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ABSTRACT

Inflammatory bowel disease (IBD) is a group of chronic relapsing disorders whose etiology has not been fully explained. Therefore, available
therapeutic approaches for IBD patients are still insufficient. Current treatment strategies are targeted to immune system dysfunctions, often
associated with alternations in the microbiota, which contribute to the development of chronic intestinal inflammation. Therapeutics include anti-
inflammatory drugs such as aminosalicylates and corticosteroids, immunosuppressive agents, antibiotics, and biological agents such as infliximab
and vedolizumab. Auxiliary therapies involve a balanced and personalized diet, healthy lifestyle, avoiding stress, as well as dietary supplements. In
this review, we discuss the use of bovine colostrum (BC) as a therapeutic agent, including its advantages and contraindications. We summarize our
knowledge on well-researched BC constituents and their effects on the gastrointestinal tract as evidenced in in vitro and in vivo studies. Adv Nutr
2021;12:533–545.
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Introduction
Inflammatory bowel disease (IBD) refers to chronic relapsing
disorders of the gastrointestinal (GI) tract, of which the
main 2 are Crohn disease (CD) and ulcerative colitis (UC)
(1). The pathogenesis of IBD involves environmental and
genetic factors, altered microbiota, and abnormal immune
response (2–4). Consequently, current therapeutic strategies
are targeted to disturbances in the immune system, which
contribute to the development of chronic intestinal inflam-
mation (3). Moreover, recent evidence indicates that IBD
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pathogenesis can be affected by the food consumed (e.g., a
modern Western diet) and a stressful lifestyle (5, 6).

Dysregulated immune response in IBD has been previ-
ously correlated with T-helper (Th) 1 cells in CD, and Th2
cells in UC (7), but recent research strongly confirms the
role of the IL-23/IL-17 pathway in IBD pathogenesis (8, 9).
Activation of Th17 cells, which release IL-17, and altered
cross-regulation between Th17 and regulatory T cells appear
to be involved in the inflammatory response in the intestines
of IBD patients (8). Moreover, abnormal mucosal innate
immune responses, associated with defective and increased
epithelial barrier integrity, have been highly recognized in
IBD (10).

The damage to one of the most important physical
barriers in the human body, the intestinal epithelium, which
is covered by the mucous layer and is exposed to the
external environment (e.g., food antigens or bacteria) may,
in turn, lead to intestinal inflammation (11). Dysfunction
of the intestinal epithelium is also related to nutrient
malabsorption. Apart from this, epithelial cells can also
synthesize antimicrobial peptides, and it has been proven that
these compounds demonstrate defective expression in CD
patients (12, 13).
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Current treatment options for IBD patients include anti-
inflammatory drugs, such as aminosalicylates and corti-
costeroids, immunosuppressive agents (e.g., methotrexate,
azathioprine), antibiotics, and biological agents (e.g., inflix-
imab, vedolizumab) (3, 14, 15). Auxiliary therapies involve
a healthy lifestyle, balanced and personalized diet, as well
as avoiding stress (5, 6). Nevertheless, available therapeutic
approaches for IBD patients are still insufficient, which
means that future treatment options with novel mechanisms
of action are urgently needed.

One of the potential options may be bovine colostrum
(BC)—that is, milk produced by female mammals for the first
3 d after parturition, which later changes into mature milk
(16). Several investigations confirmed that BC constituents
may influence the clinical course of GI, such as IBD (17).

Constituents of Bovine Colostrum
BC is composed of >250 functional constituents, including
immune-stimulating peptides and antimicrobial agents (18,
19). Among BC compounds, major ingredients include
macronutrients, immunoglobulins, leukocytes, cytokines,
growth factors, lactoferrin (LF), lysozyme (LZ), casein,
proline-rich polypeptide, glycomacropeptide (GMP), lactal-
bumin (LA), and enzymes such as lactoperoxidase (LPO)
(Table 1). Other constituents are vitamins, macro- and
microelements, hormones, nucleotides, and gangliosides (20,
21). Colostrum thus contributes to the development of the
immune system in infants as well as facilitates growth, matu-
ration, and repair processes in distinct tissues. Consequently,
BC has significantly higher amounts of growth-promoting
factors compared with mature milk (16, 18, 20).

The contents of bioactive compounds in BC may differ
considerably, depending on various factors including lacta-
tion number, age of the cow, volume of the first colostrum
milking, feeding intensity, exact time after birth, and even
season of the year when colostrum is provided to calves
(19, 22). The differences may also arise from various cattle
breeds and distinct processing methods; for example, calves

TABLE 1 Composition of macronutrients and their derivatives in
bovine colostrum

Component
Concentration,

g/100 mL Reference

Total protein 7.1–22.6 (22–24)
Casein 4.8 (24)
Albumin 6.0 (24)
Lactoferrin 0.03–0.21 (22, 23)
Immunoglobulins 5–15 (23–25)

IgA 0.16–0.44 (23, 24, 26)
IgG 3.2–11.33 (23, 24, 26)
IgM 0.43–0.49 (23, 24, 26)

Lactose 2.03–2.5 (23)
Fat 5.35–6.7 (22–24, 27)

SFAs 2.45–3.06 (22–24, 27)
MUFAs 2.35–2.95 (22–24, 27)
PUFAs 0.55–0.69 (22–24, 27)

Choline 0.02–0.04 (27)

receiving colostrum within 7 h after birth receive higher
amounts of nutrients compared with a group receiving
colostrum between 12 and 25 h after parturition (28). Due to
the above extensive differences, the majority of constituents
in BC cannot be precisely assessed.

Commercially produced colostrum is available in the
form of powder, concentrate, lozenges, supplemented milk
and beverages, yogurts, butter, and even chewing gums.
These forms may differ in compound quality, quantity, and
bioavailability (29, 30). Morrill et al. (31) emphasized that
almost 60% of colostrum produced on US farms did not meet
minimum immunological and bacteriological criteria.

Furthermore, some studies suggest that digestive enzymes
may affect colostrum activity, but others indicate that some
of its constituents, such as LA or immunoglobulins, are
very stable during digestion processes (25, 26, 32). Due
to conflicting results, further studies comparing the use of
encapsulated and powdered colostrum should be conducted.
They might reveal whether BC can survive passage through
the GI tract and retain its functionality (33).

Immunoglobulins
BC contains 5 classes of immunoglobulins: IgG, IgA, and
IgM, and trace amounts of IgD and IgE that demonstrated a
defensive effect against bacteria, viruses, parasites, and fungi
(32). The most abundant fractions of immunoglobulins in
BC are IgG with predominant subtypes, involving IgG1 and
IgG2, where the former one accounts for ∼75–90% of the
total IgG (23–27, 33). The amounts of IgM and IgA are lower,
and they significantly dominate in the human body (Table 1).
Immunoglobulin concentrations in BC rapidly decrease in
the days following parturition.

The primary role of immunoglobulins in the intestine
involves binding microorganisms, thereby preventing them
from contact with the intestinal epithelium and entering into
the bloodstream (34). Immunoglobulins are especially in-
dispensable in ruminants, as their syndesmochorial placenta
prevents immunoglobulin transfer into the uterus (35).

It is worth pointing out that heterologous transfer of
immunoglobulins from cows to humans appeared to be effec-
tive in preventing human diseases. Products prepared from
colostrum obtained from hyperimmunized cows, which
demonstrated higher levels of immunoglobulins, were used
to prevent infectious diseases (36) and treat rheumatoid
arthritis, high blood pressure, and oral submucous fibrosis
(37).

Leukocytes
BC contains ∼106 leukocytes/mL (38), and is primarily
composed of colostral mononuclear cells (CMCs), such as
macrophages and lymphocytes, but also includes polymor-
phonuclear and epithelial cells (39, 40). It was confirmed
that CMCs represent antigen presentation capabilities, and
thereby can modulate the immune response, thereby main-
taining the equilibrium between immune tolerance and
allergy (41). Results of studies on neonatal calves suggested
that antigenic and mitogenic stimulation of colostral and
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milk lymphocytes was significantly lower compared with
blood lymphocytes (42, 43).

Another investigation showed that calves fed live maternal
cells (whole colostrum) displayed reinforced reactions to the
antigens, which the maternal cow had previously responded
to, and not to those to which the maternal cows were
naïve (44). The authors stated that maternal vaccination
may significantly boost the transfer of appropriate maternal
leukocytes in BC.

Another study conducted by the same authors shows
that the transfer of maternal colostral leukocytes from
whole colostrum affected the development of neonatal
lymphocytes, which was reflected by the reinforcement
of their antigen-presenting capacity e.g., through positive
regulation of major histocompatibility complex (MHC) class
I. Moreover, neonate calves fed maternal colostral leukocytes
demonstrated reduced expression of markers linked to
lymphocyte activation and overall stress compared with
calves that received maternal cell-free colostrum (45).

Cytokines
Apart from the cytokines secreted by leukocytes present
in colostrum, other cytokines are produced in mammary
glands and discharged into colostrum (18, 46). The presence
of cytokines in BC is associated with the development of
the infant immune system and the ability to regulate the
inflammation state (47, 48). Cytokines demonstrate pro-,
or anti-inflammatory activity, supporting immunity against
viruses, bacteria, or fungi (18, 49, 50). However, available
studies show that the concentration of cytokines in BC
changes dramatically when cattle becomes infected. In the
normal state, cytokines such as IL-1β , IL-6, and TNF-α are
usually measured and their concentrations are significantly
higher in BC than in mature milk (50).

Growth factors
Primary growth factors present in colostrum include insulin-
like growth factor (IGF) 1 and 2, transforming growth factor
(TGF) β1 and 2, fibroblast growth factor (FGF) 1 and 2,
epidermal growth factor (EGF), β-cellulin (BTC), platelet-
derived growth factor (PDGF), and vascular endothelial
growth factor (VEGF). The most abundant growth factors
in colostrum are IGF-1 and IGF-2 (51). IGF-1 binds to
IGF-1R, IGF-2R, and insulin receptor (IR), whereas IGF-2R
bears no structural homology to IR or IGF-1R (52). IGF-1
is responsible for cell growth, proliferation, repair processes,
as well as metabolism of macronutrients. Administration of
IGF-1 has been widely correlated with growth and repair
processes at the level of the gastrointestinal organs as well
as anti-inflammatory action (53). With regard to the TGF
family, it has been observed that TGF-β1 knockout mice
promoted inflammation in different tissues (54). A further
analysis linked TGF-β signaling with a wide range of
immune-modulating activities and inflammatory responses
(54, 55). Investigations focused on EGF have demonstrated
its role in stimulating cellular growth (56) and development
of intestinal immunity, as well as hampering bacterial
translocation (57). PDGF and VEGF were shown to present

robust mitogenic activity. The former factor, derivable from
platelets and secreted by macrophages, has been observed
to be the major stimulator of fibroblasts in colostrum of
different species (58).

Lactoferrin
LF is an iron-binding glycoprotein, found in large amounts
in several exocrine fluids including milk and colostrum
(Table 1). It is commercially available as an extract from
bovine milk. Current knowledge about LF is mainly based
on its in vivo supplementation in human and mouse models
(59, 60).

The biological action of LF include anti-infective,
immune-modulating, and either anti- or proinflammatory
activity depending on the host immune status (61, 62).
It is highly effective against a wide range of viruses and
several bacteria, fungi, and protozoa species, and it can
modulate intestinal microbiota (63, 64). LF has been
also shown to cooperate with lymphocytes, macrophages,
granulocytes, and natural killer (NK) cells by influencing
their functions (e.g., cytokine production, proliferation,
maturation, migration, activation, and cytotoxicity) (63,
65). For instance, LF can reinforce NK-cell activity and the
immune response of Th1 cells, and enhance secretion of
cytokines preventing viral infection (63).

In viral infections, LF can inhibit the process of virus
binding with target cells, especially by impeding its in-
tracellular replication and growth. It has been shown that
the LF can bind to heparan sulfate proteoglycans (HSPGs),
which are found on several types of cells. Lang et al. (66)
suggest that these cell-surface molecules act as preliminary
docking sites for virus spike proteins on the cell surface,
thereby playing an important role in severe acute respiratory
syndrome coronavirus (SARS-CoV) invasion. Given the
similarities observed in both viruses, it is worth pointing out
the potentially beneficial role of LF in the ongoing SARS-
CoV-2 pandemic (67).

The bacteriostatic properties of LF are mainly based
on binding large amounts of iron, and connecting them
to bacterial membrane proteins (e.g., LPS). This binding
between LF and proteins in bacterial membrane enhances
the activity of natural bactericides, such as LZ (see below)
(20, 61, 68). Moreover, it was shown that microbial factors
can activate Toll-like receptors (TLRs), such as TLR4, in both
immune and nonimmune cells of various tissues, including
those of the GI tract (69). TLRs are essential for the LPS
recognition present in the outer membrane of G(−) bacteria.
Studies point out that dendritic cells, differentiated in the
presence of LF, displayed reduced reactivity to TLR ligands
as well as cytokine secretion, thereby suggesting its anti-
inflammatory activity (70, 71). On the other hand, TLR4
responses to LPS affect pathogenic and commensal bacteria,
which proves its significant role in balancing intestinal
homeostasis, as well as host tolerance (61).

Lysozyme
LZ (muramidase, N-acetylmuramylhydrolase) is an antimi-
crobial peptide produced mainly by leukocytes and epithelial
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cells. LZ represents high enzymatic activity on gram-
positive and gram-negative bacteria when administered
with LF. The enzyme splits the β-1,4 glycosidic bonds
between N-acetylmuramic acid and N-acetylglucosamine
in peptidoglycans located in the bacterial wall, thereby
causing lysis of microbial factors (72, 73). The concentration
of LZ in BC is ∼0.3–0.8 mg/L, similar to mature milk
(68, 74).

Casein
Caseins are the main proteins of bovine milk (80%) and
constitute a minor part of total proteins in human milk (20–
50%). These phosphoproteins involve αs1-, αs2-, β- and κ-
caseins subtypes, known as casein micelles (75). β-Casein
constitutes ∼30% of the total protein content in bovine milk
(BM) and is represented as A1 or A2 genetic type (76). In
many parts of the world, the milk in commercial use contains
a mixture of both A1 and A2 caseins (76).

In a mouse model, in which rodents received lethal
G(+) and G(−) bacterial injections, researchers observed
significantly higher survivability in the group treated with
casein (24 h prior to the study) compared with controls
(77, 78). Concurrently, A1-caseins were correlated with
the induction of inflammation, as well as increased TLR
expression in rodent models, compared with A2-caseins and
the control group (79). In the following studies, bovine
casein salt [sodium caseinate (SC)] intake was shown
to correlate with increased proliferation of granulocytic
lineage cells in mice. The enhanced granulopoiesis led to
increased concentrations of cytokines, such as granulocyte
macrophage colony-stimulating factor (GM-CSF) in serum
and granulocyte colony-stimulating factor (G-CSF) in serum
and bone marrow plasma (80). This increased activation
of the innate immune system could elucidate why mice
after casein administration were resistant to lethal doses of
bacteria presented in previous experiments (77). Recently,
the authors of G-CSF pretreatment, which improved survival
in the rat sepsis model compared with control, concluded
that the pretreatment could be a useful, novel strategy of the
treatment in sepsis (81).

Some casein-derived peptides reveal pharmacological
similarities to opioids, and can affect GI motility (e.g.,
β-casomorphins, α-casomorphins, which are fragments of
β- and α-casein, respectively) (82). Moreover, it has been
confirmed that κ-casein fragments, known as casoxin, act as
opioid antagonists (83). Both opioid agonists and antagonists
may be formed in the gut in hydrolysis processes of caseins
(84). The β- and α-caseins and their derivatives show
antioxidant, antimicrobial, and immune-regulating activity
(82, 85), while κ-casein fragment (casopiastrin) possesses
antithrombotic properties (86). However, in the recent
analysis, Fuc et al. (87) revealed that κ-casein proteins
also possess immune-modulating activity, and can elicit
humoral response similar to α-casein, with variations at
the cellular level. Furthermore, κ-casein has been also
shown to contribute to cow-milk allergy in the long
term.

Glycomacropeptide
GMP, also called caseinomacropeptide, is a milk peptide
derived from κ-casein by pepsin or chymosin cleavage (68).
GMP binds sialic acid, which, in turn, is responsible for GMP
biological activity. Some investigations have shown that GMP
possesses prebiotic, antibacterial, and immunomodulatory
properties (88): for example, treatment with GMP affects
microbiota composition; a significant increase in beneficial
microbiota and decrement in pathological bacteria were
observed in mouse fecal samples (89).

Proline-rich polypeptide complex
Proline-rich polypeptide complex (PRP), also known as
colostrinin (CLN), is a composition of peptides commer-
cially derived from colostrum, mainly composed of proline
residues and other hydrophobic amino acids (68). PRP was
shown to modulate the immune response (90), and some
studies indicate that PRP is a factor influencing both humoral
and cellular immunity through the production of cytokines
(91). PRP is simultaneously able to stimulate a weakened
immune system, and stabilize the immune response when it
is hyperactive (e.g., in allergies or autoimmune diseases) (92,
93). Moreover, PRP can reduce the amount of reactive oxygen
species (ROS) and inhibit NO (93, 94). Several investigations
also described that treatment with PRP improved symptoms
in Alzheimer patients with mild-to-moderate dementia (95–
98), suggesting its impact on neuronal growth (93–95).

Lactalbumin
LA is composed of whey proteins, including α-lactalbumin
(α-LA) and β-lactoglobulin (β-LG). The concentration of
α-LA in bovine milk and colostrum is significantly lower
than in human colostrum and milk, while β-LG is the most
abundant whey protein in bovine milk, and is at the same
time absent in human milk. Some benefits of enriching milk
in α-LA have been observed primarily in humans and in
rodents (95).

Lactoperoxidase
LPO (EC 1.11.1.7) is a glycoprotein that represents oxi-
doreductase activity found in milk, colostrum, and several
exocrine fluids. LPO constitutes ∼0.5% of whey proteins
in bovine milk, both colostrum and mature milk, and
only <0.1% in human milk (68). LPO possesses robust
antibacterial and antifungal activity and shows antiviral
properties (96). The mechanism of its action is linked to
oxidation of thiocyanate (SCN−), bromide, and iodide ions
in the presence of hydrogen peroxide to hypothiocyanous
acid (HOSCN), hypothiocyanite ions (OSCN−), and halide
ions. These ions can oxidize thiol groups of amino acids in
microbial proteins, thereby impairing life functions or cell
division of pathogens (68, 97).

Lipids
Lipids present in colostrum contain a wide variety of
fatty acids mainly enclosed in the form of mono-, di-,
and tri-acylglycerols. It was shown that, during time of
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TABLE 2 Vitamin concentrations in bovine colostrum

Concentration Reference

Water-soluble vitamins, μg/100 mL
Thiamin 58–90 (22–24)
Riboflavin 455–483 (23,24)
Niacin 34–97 (22, 23)
Pantothenic acid 173.3 (23,24)
Pyridoxal 15 (23)
Pyridoxamine 21 (23)
Pyridoxine 4 (23)
Biotin 1.0–2.7 (23)
Folic acid 0.8 (27)
Cobalamin 4.9–60 (23, 27)
Ascorbic acid 2.5 (22)

Fat-soluble vitamins
Retinol, μg/100 g 490 (23)
β-Carotene, μg/100 g 70 (23)
Tocopherol, μg/100 g 290 (23)
Cholecalciferol, μg/100 g 3.05 (23)
Phylloquinone, μg/100 mL 0.49 (23)

lactation, SFAs and PUFAs reduced their content, while the
concentration of MUFAs increased as lactation progressed
(98).

BC also consists of free fatty acids, glycolipids, phospho-
lipids, steroids, and other agents, like waxes, lipoproteins,
or alcanols (51, 99). Choline, another minor component, is
present in BC in both the aqueous (free choline, phospho-,
glycerophospho-choline) and lipid fractions (phosphatidyl-
choline and sphingomyelin) (Table 1).

Other components
Colostrum contains several other bioactive components that
influence the inflammatory process as well as maintain
intestinal immune balance, such as vitamins (Table 2),
macro- and microelements (Table 3), hormones, nucleotides,
and gangliosides.

Vitamins are essential in maintaining health. They are also
capable of counteracting ROS and inhibiting inflammation.
It is worth noting that colostrum alone may contain ROS,
which may originate from macromolecules susceptible to
peroxidation, or ROS-generating systems for inactivation of
infectious factors (99).

TABLE 3 Mineral concentrations in bovine colostrum

Component
Concentration,

mg/100 g Reference

Calcium 472 (22, 23)
Phosphorus 445 (22, 23)
Magnesium 73 (22, 23)
Sodium 106 (22, 23)
Potassium 285 (22, 23)
Zinc 3.8 (23)
Iron 0.2–0.5 (27)
Copper 0.03–0.06 (23)
Sulfur 260 (23)
Manganese 0.01 (23)

The concentration of vitamins in BC depends on a
wide range of factors; however, it is worth noting that fat-
soluble vitamins (vitamins A, D, E, and K), compared with
water-soluble vitamins, do not decrease when colostrum is
commercially modified (23).

Finally, sugars such as fructo-, and galacto-
oligosaccharides are present in BC. They demonstrate
prebiotic properties and promote development of proper
intestinal microbiota (Bifidobacteria and Lactobacilli sp.),
thus being responsible for anti-inflammatory properties of
BC in the gut (100, 101).

The Role of BC Constituents in IBD
As indicated above, colostrum ingredients represent antimi-
crobial and immunomodulatory activities that may affect
inflammation processes in IBD. Currently, the majority of
studies assessing the role of BC constituents and their effects
on IBD are based on in vitro studies and rodent models.

Immunoglobulins
No evidence on immunoglobulins from BC was currently
found in IBD patients. However, immunoglobulins from
serum-derived bovine immunoglobulin/protein isolate in
the co-culture model of the intestinal barrier appeared to
reduce proinflammatory cytokine production, stabilize the
intestinal barrier integrity, and decrease bacterial transloca-
tion and thus alleviate antigen-associated inflammation in
IBD (34). In humans, the IgA concentration is higher com-
pared with other immunoglobulins, so further investigations
should exploit the role of exogenous bovine IgA application
in GI diseases (102).

Leukocytes and cytokines
Some research demonstrated that altered secretion of mono-
cytes and macrophages can be observed in IBD; for exam-
ple, CD patients had increased concentrations of CD14+

and CD16+ monocytes in peripheral blood compared
with controls, altered proportions between monocytes to
macrophages, and modified immune response of classical
monocytes compared with nonclassical or intermediate
subsets (103–107).

It should be stressed that CD11b deficiency is correlated
with dextran sulfate sodium (DSS)–induced colitis and
decreased anti-inflammatory IL-10 secretion (108). In turn,
CD11b+ macrophages are predominant CMCs in BC, and
they constitute from ∼50% to 90% (43, 48). Hu et al.
(108) observed that CD11b stimulates IL-10 production
and concomitantly attenuates colitis via Src-Akt signaling
pathway in mice.

This promotes BC as an attractive anti-IBD agent, as
supplementation with IL-10 alone was proved to be insuf-
ficient to suppress the entity of proinflammatory mediators
in chronic inflammation (109–111). However, it is extremely
essential to elucidate whether administration of bovine
leukocytes will be able to modify a proinflammatory state
through the GI tract in human IBD.
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Growth factors
Administration of growth factors contained in BC has been
correlated with its beneficial effects on GI diseases in both
animal models and humans. Several investigations confirmed
the preventive role of IGFs on colonic damage during
DSS-induced colitis in mice (112). Moreover, IGFs were
shown to play a substantial role in intestinal development
(113, 114)—for example, stimulate cell proliferation in small
intestinal crypts of piglets (115) as well as diminish bacterial
translocation and enhance antiapoptotic activity that protects
enterocytes during sepsis (116). The development of inflam-
mation has been associated with reduced IGF-1 synthesis,
which may occur in chronic IBD (53). Moreover, correlations
between the IGF system alternations and inflammation in
IBD patients have been confirmed (113, 114, 117–119).
In turn, DeBoer et al. (118) showed that augmented IGF
concentrations after anti–TNF-α treatment were associated
with increment in both muscle and bone mass in pediatric
CD patients.

A study by Oz et al. (120) showed that IL-10 knockout
mice fed a TGF-β2–containing diet gained weight and
had reduced diarrhea compared with the control group.
Other analyses confirmed a relation between TGF-β and
Th17 cell differentiation and production of IL-10 as well as
maintenance of the intestinal barrier integrity (121). TGF-
β induced phosphorylation of protein known as Mothers
against decapentaplegic homolog 2 (SMAD2) in LPS- and
DSS-induced colitis in mice, and therefore limited endo-
toxemia, tissue damage, and mortality (122). It is worth
mentioning that TGF-β retained its activity upon digestion
(123) or pasteurization of bovine milk (124).

Both oral and enteral nutrition with TGF-β significantly
mitigated IBD symptoms as well as lessened the severity
of disease symptoms (125–127). An example of the above
beneficial effects might be clinical remission and diminished
inflammation observed (126) in a study in which children
received a TGF-β–enriched mixture for 8 wk. In another
study, administration of TGF-β2 in the oral polymeric diet,
called CT3211, has been correlated with a clinical remission
rate in 79% of the pediatric CD patients (128). In a recent
study, TGF-β–rich enteral nutritional support appeared to
be effective in CD patients as it reduced the severity of
IBD symptoms in UC children. The authors suggested that
beneficial contribution of TGF-β may become an alternative
option of treatment for malnourished pediatric patients
(129).

Lactoferrin
Beneficial effects of LF have been studied principally in viral
infections including influenza, gastroenteritis, common cold,
and herpes (63). Regarding the anti-inflammatory activity of
LF (70, 71), it has been shown that altered immune response
in IBD may be prevented by modulation of TLR expression
(130). These anti-inflammatory effects have been elucidated
mainly by in vivo tests and in animal models. In an ex-
perimental dextran sulfate–induced mouse model of colitis,
oral administration of human LF resulted in diminished

inflammation in the LF group compared with control (131).
In another study in a DSS-induced mouse model, bovine LF
administration did not contribute to apoptotic and necrotic
damage but was correlated with limited protection in the
intestine by influencing the proinflammatory NF-κB and,
potentially, cytokine expression (132).

Beneficial effects of LF supplementation have also been
demonstrated in terms of the prevalence of necrotizing
enterocolitis in infants with a birth weight <1250 g (64).
However, in the latest randomized controlled trials (RCTs)
it has been proven that enteral supplementation of bovine
LF was not correlated with diminished late-onset infection in
preterm infants (133). Indisputably, the exact mechanism of
LF activity has not been clarified yet, and subsequent studies
are highly needed. It should be stressed that administration
of LF as a food component is considered safe for humans
(63, 68).

Casein
Casein peptides display opioid properties and, in a systematic
review, Brooke-Taylor et al. (79) proved that the μ-opioid
peptide, β-casomorphin-7 (BCM-7), and other short BCMs
(BCM-3, BCM-4, BCM-5) are released through GI digestion
from A1 (but not from A2) β-caseins. Some evidence also
confirms that BCM-7 is able to display κ-opioid activity and
binds to these receptors in the gut (79, 134). Concurrently,
some studies demonstrated that BCM-7 shows proinflam-
matory activity in the GI tract; for example, in a double-
blind, randomized crossover study, where adults consumed
exclusively either A1 or A2 milk for 2 wk (with a 2-wk
washout period after the first stage), significant correlations
between subjective markers of discomfort (abdominal pain,
bloating) and higher concentrations of fecal calprotectin (a
marker of intestinal inflammation) were observed in the
first group (135). Moreover, stool consistency, measured by
the Bristol Stool Scale, was significantly higher in the A1
milk group, and correlated with softer stools compared with
A2. In another double-blind, randomized crossover study,
post-dairy digestive discomfort has been observed in people
consuming A1 compared with the A2 type of β-casein (136).
These, as well as animal studies, also showed that A1 slows
GI transit in an opioid-mediated mechanism (137, 138).
Despite extensive evidence showing BCM-7 and GI symptom
linkages in IBD patients, further extensive clinical studies are
highly needed.

Glycomacropeptide
Treatment with GMP has been correlated with changes in
the composition of microbiota—that is, a significant increase
in beneficial microbiota with a simultaneous decrement in
pathological bacteria in mouse fecal samples (89). In line,
oral administration of GMP in mice has been associated with
augmentation of beneficial Firmicutes species (Allobaculum)
and depletion of Proteobacteria phylum, especially Desul-
fovibrio sp., which are linked to IBD pathogenesis (139).
Moreover, mice receiving GMP demonstrated significantly
higher concentrations of SFCAs, as evidenced in a cecal
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analysis. Other investigations in mice confirm that GMP
possesses an anti-inflammatory property and can reduce
the severity of IBD by concurrent stimulation of the innate
immunity and hindering T-cell–driven adaptive immunity
(140, 141).

Lactalbumin
The application of α-LA hydrolysates has been correlated
with beneficial effects in malnourished children with di-
arrhea: a greater weight gain and a lower incidence of
rehydration were observed; however, no benefits regarding
the duration of diarrhea or stool output were found (142,
143). Currently, there are no other investigations showing the
effectiveness of α-LA relating to IBD symptoms.

Nevertheless, the digestion of α-LA in the small intestine
leads to a release of several peptides with immunomodu-
latory and antimicrobial activity (95), while other peptides
predominantly demonstrate prebiotic activity (144); for
example, a tripeptide, Gly-Leu-Phe, has been confirmed to
stimulate both murine and human phagocytic cells and to
possess a protective role against Klebsiella pneumoniae infec-
tion (145, 146).

Similarly to casomorphin derivatives, components origi-
nated from LA digestion (e.g., β-lactorphin) exhibits opioid-
like activity and may influence the endogenous opioid system
whose disruptions are observed in and correlated with IBD
(147, 148). Moreover, these peptides could potentially mod-
ulate immune signaling by changing the gut microbiome.

Lactoperoxidase
LPO has been used to explain inflammation processes in
different tissues. Shin et al. (149) observed that virus-
infected mice exhibited milder pneumonia symptoms after
oral administration of LPO by damping the infiltration of
inflammatory cells in the lungs. In a further analysis, the same
authors demonstrated that administration of bovine LPO in
DSS-induced colitis in mice correlated with decreased IL-6
levels as well as an improved histological score (150).

In other studies, the interplay between LPO and dual
oxidase enzyme (DUOX) has been observed in IBD patients.
Some studies confirmed that DUOX2/DUOXA2, which
forms the predominant hydrogen peroxide–producing sys-
tem in the human colon, is significantly upregulated in active
UC (151). In turn, other authors found a correlation between
the DUOX2/DUOXA2 system and inflammation processes
in mice (152). Rigoni et al. (153) demonstrated that elevated
concentrations of LPO during the healing phase in mouse
colitis might support both hydrogen peroxide scavenging and
OSCN− secretion in the epithelium. The authors suggested
that different mechanisms for inactivation of microbial
factors may have evolved in humans and rodents. Yet, they
are all focused on controlling hydrogen peroxide levels
and improving mucosal recovery by limiting the extent
of hydrogen peroxide scavenging. Even though LPO will
probably not be expressed in the human colon (153), BC-
derived LPO-scavenging action might play a significant

role in the human gut, and further investigations are still
required.

Other constituents
In a recent analysis, increased ganglioside catabolism as well
as changes in the composition of gangliosides were observed
in the intestinal mucosa of IBD patients (154). It was reported
that gangliosides containing 3 unsaturated bonds (GD3 and
GD1a) were not found in the inflamed intestinal mucosa,
unlike the control group. It was suggested that positive effects
of a specific dietary ganglioside supplementation include
an increase in the intestinal integrity and enhancement of
the gut-barrier function. Thus, they may be beneficial in
some disorders, such as IBD (155). It is worth noticing that
sialoganglioside (GD3) is most abundant in BC (156).

Other studies focused on assessing the role of choline
in IBD (157). Lower serum concentrations of choline are
common in IBD patients, but no correlation between choline
deficiency and the severity of IBD has yet been proved. On
the other hand, Sagami et al. (158) suggested that choline
deficiency may be beneficial in DSS-induced colitis in mice
as it caused a loss of proinflammatory type II NK T cells.

Preclinical and Clinical Studies on BC
Supplementation in IBD
Until now, investigations on the anti-inflammatory effect of
whole BC had been conducted primarily in vitro and in
rodent models and only a few clinical trials in humans had
been conducted, and primarily in healthy subjects.

Lee et al. (159) showed that both whole and whey BC
fractions can suppress LPS-induced NF-κB activation in
mouse adipocytes. Moreover, anti-inflammatory, antioxida-
tive, and antiadipogenic effects of whole BC were signif-
icantly higher compared with whey BC. In DSS-induced
colitis in mice, administration of BC expedited epithelial
regeneration, as well as improved the histologic score of
severity of inflammation. Positive results were also linked
with reorganization of immunoregulatory mechanisms (17).
In the same mouse model, BC supplementation improved
occult blood and stool consistency, as well as contributed to
clinical recovery from colitis. However, it did not prevent an
initial weight loss (160). In a recently published study using
the 2,4,6-trinitrobenzenesulfonic acid (TNBS) colitis model
it has been observed that BC therapy alleviates intestinal
damage and ameliorates clinical symptoms in mice (130).
The authors propose that benefits have their origin in the
modulation of inflammatory response through TLRs as well
as in stabilization of the growth of beneficial bacteria. Current
studies evaluating the beneficial influence of BC on humans
have been conducted in healthy subjects, mainly athletes and
children.

In human peripheral blood mononuclear cells (PBMCs)
of 4 male endurance athletes, BC concentrate supplemen-
tation was correlated with cytokine secretion (49). It was
demonstrated that the concentrate of BC enhanced the
secretion of IL-2, IL-10, and IFN-γ , while addition of LPS
to PBMCs correlated with a release of IL-2 and inhibited
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secretion of TNF, IL-6, and IL-4 in the early phase. Beneficial
effects of BC have been reported in a meta-analysis evaluating
the effects of BC supplementation during training and related
to upper respiratory symptoms. However, it was observed
that the majority of clinical trials (4 of 5) were associated with
a moderate- or high-risk bias due to poor reporting practices
(161).

In a recent study, Hałasa et al. (162) demonstrated
that the zonulin concentration as well as the lactulose to
mannitol ratio were decreased by supplementation of 500 mg
colostrum for 20 d in 16 athletes during peak training
before a competition. In another investigation, the effec-
tiveness of BC supplementation was evaluated on exercise-
induced intestinal permeability in high temperature during a
14-d period. Supplementation of 20 g/d colostrum reduced
intestinal pain compared with the control group, but had
no impact on circulating concentration of bacterial DNA
(163).

A meta-analysis including 5 RCTs (324 patients) revealed
significant benefits of BC therapy in children (164). The
BC treatment was effective in the prevention of diarrhea
episodes, upper respiratory tract infection, and hospitaliza-
tion. The authors concluded that BC and related products
(hyperimmune BC and immunoglobulins derived from BC)
have a considerable impact on children with infectious
diarrhea and should be considered during its treatment.

Notwithstanding the aforementioned promising results,
currently there are no investigations pertaining to the efficacy
of oral BC supplementation in IBD patients. In this regard,
further high-quality RCTs are urgently needed. In a study by
Bölke et al. (165), oral pretreatment with BC significantly re-
duced endotoxin concentrations and shortened endotoxemia
in patients who underwent an abdominal surgery compared
with the control group. A study on the efficacy of BC enemas
in the treatment of UC was conducted by Khan et al. (166).
In a double-blind randomized trial, patients with left-sided
colitis were treated with BC or control solution for 4 wk.
All patients also received mesalazine at a dose of 1.6 g/d. If
the patients had been undergoing mesalazine treatment upon
inclusion in the study, the dose was increased accordingly. In
the BC group, a significant alleviation of symptoms compared
with controls was reported.

Due to the lack of studies assessing BC impact on humans,
an analysis of its potential contraindications seems essential.
An additional limitation on the use of BC products described
by its manufacturers includes allergy to cow milk. This,
however, has not been clinically confirmed.

What is noteworthy is the fact that, in the latest Interna-
tional Olympic Committee (IOC) statement, BC has been
classified as a supplement, which may indirectly improve
performance. Other nutritional supplements included into
this group were polyphenols, glutamine, caffeine, or omega-3
PUFAs (167).

Conclusions
BC includes a gamut of bioactive constituents, which
together may alleviate the clinical course of inflammatory

diseases, such as IBD. Currently available therapeutic ap-
proaches for IBD patients are still insufficient and future
treatment options with novel mechanisms are urgently
needed. Due to the lack of studies on the impact of BC on
humans, an analysis of not only several benefits but also
potential contraindications of its usage is essential. BC has
been shown as an efficient anti-inflammatory supplement as
a whole. Also, its constituents alone are taken into consid-
eration. Studies suggest that BC may counteract primarily
the increase in proinflammatory cytokines, but the observed
complexity of a cytokine storm in IBD patients allows to
conclude that beneficial effects of BC also stem from other
mechanisms of action. Therefore, it is essential to further
elucidate the beneficial effects of BC in IBD—for example,
by determining whether modulation of either monocyte or
macrophage representation with the use of colostrum will be
able to diminish the pro-inflammatory state through the GI
tract in human IBD. Moreover, future studies should clarify
the influence of orally consumed colostrum on the human
body due to a potential change in the biological activity
of its constituents during digestion, as well as a change in
pH depending on the GI tract segment. Another relevant
issue pertains to understanding the interplay between the BC
constituents such as GMP, PRP, or LA with the microbiota
and immunity. On the other hand, some BC components,
such as LA, may become valuable food components in the
future. However, in order to support this assumption, further
research is also needed. Undeniably, preserving the high
quality of commercially available colostrum to maintain its
beneficial activity far beyond harvest and processing is also
highly important.
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