the actual slice

thickness of the acquired 7 T T2 volumes (1 mm). The average mean

surface distance for both GPe and GPi was measured to be �0.4 mm,

which is on the order of a single voxel on the resampled T2 grid.

These numerical results present a significant improvement compared

to the atlas-based registrations. All atlas-based registrations achieve

an average dice score of about 0.45 − 0.66 and an average CoM error

larger than 1.6 mm which corresponds to 4 pixels on the resampled

grid. The average MSD for the atlas-based approaches is between

0.74 − 1.32 mm, higher than the MSD reported for GP-net.

In many cases, there exists a trade-off between the precison and

recall rates. As exemplified in Figure 4, the precision rates of the atlas-

based segmentation of Xiao 2017 (Xiao et al., 2017) is notably higher

than its recall rates. However, such a trade-off does not seem to exist

for GP-net. The rates of the other atlas-based segmentations do not

exhibit such a trade-off, however, these rate values are clearly lower

than those of GP-net. GP-net exhibits both the highest precision and

recall rates, both approaching the maximum value of 1, which further

validates the superior performance of GP-net over the atlas-based

segmentations.

Variability between patients has been previously reported, for

example, in (Duchin et al., 2018; Kim et al., 2019; Lenglet et al., 2012;

Patriat et al., 2018). This intrinsic variability between different sub-

jects motivates the need for patient-specific care, and suitably tailored

algorithms to address this need. Standard atlases, which are typically

defined in a normalized space, have shown great importance in retro-

spective population studies (Horn, Kühn, et al., 2017; Horn, Neumann,

et al., 2017; Horn, Reich, et al., 2017; Kim et al., 2019). However,

atlas-based registrations, which are ultimately based on a single depic-

tion of the target structure (even though this depiction can be based

on multiple inputs from multiple patients and modalities), cannot fully

capture the intra and interpatient variability. Intra and interpatient

variability, as well as the need for patient-specific imaging tools is

clearly exemplified by panel (d) of Figure 2. It is sufficient to consider

the volume estimations for both GPe and GPi, obtained from the man-

ual delineations, to see that profound variability exists between

patients. The ratios between the smallest and the largest measured

volume estimates correspond to an increase of 200% and 284% for

the GPe and GPi, respectively. From a statistical point of view, all vol-

ume estimates of the atlas-based approaches have a consistently

smaller distribution. Only GP-net exhibits a distribution which is simi-

lar to the manually measured volume distribution, for both parts of

the GP. This dramatic variability in GPe/GPi volume estimates further

motivates the need for a stable and consistent patient-specific, accu-

rate segmentation tool, especially for any invasive procedure such as

DBS surgery.

GP-net is trained on healthy subjects as well as PD and ET

patients and with a large age distribution. This training process allows

the network to encounter and learn from a large variety of different

pathologies (Figure 3a,b) and across varying age groups (Figure 3c,d),

thus allowing stable and robust segmentation performance. Robust

performance across different pathologies is further exemplified by the

p value matrices below Figure 3a,b. These conclusions are further

supported by the average and standard deviation values presented in

Table 5. p value matrices below Figure 3c,d show no statistical signifi-

cance between the different age groups (calculated for GP-net). This

ability of GP-net to generate accurate segmentations over different

clinical pathologies and age groups suggests that GP-net might play

an important role in clinical DBS targeting or similar applications for a

variety of patient populations.

One of the key advantages of the proposed method is that GP-

net relies solely on 7 T T2 scans to perform its inference for visualiza-

tion of the GPe/GPi. No registrations are involved in its segmentation

process and, therefore, GP-net performs segmentation directly in the

patient's system coordinates. Atlas-based segmentations on the other

hand, are given in a normalized space (i.e., MNI space) and must be

registered into the patient's unique space prior to any trajectory plan-

ning. Thus, they are greatly affected by the registration process, which

can adversely affect the outcomes of DBS surgery. Unfortunately,
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registration errors cannot be modeled easily, are typically

unpredictable, and often have large variance (Kim et al., 2019). More-

over, the registration process often involves several successive regis-

trations, which tend to accumulate and increase the registration

errors with each step. Due to these factors, registrations often must

be verified manually, as was done in this study for the atlas-based reg-

istrations. This dramatically prolongs the processing time per patient.

Although the atlas-based registrations and final segmentations

were performed on the same grid as GP-net, they are visually more

pixelated, as no spatial filtering is performed on the acquired T2 vol-

ume to infer the segmentations. Contrary to this, GP-net operates

directly on the 0.39 mm3 isotropically resampled grid of the T2 vol-

ume, and by the use of 3D convolution filters it is able to produce

smooth segmentations, and higher quality structure detection of both

parts of the GP.

Since atlas-based segmentations rely on a single (often average)

depiction of the target structure, such a process cannot truly account

for different interpatient variabilities in a true patient-specific manner,

which is clearly exemplified by the segmentation results depicted in

Figure 8. The middle row of Figure 8 shows that GP-net is able to seg-

ment the GP, while accounting for the blood vessels, even though

GP-net was not trained on such irregular cases. GP-net is able to

account for this irregular vessel shape and still be able to produce

clear GP segmentations which align with the underlying 7 T scan anat-

omy, and is relatively close to the manual segmentation. On the other

hand, the atlas-based segmentation presented in the lower row of

Figure 8 is greatly affected by the registration process of the MNI

template (which does not contain such vessels) and thus erroneously

segments a large portion of the GP. The large CoM difference for the

atlas based segmentation, presented in Table 6, further validates and

quantifies this misalignment. This example indicates the true potential

of deep-learning based approaches such as GP-net, in being a patient-

specific automatic segmentation technique, even for irregular and

unique cases as well as nonideal scanning conditions (Figure 9), with-

out any additional training.

As was mentioned before, the internal and external segments of

the GP are separated by a thin lamina layer. Often when using MER

during DBS surgery, the lamina layer is characterized by the absence

of somatodendritic action potentials, which characterize both the GPe

and GPi, each with its own characteristic firing pattern (Baron

et al., 1996, 2000; Lozano & Hutchinson, 2002). Thus, a clear and reli-

able visual depiction of the lamina can also be of invaluable impor-

tance to DBS surgery. Even when using high contrast 7 T T2 scans,

this border is not always clearly presented in the scans. However, the

overall GPe and GPi structure can be infered, as presented in this

study. A possible way to achieve lamina depiction is to accurately

detect the two GP compartments, and indirectly infer the lamina bor-

der from both segmentations. This direction is a matter of future

research and extension for GP-net.

GP-net is currently optimized to segment the GP structures from

7 T T2 acquisitions only. Moreover, the use of different MRI hard-

ware, software and acquisition protocols may also affect its overall

performance. One such example is the use of dielectric pads. In our

cohort, out of a total of 101 subjects, 72 were scanned with dielectric

pads (training set, 42/58 and the test set 30/43 patients were

scanned with pads). When comparing the GP-net performance

between these two groups (with and without dielectric pads) we

found differences for the dice and MSD metrics (dice: GPe 0.82

± 0.03 vs. 0.79 ± 0.07, GPi 0.83 ± 0.04 vs. 0.81 ± 0.06 and for MSD:

GPe 0.42 ± 0.08 vs. 0.48 ± 0.16 and GPi 0.36 ± 0.1 vs. 0.43 ± 0.1

with and without pads, respectively). While a small difference exists,

it's not clear if it's due to the pads signal enhancement or whether it's

due to the bias in the training data that had more cases with the pads.

Different parameters, such as the acquisition sequence, resolution

and field strength may also affect the performance of GP-net, since,

at this stage, GP-net was only trained on 7 T T2 data, which was

acquired with the protocol described in this manuscript. Thus, GP-net

is currently not optimized for inference based on other modalities

and/or data acquired with different field strength (for example, see

Figure S2). This is in-fact a common limitation to many deep-learning

based architectures and achieving increased robustness in the face of

changing datasets (e.g., varying signal to noise ratios, resolution, etc.)

is a matter of ongoing research in the machine learning community

(often denoted as domain shift or domain transfer). Extending this

study to operate on standard clinical images (1.5–3 T) is the subject of

future study. Additionally, deep-learning frameworks currently lack

interpretability. In some cases, the inference might result in sub-

optimal performance (e.g., in panel a of Figure 2, two GPe dice scores

for GP-net are below 0.6). In these cases, it is not always easy to

understand why the network reacted the way it did. Fortunately, as

was statistically veryfied in this study, such occurrences seem to be

rare. Exploiting standard CNN visualization tools can potentially edu-

cate the user on the internal workings of GP-net.

The clinical potential of GP-net is clearly exemplified in Figure 7,

which presents an excellent match between the implanted DBS elec-

trode and the manual versus GP-net's segmentations of both

GPe/GPi, for a representative PD patient. GP-net will provide the clin-

ical team the ability to have a much better understanding of the corre-

lation between lead locations and outcomes, and might help reduce

the extra operative time invested in planning of the surgical proce-

dure. For DBS surgery, both the center of mass of the DBS target, as

well as the accurate identification of its borders are of great impor-

tance. This figure, supported by the reported results for CoM distance

and MSD, show that an accurate depiction of the DBS target clearly

achieves this goal. Accurate identification can also contribute to reli-

able and accurate DBS lead placement, which has been associated

with improved clinical outcomes in leads placed in the STN

(Richardson et al., 2009). This often results in a reduced amount of

programming time in the clinic necessary for optimizing symptom

reduction and an overall improvement in quality of life for the patient

(Hell et al., 2019). GP-net is currently being used under a research

protocol to assist with DBS surgery preplanning and postoperative

lead location assessment based on 7 T T2 scans at the University of

Minnesota medical school.
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In this study, we presented GP-net, a deep-learning based neural net-

work for the segmentation of both the GPe and GPi. GP-net is able to

produce accurate and reliable segmentations in a fully automated man-

ner from 7 T T2 MR acquisitions, both for healthy subjects as well as

PD and ET patients and with a large age distribution. The network is

trained end-to-end on pairs of acquired 7 T T2 scans and corresponding

manual delineations of both GPe and GPi. We have shown, both quali-

tatively and quantitatively, that GP-net outperforms state-of-the-art

atlas-based segmentations and produces stable and consistent high

quality patient-specific segmentations, while reducing potential biases.

GP-net is tailored for the segmentation of the GP (both internal and

external segments). However, it can be extended to segment additional

subcortical structures which are of interest for DBS surgery, such as the

STN, Red Nucleus, and Substantia Nigra. This extension is currently being

investigated in our group. With the ability to reliably segment all DBS-

related targets, we further plan to investigate the relationship between

patients' properties (such as volume), as ascertained from MRI images,

and their clinical characteristics. For example, in (Patriat et al., 2020) it

was shown that correlation exists between STN volumes and the Unified

Parkinson's Disease Rating Scale (UPDRS) III scores.

With the incorporation of advanced DBS presurgery targeting and

postsurgery lead localization tools and software, 7 T MRI based

approaches, either for training or for deployment, have great potential

in becoming clinical standards, especially now that the 7 T MRI is FDA

approved for standard clinical applications. In this scenario, the use of

fully automated segmentation software may prove to be very advanta-

geous, leading to an accurate, fast, easy and reliable visualization tool,

contributing to an improved surgical procedure and patient experience.
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