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ABSTRACT

In Alzheimer’s disease (AD), the progressive atrophy leads to aberrant network
reconfigurations both at structural and functional levels. In such network reorganization, the
core and peripheral nodes appear to be crucial for the prediction of clinical outcome
because of their ability to influence large-scale functional integration. However, the role of
the different types of brain connectivity in such prediction still remains unclear. Using a
multiplex network approach we integrated information from DWI, fMRI, and MEG brain
connectivity to extract an enriched description of the core-periphery structure in a group of
AD patients and age-matched controls. Globally, the regional coreness—that is, the
probability of a region to be in the multiplex core—significantly decreased in AD patients as
result of a random disconnection process initiated by the neurodegeneration. Locally, the
most impacted areas were in the core of the network—including temporal, parietal, and
occipital areas—while we reported compensatory increments for the peripheral regions in
the sensorimotor system. Furthermore, these network changes significantly predicted the
cognitive and memory impairment of patients. Taken together these results indicate that a
more accurate description of neurodegenerative diseases can be obtained from the
multimodal integration of neuroimaging-derived network data.

AUTHOR SUMMARY

Alzheimer’s disease includes a progressive destruction of axonal pathways leading to global
network changes. While these changes affect both the anatomy and the function of the brain,
a joint characterization of the impact on the nodes of the network is still lacking. By
integrating information from multiple neuroimaging data, within a modern complex systems
framework, we show that the nodes constituting the core of the brain network are the most
impacted by the disconnection process. Furthermore, these network alterations significantly
predict the cognitive and memory impairment of patients and represent potential biomarkers
of disease progression. We posit that a more accurate description of neurodegenerative
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diseases can be obtained by analyzing and modeling brain networks derived from
multimodal neuroimaging data.

INTRODUCTION

The brain is a complex network where differently specialized areas are anatomically and func-Complex network:
A collection of elements
that interact dyadically in
a nontrivial way.

tionally connected. Because of such interconnected structure, focal damages can affect the rest
of the network through the interruption of communication pathways. Indeed, many neurolog-
ical disorders affecting language, motor, and sensory abilities are often due to a disconnection
syndrome caused by the anatomical connectivity breakdown between the relevant brain areas
(Geschwind, 1965; Schmahmann & Pandya, 2008). In the case of neurodegenerative diseases,
the disconnection hypothesis is supported by a progressive death of neurons and synapses that
induce gross atrophy. Empirical evidence has shown that Alzheimer’s disease (AD) patients
with severe motor and cognitive impairments exhibited anatomical disconnections among
regions between cerebral hemispheres that resemble those observed in split-brain subjects
(Delbeuck, Collette, & Van der Linden, 2007; Lakmache, Lassonde, Gauthier, Frigon, & Lepore,
1998). In Parkinson’s disease (PD) intrahemispheric dissociations between subcortical and cor-
tical structures have been linked to disturbances in cognition, perception, emotion, and sleep
(Cronin-Golomb, 2010). In addition, functional connectivity alterations within and between
hemispheres have been reported in both AD (Adler, Brassen, & Jajcevic, 2003; Babiloni et al.,
2009; Blinowska et al., 2016; Sankari, 2010) and PD (Dubbelink et al., 2013; Luo et al., 2015),
suggesting their potential role in early diagnosis.

Altogether, these findings suggest that neurodegenerative diseases should be considered
as a network problem. Recent approaches based on network theory have greatly advanced
our understanding of the connection mechanisms characterizing brain diseases (Stam, 2014).
Among others, decreased efficiency, modularity, and hub centrality have been largely reported
in neurodegeneration and associated with the stage of disease. Increasing evidence suggests
that the core-periphery structure of the human connectome—supporting global integrationConnectome:

A network description of a neural
system’s wiring; an exhaustive list
of the physical connections (e.g.,
synapses, projections, fiber tracts)
that link all neural elements (e.g.,
neurons, neuronal populations,
macroscopic brain regions).

of information among distant areas—is highly affected by the AD process and that resulting
changes might be effective predictors of cognitive declines. On one hand, brain areas forming
the core of the network—that is, central and mutually connected nodes—have been reported to
be preferentially attacked by AD (Yan et al., 2018). On the other hand, brain regions forming the
periphery of the network—that is, nodes that are only weakly connected to the other units in the
network—appear to be crucial for the degeneration (Daianu et al., 2015). While these results
refer to structural brain connectivity, the relative contribution of functional brain connectivity
into the network core-periphery changes remains poorly understood.

Based on the aforementioned empirical and theoretical grounds, we hypothesize that
neurodegeneration would affect the core-periphery structure of the brain network at both
anatomical and functional levels. More specifically, we expected that the extraction of the
core-periphery organization by integrating information from multimodal brain networks would
give more accurate predictors of AD and cognitive impairment. Finally, based on the evidence
that hubs are the most attacked nodes in many neurological diseases and psychiatric disorders
(van den Heuvel & Sporns, 2013), we hypothesize that the core brain regions would be mostly
impacted by the AD atrophy process.

To test these predictions, we considered multiple brain networks derived from DWI, fMRI,
and MEG data recorded in a group of AD patients and age-matched healthy controls (HC;
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Figure 1. Multiplex brain network construction. Different neuroimaging data are collected and preprocessed separately. We used the Desikan
cortical atlas parcellation (Desikan et al., 2006) to infer connectivity networks from DWI, fMRI, and MEG source-reconstructed data. The
color of the line indicates the software that has been used in each step of the pipeline. We spatially aligned all the estimated brain networks
to construct the multiplex brain network.

Figure 1). Cognitive impairments in AD patients were described using multidomain behavioral
measurements. We extracted the multimodal core-periphery structure of the brain networks
through a multiplex network approach, where all the available information is kept at differ-Multiplex network:

A multilayer network where
interlayer connections are allowed
only between homologous nodes.

ent connectivity layers. Multiplex network theory has been recently introduced to specifically
model and analyze complex systems whose units can be linked through different types of con-
nectivity (Battiston, Nicosia, & Latora, 2014; Boccaletti et al., 2014; De Domenico et al., 2013;
Kivelä et al., 2014). Main applications in neuroscience have focused on the characterization
of higher order network motifs (Battiston, Nicosia, Chavez, & Latora, 2017; Crofts, Forrester, &
O’Dea, 2016; Pedersen, Zalesky, Omidvarnia, & Jackson, 2018) and node centrality (Bentley
et al., 2016; De Domenico, Sasai, & Arenas, 2016; Guillon et al., 2017) in both healthy and
diseased conditions (De Domenico et al., 2016; Guillon et al., 2017; Yu et al., 2017). Here,
we evaluated how AD impacted the multiplex core-periphery organization (Battiston, Guillon,
Chavez, Latora, & De Vico Fallani, 2018), and we tested the correlation of the regional core-
ness with the cognitive and memory impairment of patients. See the Material and Methods
section for more details on the experimental design and methods of analysis.

RESULTS

Multimodal Core of Brain Networks

We integrated multimodal information by constructing nine-layer multiplex brain networks
containing DWI, fMRI, and MEG connectivity between 68 cortical regions of interest (ROIs;
Material and Methods). To estimate the likelihood of each ROI i to be in the multiplex core we
computed its coreness Ci by counting how many times it was in the multiplex core across differ-
ent density thresholds (Battiston et al., 2018). At each threshold, the multiplex core-periphery
structure was obtained by linearly combining the node strength of all the layers through a
vector parameter c (Material and Methods).

Because we do not know a priori the best combination, we derived the optimal c∗ by using a
data-driven approach that efficiently explores the parameter space to maximize the difference
between AD and HC regional coreness. Specifically, we used the particles swarm optimization
algorithm (PSO) to maximize the Fisher’s criterion F(c) (Material and Methods). Results show
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Table 1. Vector of the optimal layer weight for the coreness computation

Layer m c∗[m]

MEGδ 0.000
MEGθ 0.001
MEGα1 0.258
MEGα2 0.000
MEGβ1 0.000
MEGβ2 0.002
MEGγ 0.000
fMRI 0.104
DWI 0.961

that the optimal c∗ components are found to be highly heterogenous and that the DWI layer,
as well as MEG-alpha1 and fMRI layers, are the main contributors to separate the AD and HC
group (Table 1, Figure 2A).

In the HC group, the multiplex core tended to include large portions of temporal, supe-
rior parietal, and occipital cortices, and to a minor extent central and superior frontal regions
(Figure 2B). On average AD patients exhibited a loss of coreness with respect to HC particularly

Figure 2. Regional coreness of the multiplex brain networks. Panel A), shows the results of the particle swarm optimization (PSO) used
to find the best layer coefficients vector c that maximizes the Fisher score F(c) between AD and HC subjects. In the upper plot, each dot
represents the position of a particle at a given iteration in the original 9-dimension coreness contribution coefficient vector space. The color
of the dots code for the corresponding Fisher score. Results were projected over the three main network layers for the sake of illustration The
other nonshown components were rapidly zeroing-out during the 81 iterations needed to converge to the optimum as shown in the bottom
plot. Panel B) shows the corresponding average coreness for the healthy control (HC) population and for the Alzheimer’s disease (AD) group.
The position of the nodes identifies the barycenter of each ROI in the cortical surface, here represented in transparent gray; the color of each
node codes for the average coreness C̄i.
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Figure 3. Differences in regional coreness between AD and HC subjects. Panel A) shows the between-group difference of coreness C̄AD,i −
C̄HC,i as a function of the healthy population’s coreness C̄HC,i; the slope of the regression line in gray measures the coreness disruption
index κ = −0.20. The color of the circles code for the difference between average coreness in the AD and HC groups; stars point out the ROIs
for which we reported a significant difference (p < 0.025, Supplementary Table S2; Guillon et al., 2019). Panel B) illustrates the values of the
between-group coreness difference over the Desikan cortical atlas. Color code is the same as in panel A.

in the temporal, superior parietal, and occipital cortices. These regions were already known
to form the core of multiplex brain networks derived from DTI and fMRI data (Battiston et al.,
2018).

Reorganization of Core-Periphery Structure in AD

To quantify the observed network changes, we defined the coreness disruption index κ as
the slope of the line obtained by regressing the difference between the average coreness (at
each ROI and across subjects) of the two groups with the average coreness of the healthy one
(Termenon, Achard, Jaillard, & Delon-Martin, 2016) (Material and Methods). We found a sig-
nificant negative κ value, indicating that AD preferentially attack ROIs with a high coreness
(κ = −0.20, p = 2.45e−10). This result was also consistent at the individual level when we ex-
tracted the coreness disruption index in each patient (Supplementary Table S1; Guillon et al.,
2019). In particular, by statistically comparing the average coreness of the two groups, we re-
ported a significant decrease of coreness in core regions, such as temporal, parietal, and occip-
ital cortices as well as a significant increase of coreness in the right paracentral area that are
instead more peripheral (p < 0.025, Figure 3A, B, Supplementary Table S2; Guillon et al.,
2019).

Based on the hypothesis that AD is a disconnection syndrome (Delbeuck et al., 2007;
Geschwind, 1965) leading to disorganized network configurations (Sanz-Arigita et al., 2010),
we next generated a series of synthetic multiplex networks starting from the ones observed
in the HC group and attacking an increasing amount of links in each layer. Specifically, we
simulated the dysconnection process by decreasing the weights of the links that were prefer-
entially connected to the core nodes (Materials and Methods). Results show that the coreness
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Figure 4. Coreness disruption index as a function of the network disconnection process. Boxplots
show the values of coreness disruption index (κ) obtained by randomly attacking an increasing
percentage of links in the multiplex brain networks of the HC group (Material and Methods). Panel
A) shows the values obtained when the links connected to the multiplex core are preferentially
attacked. Panel B) shows the values obtained when the links connected to the multiplex periphery
are preferentially attacked. In both cases, the intensity of the selected links are decreased by 75%.
The blue and red boxplots illustrate respectively the κ values for the HC and AD groups. The circles
in the boxes show the median; the bottom and top edges of the boxes denote the 25th and 75th
percentile, respectively. Whiskers connect the most extreme points not considered outliers, and
outliers are plotted individually as circles.

disruption index decreased with the number of links that were randomly attacked when the
reduction was sufficiently strong, that is, 75%. In this situation, we could generate the same κ

values observed in the multiplex brain networks of the AD group by attacking between 25%
and 30% of the links (Figure 4A). Notably, this result could not be obtained when we attacked
the links preferentially connected to peripheral nodes (Figure 4B). Altogether, these findings
indicate that AD is associated with a pervasive random reconfiguration of brain connectivity
that primarily affects the nodes of the multiplex core.

Coreness Disruption Predicts Cognitive and Memory Deficits

We finally conducted a correlation analysis to better understand how the observed multiplex
brain network changes were associated with the behavioral performance of AD patients. Re-
sults show that both cognitive and memory deficits could be predicted by the individual loss
of regional coreness. At the global scale, the coreness disruption index significantly correlated
with the Mini–Mental State Examination (MMSE) (R = 0.46, p = 0.028) as well as with the
immediate (R = 0.47, p = 0.024) and free recall (R = 0.59, p = 0.005) scores. The higher the
κ values, the better was the performance of the patients (Figure 5A, Supplementary material;
Guillon et al., 2019). At the local scale, temporal, parietal, and cortices were highly positively
correlated with the behavior of patients. Notably, these ROIs overlapped with those exhibit-
ing significant decreases of regional coreness with respect to healthy controls (Figure 3B). We
found similar positive correlations for bilateral middle frontal ROIs (R = 0.36, p = 0.092 for
left, R = 0.35, p = 0.100 for right), while areas in the motor system appeared not to be in-
volved except for the paracentral lobule that tended to negatively correlate with the MMSE
(R = −0.55, p = 0.007) and immediate recall scores (R = −0.36, p = 0.089; Figure 5B).
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Figure 5. Correlation between coreness and cognitive/memory deficit. Panel A) shows the values
of the Mini–Mental State Examination (MMSE) and immediate recall (IR) as a function of the coreness
disruption index κ. In panel B) the Spearman correlation values (R) between the regional coreness
Ci and the MMSE and IR values are shown over the Desikan cortical atlas.

DISCUSSION

Multiplex Brain Networks

The increasing availability of multimodal neuroimaging data holds a great potential to enrich
our knowledge about fundemental neural mechanisms and to improve the precision of pre-
dictive biomarkers of brain diseases (Calhoun & Sui, 2016). However, how to integrate infor-
mation from different neuroimaging modalities is still an open issue. Existing approaches have
mainly focused on merging information at the level of the native data structure (e.g., signal
or images; Biessmann, Plis, Meinecke, Eichele, & Muller, 2011; Uludağ & Roebroeck, 2014).
Only recently, investigators have started to propose fusion algorithms in an effort to infer brain
connectivity (Ng, Varoquaux, Poline, & Thirion, 2012) or to detect mental states (Lei et al.,
2011). Here, we adopted a complementary solution—based on the nascent field of multilayer
network theory—that preserves the original nature of the different connectivity types. Sim-Multilayer network:

A collection of elements that interact
dyadically according to different
types of connectivity. Each
connectivity type is represented in a
different layer, so that both intra- and
interlayer connections are allowed.

ilar approaches have been already used in the case of temporal (Bassett et al., 2011; Pedersen
et al., 2018), multifrequency (Brookes et al., 2016; De Domenico et al., 2016; Guillon et al.,
2017; Tewarie et al., 2016; Yu et al., 2017), and DTI-fMRI brain networks (Battiston et al.,
2017) in human but also in nonhuman species (Bentley et al., 2016; Crofts et al., 2016). This
study considers for the first time brain networks obtained from three different neuroimaging
modalities—DWI, fMRI, and MEG—to construct multiplex brain networks consisting of nine
connectivity layers and to derive an augmented description of their core-periphery structure in
healthy and Alzheimer’s diseased subjects. A crucial step in the characterization of multiplex
networks is how to weight the contribution from different layers (Boccaletti et al., 2014; Kivelä
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et al., 2014), which typically contain connectivity measured in different units (e.g., number of
fiber tracks and amount of signal correlation). While this is in general an arbitrary choice, here
we established an objective way to associate a weight to each layer by maximizing the differ-
ence of regional coreness—that is, the likelihood of each region to be in the core—between
the groups. Results showed that all three modalities are necessary to the group separation. In
particular, for MEG only alpha1 was determinant while the other frequency layers had very low,
or null, weights. This is in line with current evidence showing that the alpha1 frequency band
contains the most discriminant power and connectivity changes in AD (Babiloni et al., 2004;
Blinowska et al., 2016). Notably, DWI had a very high contribution coefficient as compared
with the other layers. Core-periphery structure of diffusion-based networks is known to be
very robust (Hagmann et al., 2008; van den Heuvel & Sporns, 2011) with respect to functional
layers, and this might possibly depend on the heterogeneity of the weighted node degree dis-
tribution. More in general, further research is needed to derive criteria that objectively balance
the layer contribution in the extraction of multiplex network properties.

Network Reorganization in Alzheimer’s Disease

AD is associated with network changes affecting the structure and function of the brain at
multiple spatial and temporal scales (Stam, 2014). It has been hypothesized that these network
reconfigurations could result from dysconnection patterns initiated by the gross atrophy of the
brain. While several studies have found significant changes in terms of network efficiency,
modularity, and node centrality, the direction of these alterations—in terms of increments or
decrements with respect to healthy controls—is often unclear and modality dependent (Tijms
et al., 2013). Here, we focused on the core-periphery structure of the human brain, which has
been shown to have a significant impact on cognition ensuring global integration across remote
cortical areas (van den Heuvel & Sporns, 2011). Structural connectome studies have reported
that AD patients, from the preclinical to dementia stages, have significant hub-concentrated le-
sion distributions (Brier et al., 2014; Buckner et al., 2009; Crossley et al., 2014; Dai et al., 2014;
Shu, Wang, Bi, Zhao, & Han, 2018). However, recent evidence is suggesting that network dis-
ruption is prevalent in the peripheral network components in both AD (Daianu et al., 2015) and
mild cognitive impairement (MCI) patients (Zhao et al., 2017). These inconsistent findings sug-
gest that the network disruption mechanisms remain unclear. By integrating information from
structural and functional brain networks, we aimed to overcome this controversy and pro-
vide a more comprehensive insight. Our multiplex network approach shows that core regions
were globally affected in AD patients as compared with HC subjects and that this result could
be modeled by a global random rewiring process. Specifically, we reported significant decre-
ments of coreness in temporal and parietal cortices, which are heavily affected by atrophy pro-
cesses and beta-amyloid deposition (Buckner, Andrews-Hanna, & Schacter, 2008). However,
this change was paralleled by a significant increase of coreness in the paracentral lobules,
which originally belonged to the multiplex periphery. Because regions of the sensorimotor
system—such as paracentral lobule—are not directly affected by the atrophy process (Agosta
et al., 2010), we speculate that possible compensatory mechanisms could have therefore taken
place. In line with this hypothesis, recent findings suggest that more efficient motor commands
in mild cognitive impaired patients could trigger the later functional decline (Kubicki, Fautrelle,
Bourrelier, Rouaud, & Mourey, 2016). Longitudinal studies involving healthy subjects convert-
ing into AD will be fundamental to confirm or reject this prediction (Dubois et al., 2016).

Connectivity-Based Biomarkers of Clinical Behavior

Brain wiring organization is critically associated with human cognition and behavior as well as
with several neurological and psychiatric disorders (Stam, 2014). Network indices describing
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core-periphery and rich-club organization in structural brain networks have been shown
to predict cognitive and motor deficits in multiple sclerosis (Stellmann et al., 2017), and
Huntington disease (Harrington et al., 2015), as well as communication impairment in schizo-
phrenia (van den Heuvel et al., 2013). More pertinent to this work, rich-club biomarkers ex-
tracted from DTI networks have been shown to correlate with cognitive and memory deficits
in Alzheimer’s disease (Daianu et al., 2015; Stam et al., 2009; Tijms et al., 2013).

Here, we showed that the coreness disruption index—quantifying the global tendency to
weaken core-periphery structure in multimodal brain networks—determined the cognitive and
memory performance of our AD patients. Patients with a stronger core-periphery organization
had higher MMSE and Free and Cued Selective Reminding Test (FCSRT) scores. At the local
scale, temporal, parietal, as well as frontal areas tended to positively correlate with patients’
behavior. These association regions have been shown to be implicated in the prediction of AD
cognitive performance (Khachiyants & Kim, 2012) and more in general in memory and lan-
guage (Gordon, 1995; Pochon et al., 2002; Squire, 1992). We also found negative correlations
with the paracentral lobule (especially right), a region that is typically involved in motor-related
tasks but not in integrative functions.

From a network perspective, the coreness of regions that tended to be in the multiplex
core—such as temporal, parietal, and occipital cortices—were positively correlated with pa-
tients’ performance, while among the peripheral areas the paracentral lobule was negatively
correlated with the behavior. This means that in the presence of more severe cognitive and
memory deficits, the relative decrease of connectivity in core regions tended to be replaced
by periphery components of the brain system. This result would confirm the existence of an
adjusting mechanism, where the sensorimotor system might be involved in the compensation
of connectivity loss in systems that are directly impacted by amyloid-beta plaques and tau
neurofibrillary tangles accumulation (Iaccarino et al., 2018).

Methodological Considerations

The basic algorithm behind the detection of the core-periphery structure in multiplex networks
is purely deterministic (Ma & Mondragón, 2015). This means that in principle we could not
evaluate the statistical relevance of the identified structure. To overcome this limitation, we
adopted a procedure that consisted in extracting the core-periphery structure from a series of
multiplex networks obtained by filtering the actual brain multiplex network with increasing
density thresholds (Battiston et al., 2018). This way we could derive a probabilistic measure
of coreness by counting how many times each ROI was assigned to the core across all the
possible thresholds. For the sake of simplicity we filtered each brain multiplex by retaining the
strongest links so that the average node degree of each layer ranged from k = 1 to k = N − 1
(Material and Methods).

After filtering we did not binarize the surviving links so that we applied the core-periphery
algorithm to sparse weighted multiplex networks. This approach allows us to exploit all the
available information in the multiplex brain networks. At the same time, we remark that ad-
ditional care is needed, as it introduces issues related to the different nature and distributions
of the link weights (Buldú & Papo, 2018). Here, we mitigated this problem by using in the
core-periphery algorithm the vector c of parameters that can weight the contribution of each
layer (Material and Methods). Alternative solutions have been recently proposed taking into
account the normalization of the weight across the layers by means of singular value decompo-
sition (Mandke et al., 2018). Finally, because of the difficulty to measure connectivity between
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different neuroimaging modalities we did not consider interlayer links in our multiplex repre-
sentation, as instead explored in more theoretical studies (Buldú & Porter, 2017; De Domenico
et al., 2016). Despite the absence of interlinks, our multiplex network approach is able to
extract higher order topological properties that cannot be obtained by other single-layer ap-
proaches. Notably, given the high level of overlap and correlations between the layers, our
multiplex networks cannot be reduced to simple colored-edge graphs, where different colorsGraph:

A mathematical description of a
network; elements and their
interactions are represented
as nodes/vertices and
connections/edges, respectively.

are associated with different types of connectivity (Boccaletti et al., 2014).

We used an optimization algorithm—namely the particle swarm optimization—to find the
best combination of c components that maximized the difference of the coreness between AD
and HC subjects (Material and Methods). This method presents two limitations that are im-
portant to mention here. First, the time complexity increases exponentially with the number of
layers M in order to find a stable solution. We verified that for M > 10 the research complexity
becomes rapidly intractable because of the large space of parameter combination to explore.
Second, the cost function optimized by the algorithm and used to evaluate how segregated the
two groups are (i.e., two sets of coreness vectors) should be carefully chosen as its accuracy is
highly impacted by the size of the feature space (here N, the number of ROIs) and the size of
the samples (here the size of the cohorts). More advanced techniques taking into account the
possible nonlinear and/or non-Euclidean nature of the feature space should be considered for
very large networks (e.g., support vector machines, Riemannian geometry).

Conclusion

Consistent with our hypothesis, we have shown that the AD atrophy process generates multi-
modal connectivity changes that can be quantified by a multilayer network approach. Specif-
ically we have identified that both core and—to a minor extent—peripheral cortical areas are
affected in AD, and that the direction of the effect was opposite. Decrease of coreness in tem-
poral, parietal, and occipital areas—forming the rich core of the human brain—is paralleled by
a possible compensatory increment in cortical regions that are in the sensorimotor system and
that are more peripheral. These cortical network signatures varied over individuals and were
significant predictors of cognitive and memory deficits. Furthermore, we reported a general
framework for the statistical comparison of core-periphery organization in arbitrary multiplex
networks. Taken together, our results offer new insights into the crucial role of core-periphery
organization in neurodegenerative diseases.

MATERIAL AND METHODS

Cohort Inclusion

The study involved 23 Alzheimer’s diseased (AD) patients (13 women) and 26 healthy age-
matched control (HC) subjects (19 women). All participants underwent the Mini–Mental State
Examination (MMSE) for global cognition and the Free and Cued Selective Reminding Test
(FCSRT) for verbal episodic memory. Inclusion criteria for all participants were (a) age between
50 and 90; (b) absence of general evolutive pathology; (c) no previous history of psychiatric dis-
eases; (d) no contraindication to MRI examination; and (e) French as a mother tongue. Specific
criteria for AD patients were (a) clinical diagnosis of Alzheimer’s disease; and (b) Mini–Mental
State Examination (MMSE) score greater or equal to 18. All subjects gave written informed
consent for participation in the study, which was approved by the local ethics committee of
the Pitie-Salpetriere Hospital. All experiments were performed in accordance with relevant
guidelines and regulation.
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Data Acquisition and Preprocessing

Magnetic resonance imaging (MRI) acquisitions were obtained using a 3T system (Siemens
Trio, 32-channel system, with a 12-channel head coil). The MRI examination included (a)
3D T1-weighted volumetric magnetization-prepared rapid gradient echo (MPRAGE) sequence
with the following parameters: thickness = 1 mm isotropic, repetition time (TR) = 2,300 ms,
echo time (TE) = 4.18 ms, inversion time (TI) = 900 ms, acquisition matrix = 256 256; (b)
echo planar imaging (EPI) sequence with the following parameters: one image with no diffusion
sensitization (b0 image) and 50 diffusion-weighted images (DWI) at b= 1,500 s/mm2 , thickness=
2 mm isotropic, TR = 13,000 ms, TE = 92 ms, flip angle = 90, acquisition matrix = 128
116; (c) functional MRI (fMRI) resting-state sequence sensitive to blood oxygenation level-
dependent (BOLD) contrast with the following parameters: 200 images, thickness = 3 mm
isotropic, TR = 2,400 ms, TE = 30 ms, flip angle = 90, acquisition matrix = 64 64. All MR
images were processed using the Clinica software (http://www.clinica.run). We first used the
t1-freesurfer-cross-sectional pipeline to process T1-weighted images. This pipeline
is a wrapper of different tools of the FreeSurfer software (http://surfer.nmr.mgh.harvard.edu/;
Fischl, 2012). It includes segmentation of subcortical structures, extraction of cortical sur-
faces, cortical thickness estimation, spatial normalization onto the FreeSurfer surface template
(FsAverage), and parcellation of cortical regions. Functional MRI images preprocessing has
been conducted using the fmri-preprocessing pipeline. Slice timing correction, head
motion correction, and unwarping have been applied using SPM12 tools (www.fil.ion.ucl.ac.
uk/spm). Separately, the brain mask has been extracted from the T1 image of each subject us-
ing FreeSurfer. The resulting fMRI images have then been registered to the brain-masked T1
image of each subject using SPM’s registration tool. Finally, diffusion-weighted images have
been processed using the dwi-preprocessing pipeline of Clinica. For each subject, all
raw DWI volumes were rigidly registered (6 df ) to the reference b0 image (DWI volume with
no diffusion sensitization) to correct for head motion. The diffusion-weighting directions were
appropriately updated (Leemans & Jones, 2009). An affine registration (12 df ) was then per-
formed between each DWI volume and the reference b0 to correct for eddy current distortions.
These registrations were done using the FSL flirt tool (www.fmrib.ox.ac.uk/fsl). To correct for
EPI-induced susceptibility artifacts, the field map image was used as proposed by Jezzard and
Balaban (1995) with the FSL prelude/fugue tools. Finally, the DWI volumes were corrected
for nonuniform intensity using the ANTs N4 bias correction algorithm (Tustison et al., 2010).
A single multiplicative bias field from the reference b0 image was estimated, as suggested in
Jeurissen, Tournier, Dhollander, Connelly, and Sijbers (2014).

The magnetoencephalography (MEG) experimental protocol consisted in a resting state
with eyes closed (EC). Subjects were seated comfortably in a dimly lit electromagnetically
and acoustically shielded room and were asked to relax. MEG signals were collected using
a whole-head MEG system with 102 magnetometers and 204 planar gradiometers (Elekta
Neuromag TRIUX MEG system) at a sampling rate of 1,000 Hz and online low-pass filtered at
330 Hz. The ground electrode was located on the right shoulder blade. An electrocardiogram
(EKG, Ag/AgCl electrodes) was placed on the left abdomen for artifacts correction and a vertical
electrooculogram (EOG) was simultaneously recorded. Four small coils were attached to the
participant in order to monitor head position and to provide coregistration with the anatomical
MRI. The physical landmarks (the nasion, the left and right preauricular points) were digitized
using a Polhemus Fastrak digitizer (Polhemus, Colchester, VT). We extracted three consecutive
clean epochs of approximately 2 min each.

Signal space separation was performed using MaxFilter to remove external noise. We used
in-house software to remove cardiac and ocular blink artifacts from MEG signals by means of
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principal component analysis. We visually inspected the preprocessed MEG signals in order
to remove epochs that still presented spurious contamination. At the end of the process, we
obtained a coherent dataset consisting of three clean preprocessed epochs per subject. We
reconstructed the MEG activity on the cortical surface by using a source imaging technique
(Baillet et al., 2001; He, 1999): (a) We used the previously segmented T1-weighted images
of each single subject (Fischl et al., 2002, 2004) to import cortical surfaces in the Brainstorm
software (Tadel et al., 2011) where they were modeled with approximately 20,000 equivalent
current dipoles (i.e., the vertices of the cortical meshes). (b) We applied the wMNE (weighted
minimum norm estimate) algorithm with overlapping spheres (Lin et al., 2006) to solve the lin-
ear inverse problem. Both magnetometer and gradiometer, whose position has been registered
on the T1 image using the digitized head points, were used to localize the activity over the
cortical surface.

Construction of Brain Networks

We built, for each modality, one or multiple brain connectivity networks whose nodes are
regions of interest (ROIs) defined by the Desikan cortical atlas parcellation (Desikan et al.,
2006; N = 68 regions); and links are weighted by a given connectivity measure estimated
between each pair of nodes resulting in 68 × 68 fully symmetric adjacency matrices.

In the case of MEG, we used the spectral coherence as a connectivity estimator with the
following parameters: window length = 2 s, window type = sliding Hanning, overlap = 25%,
number of FFT points (NFFT) = 2,000 for a frequency resolution of 0.5 Hz between 2 Hz and
45 Hz included.

We then averaged the connectivity matrices within the following characteristic frequency
bands (Babiloni et al., 2004; Stam et al., 2002): delta (2–4 Hz), theta (4.5–7.5 Hz), alpha1
(8–10.5 Hz), alpha2 (11–13 Hz), beta1 (13.5–20 Hz), beta2 (20.5–29.5 Hz), and gamma (30–
45 Hz). We finally averaged the connectivity matrices across the three available epochs to
obtain a robust estimate of the individual brain networks.

For fMRI data, we focused our analysis on the scale 2 wavelet correlation matrices that
represented—with a TR = 2,400ms—the functional connectivity in the frequency interval
0.05–0.10Hz (Achard, 2006; Bassett & Bullmore, 2009; Biswal, Yetkin, Haughton, & Hyde,
1995; Cordes et al., 2001; De Vico Fallani, Richiardi, Chavez, & Achard, 2014). This choice
was mainly motivated by the fact that the interpretation of different frequencies in fMRI is not
clearly defined (Chen & Glover, 2015), whereas in E/MEG specific mental states can be more
directly associated with distinct bands.

For DWI data, we used the Clinica software to estimate the fiber orientation distributions
(FODs) using constrained spherical deconvolution (CSD) algorithm from MRtrix3 dwi2fod

tool and tractography based on iFOD2 algorithm from MRtrix3 tckgen tool. The connectome
is finally estimated by counting the number of tracts connecting each pair of nodes according
to the given parcellation file using MRtrix3 tck2connectome tool.

Network Methods and Models

We constructed multiplex brain networks in each subject by spatially aligning DWI, fMRI, and
MEG source reconstructed connectivity networks. This led to the following multiplex network
with M = 9 layers:

M =
{

W [m], ∀m ∈ {MEGδ, ..., MEGγ, fMRI, DWI}
}

, (1)
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where W [m] =
{

w[m]
ij

}
is the connectivity matrix containing the weights of the connections

between the ROIs i and j in the modality m. Because the weights in each layer can vary across

different ranges, we applied the linear normalization w[m]
ij =

w[m]
ij −w[m]

min

w[m]
max −w[m]

min

, where w[m]
max and w[m]

min

are respectively the largest and smallest entries of W [m]. This way, all the links’ weights ranged
between 0 and 1 and became comparable quantities across layers.

To extract the coreness of the nodes from the resulting multiplex networks, we followed
the procedure described by Battiston et al. (2018). First, we filtered each layer by preserving
the strongest weights for a broad range of increasing thresholds. Specifically, we considered
density-based thresholds so that each layer had the same average node degree from k = 1 to
k = N − 1. Then, for each threshold we computed the core-periphery of the filtered multiplex
network by evaluating (a) the multiplex richness μi of node i, defined as follows:

μi =
M

∑
m=1

c[m]s[m]
i , (2)

with s[m]
i the strength of the node in the m-th layer, and c[m] the components of the vector c

that modulate the contribution of each modality-specific layer. And (b), similarly to the original
paper, we decomposed the richness function into two components based on the links of node i
that are going towards nodes with lower richness and those towards nodes with higher richness
s[m] = s[m]− + s[m]+. Thus, the multiplex richness of a node towards richer nodes is defined as
follows:

μ+
i =

M

∑
m=1

c[m]s[m]+
i . (3)

We finally counted the number of times that each node was in the core across all the explored
thresholds, and we normalized by the maximum theoretical value. As a result, we obtained
the coreness Ci that can be written as follows:

Ci =
1

N − 1

N−1

∑
k=1

δ
[k]
i , (4)

where

δ
[k]
i =

{
1, if node i is in the core for the average node degree k.

0, otherwise.
(5)

To simulate the disconnection process, we generated random multiplex networks by de-
creasing the intensity of the links in each layer starting from the actual multiplex brain network
of the HC group. First, we fixed the percentage of links to be attacked and the percentage of
weight reduction. Then, we randomly attacked the links by selecting those with higher proba-
bility to be connected to core or periphery nodes. For each HC individual, we generated nrand

new randomized multiplexes according to the following pseudocode:

Step 1. Initialization

(a) Fix the number of links to randomly attack (L)

(b) Fix the percentage of weight reduction (R)

(c) Give a probability p(i) to each node proportional to its coreness
Step 2. Repeat until termination criteria are met
For k = 1, ..., L do

(a) Pick a random node i with a probability p(i)

(b) Pick a random node j with a probability p(j)

Network Neuroscience 647



Disrupted core-periphery structure of multimodal brain networks in AD

(c) Decrease the weight of the link wij by R

(d) Exclude the link i − j in the next iterations

(e) k ← k + 1
Step 3. Normalize and output connectivity matrix

We chose the minimum number of randomizations necessary to obtain a variance approx-
imately equal to the one observed in the HC and AD groups. This number was nrand = 3 and
gave in total NRA = nrand × NHC = 78 samples.

Particles Swarm Optimization and Statistical Analysis

We used the PSO algorithm (Kennedy & Eberhart, 1995) under the MATLAB(R) software with
the default parameters. The Fisher’s criterion F(c) was defined as follows:

F(c) =
( ĪAD(c)− ĪHC(c))

2

s2
AD + s2

HC
, (6)

with ĪPop(c), the average local (i.e., node level) index, here the coreness C, over a population
Pop, which in our case belongs to {AD, HC}, and,

s2
Pop = ∑

s∈Pop
(Is(c)− ĪPop(c))2, (7)

with s a subject belonging to the population Pop.

Since, in our case, F(c) = F(ac), ∀a ∈ R+, and in order to save one dimension in the
searching space, we expressed the coefficient c as a point on the positive section of the unitary
hypersphere of dimension M = 9 such that

c =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin φ1... sin φ8

sin φ1... sin φ7 cos φ8

sin φ1... sin φ6 cos φ7

sin φ1... sin φ5 cos φ6

sin φ1... sin φ4 cos φ5

sin φ1... sin φ3 cos φ4

sin φ1 sin φ2 cos φ3

sin φ1 cos φ2

cos φ1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, φk ∈
[
0,

π

2

]
, ∀k ∈ [1, M − 1]. (8)

To consider the non-Gaussian nature of the data we considered nonparametric statistics
when assessing differences between populations and prediction of behavioral scores. To these
ends, we used respectively permutation t tests and Spearman correlation coefficients. The
statistical threholds were set to α = 0.05, and we applied a rough false discovery rate (FDR)
correction to account for the N = 68 post hoc tests at the level of brain regions (αFDR = 0.025).
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