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Abstract

CaMKII is an important mediator of forms of synaptic plasticity that are thought to underly

learning and memory. The CaMKII mutants K42M and K42R have been used interchange-

ably as research tools, although some reported phenotypic differences suggest that they

may differ in the extent to which they impair ATP binding. Here, we directly compared the

two mutations at the high ATP concentrations that exist within cells (~4 mM). We found that

both mutations equally blocked GluA1 phosphorylation in vitro and GluN2B binding within

cells. Both mutations also reduced but did not completely abolish CaMKII T286 autopho-

sphorylation in vitro or CaMKII movement to excitatory synapses in neurons. Thus, despite

previously suggested differences, both mutations appear to interfere with ATP binding to the

same extent.

Introduction

The Ca2+/calmodulin(CaM)-dependent protein kinase II (CaMKII; Fig 1) is a major mediator

of higher brain functions such as learning and memory, as well as of the underlying forms of

synaptic plasticity, specifically including long-term potentiation (LTP) of excitatory glutama-

tergic synapses [1–4]. Normal LTP is expressed largely by potentiation of synaptic AMPA-type

glutamate receptors (AMPARs) [5–7] and is thought to require (i) Ca2+-stimulated CaMKII

activity [8–10], (ii) the CaMKII T286 autophosphorylation that generates Ca2+-independent

“autonomous” activity [11, 12], and (iii) the CaMKII binding to the NMDA-type glutamate

receptor (NMDAR) subunit GluN2B that underlies much of the CaMKII targeting to excit-

atory synapses [13–16]. All three of these functions require nucleotide binding to CaMKII:

Whereas ATP binding is an obvious requirement for kinase activity (including autophosphor-

ylation), nucleotide binding is additionally required for efficient binding to GluN2B [17–19].

In case of GluN2B binding, ATP can be substituted for by other nucleotides such as ADP or

AMP-PNP [17], or even by the nucleotide-competitive inhibitors staurosporine or H7 [18].

In order to genetically abolish CaMKII activity for functional studies, mutations of its

lysine residue 42 (K42) have been utilized [20–26]. Homologues of K42, such as K72 in
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PKA, are found in every active kinase (in β-sheet 3), as it is involved in nucleotide binding

by two mechanisms: (i) it directly interacts with ATP or ADP (by interacting with the nega-

tively charged α- and β-phosphates) and (ii) it helps shape the overall nucleotide-binding

pocket by interactions with a negatively charged glutamic acid residue (on α-helix C; see Fig

1B). Mutations of CaMKII K42 to methionine (K42M) or arginine (K42R) have been used

interchangeably. However, K and R share the positive charge that mediates the crucial inter-

actions for the nucleotide binding. Thus, even though the K42R should be expected to sig-

nificantly reduce ATP binding, it might not completely eliminate it. Notably, due to the

high concentration of ATP within cells (~4 mM), even a 100-fold decrease in the CaMKII

affinity for ATP (i.e. KM increase from ~8 μM to 0.8 mM) would not be sufficient to dramat-

ically reduce kinase activity in cellular conditions. Furthermore, whereas the K42M mutant

has been described to disrupt CaMKII binding to GluN2B and localization to excitatory

synapses [17], the K42R mutant has been described to allow the GluN2B-mediated CaMKII

movement to excitatory synapses [23].

Here, we directly compared the K42R and K42M mutants for effects in vitro, in heterolo-

gous cells, and in hippocampal neurons. Our results indicate equal inhibition of ATP- effects

for both mutants: Both mutations blocked S831 phosphorylation of the AMPAR subunit

GluA1 in vitro and the Ca2+-induced binding to GluN2B in HEK cells. Both mutations also

much reduced but did not completely eliminate CaMKII T286 autophosphorylation in vitro or

glutamate-induced movement to synapses in neurons.

Materials and methods

Ethical statement

No live animal experiments were performed. For hippocampal cultures, P0-P1 neonatal rat

pups of both sexes were used. Pregnant Sprague-Dawley rats were supplied by Charles River

Labs. All animal treatment for this study was approved by the Institutional Animal Care and

Use Committee of the University of Colorado Anschutz Medical Campus.

Fig 1. CaMKII structure and regulation. (A) CaMKII forms 12meric holoenzymes, with each subunit containing an N-terminal kinase domain (blue),

regulatory domain (green) and C-terminal association domain (aqua). Direct Ca2+/CaM binding to each regulatory domain induces stimulated activity of

each subunit. A Ca2+/CaM-dependent inter-subunit autophosphorylation at T286 generated Ca2+-independent autonomous activity. Either Ca2+/CaM or

T286 phosphorylation is sufficient to induce binding to GluN2B, at least when nucleotide is present. (B) Ribbon structure of the kinase (blue) and

regulatory (green) domain. K42 (orange) on β-sheet 3 helps form the nucleotide binding pocket by interacting with residue E60 (magenta) on α-helix C

and with the α- and β-phosphates of ATP or ADP (not shown).

https://doi.org/10.1371/journal.pone.0236478.g001
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Constructs and protein preparations

Mammalian expression vectors for GFP-CaMKIIα [22, 27], shRNA for CaMKII knockdown

[28], pDisplay-mCherry-GluN2Bc (containing the GluN2B cytoplasmic C-tail from amino

acids 1122 to 1482) [29], labelled intrabody for PSD95 [30, 31], and bacterial expression vector

for GST-GluA1 C-tail [32] were described previously.

GFP-CaMKIIα WT and the K42 mutants were harvested from HEK-293 cells as previously

described [33]. For comparison, CaMKII concentrations were evaluated via Western Blot. Pro-

tein extracts were then supplemented with untransfected HEK-293 cell extract to normalize

content of total protein. GST-GluA1 C-tail was purified after bacterial expression as previously

described [32].

Western blot analysis of CaMKII activity assay

CaMKII activity was measured by in vitro phosphorylation of purified GST-GluA1 at Ser-831.

Reactions contained 10 nM CaMKII (subunit concentration), 1 μM GST-GluA1, 50 mM

PIPES pH 7.1, 2 mM CaCl2, 10 mM MgCl2, 1 μM calmodulin, 4 mM ATP, and 2 μM of the

phosphatase inhibitor microcystin. Reactions were done at 30˚C for 1 or 5 min, and stopped

by adding SDS-loading buffer containing 1 mM EDTA followed by incubation in a boiling

water bath for 10 min. Samples were then analyzed via Western Blot for GST, phospho-S831,

CaMKII, and phospho-T286, essentially as we have described previously [32, 34].

GluN2B colocalization in HEK cells

HEK-293 cells were transfected by the calcium phosphate method with pDisplay-mCh-

GluN2Bc and GFP-CaMKII WT, K42M, or K42R for 16–24 hours. Images from three inde-

pendent cultures were collected at 32˚C in HEPES buffered imaging solution as in the neuro-

nal imaging experiments using 0.5 μm steps over 4 μm of the cell center. Cells were imaged

before and 10 min after stimulation with 10 μM ionomycin. 2D maximum intensity projection

images were generated and analyzed using ImageJ software. A threshold of the mCh signal

above background was acquired, and a Pearson’s correlation of fluorescent overlap for each

time point was calculated. Raw Pearson’s correlations are shown.

Synaptic localization in dissociated hippocampal cultures

Image acquisition and analysis: DIV 15–18 rat neuronal cultures were transfected for 24–48

hours with shRNA for CaMKII 5’UTR to knock down endogenous CaMKII, mCh-PSD95

intrabody, GFP-CaMKII, and an iRFP empty vector as a cell fill. Images were collected at 32˚C

in HEPES buffered imaging solution containing (in mM) 130 NaCl, 5 KCl, 10 HEPES pH 7.4,

20 Glucose, 2 CaCl2, 1 MgCl2, adjusted to proper osmolarity with sucrose. Images of individual

neurons from two independent cultures were acquired by 0.5 μm steps over 6 μm. 2D maxi-

mum intensity projection images were then generated and analyzed using a custom-build pro-

gram in ImageJ. The program utilizes combinatorial thresholding to mask regions of the cell

that contain high intensity PSD-95 puncta (the post-synaptic side of excitatory synapses in

dendritic spines) and regions of the dendritic shaft that contain no fluorescence intensity of

PSD-95. The program then takes the ratio of average CaMKII fluorescence intensity of the

PSD-95 mask to the average CaMKII fluorescence intensity in the dendritic shaft mask as a

measure of synaptic enrichment. Note that using the average intensities makes the ratio inde-

pendent of the mask areas.

Neuronal cultures were stimulated by bath application of 100 μM glutamate and 10 μM gly-

cine for 1 min, which induces robust CaMKII accumulation at excitatory synapses [13, 17, 22,
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27, 31, 35] and has been previously shown to increase AMPAR surface expression [35]. This

stimulus was applied after the first image, and then washed out with 5 volumes of fresh imag-

ing solution to allow for post-stimulus timepoints of 1 and 5 min to be examined.

Results

The CaMKII K42M and K42R mutations prevent GluA1 phosphorylation

in vitro
Both K42M and K42R mutants were expected to reduce ATP binding by significantly increas-

ing the KM for ATP (~8 μM for CaMKII wild type). Here, we decided to determine if reduction

in ATP binding is sufficient to block kinase activity for both mutants also at high ATP concen-

trations (4 mM, i.e. the approximate typical concentration found within cells). We performed

in vitro reactions with CaMKII wild type versus K42M mutants that were expressed in HEK

cells, and with a GST-fusion protein of the GluA1 C-tail as substrate, followed by Western blot

analysis of phosphorylation of GluA1 at S831 (Fig 2A and S1 Fig), a CaMKII-site know to

mediate LTP-related increase in single channels conductance [36–38]. In control conditions

without kinase reaction (i.e. no ATP and no incubation at 30˚C), the antibody did not detect

any S831 phosphorylation. After 1 min of kinase reaction time (at 30˚C), a strong S831 phos-

phorylation signal was detected only for CaMKII wild type (Fig 2A). Even after a prolonged 5

min kinase reaction time, the K42M and K42R mutants still yielded only very faint signals, and

a similar faint signal was also observed in the no-kinase control with mock-transfected HEK

Fig 2. The K42M and K42R mutations impair CaMKII activity in vitro even at high ATP concentrations. (4 mM). Reactions were carried out for 1 min

or 5 min at 30˚C (or no-reaction control for 0 min on ice), and phosphorylation was detected by Western blot. (A) Both K42 mutations cause almost

complete block of the phosphorylation of an exogenous substrate, S831 of the GluA1 cytoplasmic C-tail (purfied as GST-fusion protein after expression in

bacteria). (B) Both K42 mutations reduce but do not completely block the fast CaMKII autophosphorylation at T286 in the same reactions.

https://doi.org/10.1371/journal.pone.0236478.g002
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cell extract (Fig 2A). These results indicate that the K42M and K42R mutant block CaMKII-

mediated substrate phosphorylation equally and effectively.

Residual T286 phosphorylation in the CaMKII K42M and K42R mutants

Next, we compared the two K42 mutants for CaMKII autophosphorylation at T286. For this

purpose, we re-probed the Western blots from the phospho-S831 analysis with a correspond-

ing anti-phospho-T286 antibody (Fig 2B and S1 Fig). In contrast to S831 phosphorylation,

T286 autophosphorylation by CaMKII wild type was complete already at 1 min and did not

further increase by prolonged 5 min reaction time (Fig 2B), consistent with the fast speed of

this autophosphorylation that rapidly depletes substrates to phosphorylate within the CaMKII

holoenzyme [39]. In contrast to S831 phosphorylation, substantial T286 autophosphorylation

was seen also for both of the K42 mutants, although to a substantially lesser degree the for

CaMKII wild type (Fig 2B). This indicates that there could be some level of residual ATP bind-

ing in both of the K42 mutants. However, most importantly, the K42R and K42M mutants do

not appear to differ in the level of any potential residual ATP binding.

CaMKII K42M and K42R mutations block the Ca2+-induced binding to

GluN2B

Nucleotide binding to CaMKII is required not only for kinase activity, but also for efficient

Ca2+/CaM-induced binding to the NMDAR subunit GluN2B (in a manner that is independent

from kinase activity) [17, 18]. Thus, we compared CaMKII wild type and the two K42 mutants

in our established GluN2B co-localization assay after expression in HEK cells. For this assay,

GFP-CaMKII is co-expressed together with an mCherry fusion protein containing a mem-

brane anchor and the cytoplasmic GluN2B C-tail; co-localization is induced by triggering a

Ca2+-stimulus with ionomycin [29, 40]. Without stimulation, little or no co-localization with

mCherry-GluN2B was observed for any of the GFP-CaMKII constructs (Fig 3A), as expected.

After ionomycin treatment, a significant increase in co-localization was seen, but only for

GFP-CaMKII wild type and not at all for either of the two K42 mutants (Fig 3A and 3B). Thus,

both the K42M and the K42R mutations completely block the Ca2+-induced binding to

GluN2B, even at the high ATP concentrations within cells.

CaMKII K42M and K42R mutations reduced synaptic enrichment in

neurons, but did not completely prevent glutamate-induced CaMKII

movement

CaMKII binding to GluN2B is thought to mediate much of the CaMKII targeting to excitatory

synapses and its further enrichment in response to LTP stimuli [13–16, 27, 41, 42]. (By con-

trast, LTD stimuli instead cause CaMKII movement to inhibitory synapses and this is not

mediated by GluN2B binding [31, 35]). Thus, we decided to compare CaMKII wild type and

the two K42 mutants for their basal localization and their LTP-related glutamate-induced

accumulation at excitatory synapses. Excitatory synapses were labeled in live hippocampal

neurons by co-expression of fluorescently-tagged intrabodies against the marker protein PSD-

95 [30], as we have recently described [31, 43]. As expected, the excitatory synapses were

mainly localized to small protrusions from the dendrites that are called dendritic spines (Fig

4A). Endogenous CaMKII was knocked down with our established shRNA [28] and replaced

by expressing either GFP-CaMKII wild type or a K42 mutant. (Fig 4A). Before stimulation,

GFP-CaMKII wild type localized significantly more to excitatory synapses than any of the K42

mutants (Fig 4A and 4B). Synaptic co-localization with PSD-95 of the two different K42
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mutants was indistinguishable from each other (Fig 4A and 4B) and from iRFP that was co-

expressed as cell fill (S2 Fig). Thus, the K42R and K42M mutations caused an equally reduced

basal localization to excitatory synapses.

After stimulation with glutamate (100 μM for 1 min, in presence of 10 μM of the NMDAR

co-agonist glycine), the difference in localization between CaMKII wild type and the K42

mutants was maintained (Fig 4A and 4B). In fact, under any conditions, only CaMKII wild

type showed any significant synaptic enrichment (with a spine to shaft ratio >1; Fig 4B). How-

ever, as the basal localization of the K42 mutants even showed a slight depletion at excitatory

synapses (with a spine to shaft ratio below 1; Fig 4B), glutamate stimuli still induced a small

but significant increase in synaptic localization (Fig 4C). No increase in PSD-95 co-localization

was observed for the iRFP cell fill (S2 Fig), indicating that the increased synaptic localization of

the K42 mutants is not due to changes in dendritic spine morphology. Importantly, this

smaller synaptic increase of the mutants was indistinguishable between the K42R and K42M

mutants, indicating that it is not caused by any difference between the two distinct K42

mutations.

Discussion

The results of this study show that the CaMKII K42R and K42M mutations are functionally

equivalent in disrupting nucleotide effects on CaMKII (such as kinase activity and GluN2B

binding), even at cellular ATP concentrations. Thus, the mutants can be considered equivalent

in the interpretation and comparison of the functional results obtained with them. This equiv-

alency is despite both theoretical considerations and some apparently contradictory

Fig 3. The K42M and K42R mutations prevent CaMKII binding to GluN2B in a cellular co-localization assay. GFP-CaMKII was co-expressed with

mCherry-labeled membrane-targeted GluN2Bc in HEK-293 cells. Co-localization was stimulated by inducing Ca2+ signals with 10 μM ionomycin, but only

for CaMKII wild type (WT; n = 23) and not for either the K42R (n = 11) or K42M (n = 12) mutants. (A) Example images before and 10 min after a 1 min

ionomycin treatment. Scale bar: 10 μm. (B) Quantification of the Pearsons correlation of co-localization, shown paired before and after stimulation for

each cell. ���: p<0.001; n.s.: not significant, two-way ANOVA with Bonferroni post-hoc analysis.

https://doi.org/10.1371/journal.pone.0236478.g003
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experimental observations: (i) the conserved positive charge in the K42R mutation raised the

possibilities of only partial impairment that could be insufficient for complete block at the

high ATP concentrations found within cells, and (ii) the K42M mutant was described to

impair the glutamate-induced synaptic CaMKII translocation and the underlying binding to

GluN2B [17], whereas the K42R mutant was described to maintain the synaptic translocation

[23]. Our results clarify that the apparently different observations are actually consistent with

each other: Both K42 mutants block Ca2+-induced CaMKII binding to GluN2B in heterolo-

gous cells, and both mutants reduce but do not completely block glutamate-induced CaMKII

movement to excitatory synapses. Thus, our direct comparison of the two mutants revealed

that both previous observations are likely true and still consistent with the equivalency of the

mutants: Both K42 mutants do allow significant synaptic CaMKII translocation, even though

their synaptic localization is much reduced compared to wild type. However, this also raises an

important question: If the glutamate-induced CaMKII movement to synapses is mediated by

GluN2B binding [13–16, 27, 41, 42] and the K42 mutants completely block this binding in het-

erologous cells (as shown previously for K42M [17] and here for both mutants), why do the

K42 mutants still show some movement to synapses in neurons? Part of the answer may lie in

the fact that CaMKII can also interact with numerous other proteins at excitatory synapses [2,

4, 44, 45]. However, this cannot be the full answer, as completely preventing CaMKII binding

to GluN2B completely disrupted the synaptic translocation [13, 15, 27, 43]. Thus, another part

Fig 4. The K42M and K42R mutations reduce synaptic localization of CaMKII in cultured hippocampal neurons. (A) Example images before and after stimulation

with 100 μM glutamate (in presence of 10 μM glycine) for 1 min. Scale bar: 4 μm. (B) Column statistics indicate that only CaMKII wild type is significantly synaptically

enriched (spine to shaft ratio>1) at any given time point; �: p<0.01; ���: p<0.0001, in one sample t-test (red). The K42M mutant showed even significantly reduced

synaptic localization (spine to shaft ratio<1) at one time point; #: p<0.01 (red). At any given time point, CaMKII wild type (n = 16) differed significantly from both the

K42R (n = 7) and the K42M (n = 13) mutants, but the K42 mutants did not differ from each other; �: p<0.05; ���: p<0.001; n.s.: not significant, two-way ANOVA with

Bonferroni post-hoc analysis (black). (C) Paired illustration of synaptic localization before and after glutamate values in the same neurons, indicating a mild but significant

increases in synaptic localization also for the two K42 mutants; �: p<0.05; ��: p<0.01; ���: p<0.001 two-way ANOVA with Bonferroni post-hoc analysis.

https://doi.org/10.1371/journal.pone.0236478.g004
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of the answer may be that the K42 mutants do not completely block GluN2B binding. Indeed,

in vitro, the K42M mutant retained ~10% of the GluN2B binding seen with CaMKII wild type

[17]. This dramatic reduction in binding may be sufficient to completely block Ca2+-induced

CaMKII movement to GluN2B in HEK cells (where the membrane-targeted GluN2B is more

dispersed and not clustered with other CaMKII binding proteins), but still allow some CaMKII

movement to synaptic GluN2B in neurons (where GluN2B is more locally clustered and in

vicinity of other CaMKII binding proteins). Clusters of CaMKII binding proteins may enable

simultaneous interactions of multiple subunits of a single CaMKII holoenzyme, thereby

enhancing overall binding via avidity effects.

The equivalence of the K42M and K42R mutations facilitates comparison of past and future

results obtained with them. However, other questions for their use as research tools remain.

For many cellular functions, these nucleotide binding-incompetent mutants do not only act as

“null” mutants but even as “dominant negatives”. However, the action as dominant negative

may depend on the specific cellular function, and thus, this designation cannot be made a pri-
ori. Further, the mechanism by which the mutants act as dominant negatives may also vary by

cellular function. For LTP, incorporating K42 mutants into CaMKII holoenzymes could act

dominantly negative by reducing the inter-subunit T286 autophosphorylation or by reducing

binding to GluN2B. Remarkably, even transient K42M expression has been described to per-

sistently erase memory (both normal spatial memory [21] and mal-adaptive addiction related

memory [20]), and it will be interesting to dissect the underlying mechanisms.

Supporting information

S1 Fig. Raw blot images related to Fig 2. Blots were developed using enhanced chemilumi-

nescent (ECL) HRP substrates (Western Lighting Plus ECL, Perkins Elmer) and imaged using

the ChemiImager 4400 system (Alpha-Innotech). Densitometry was calculated in FIJI (NIH).

(A) Western blots detecting GluA1 S831 phosphorylation and total GluA1. (B) Western blots

detecting CaMKII T286 phosphorylation and total CaMKII. (C) Detection of the stained non-

luminescent weight marker proteins under illumination with visible light.

(TIF)

S2 Fig. Synaptic localization of iRFP cell fill does not change with CaMKII wild type versus

mutant expression or glutamate stimuli. Related to Fig 4, as examples and quantification of

the cell fill co-expressed in the same neurons is shown. (A) Example images for PSD-95

(detected by intrabody), GFP-CaMKII, and iRFP detected within a dendritic segment of the

same cultured hippocampal neuron. (B) Quantification of the synaptic localization of iRFP

indicates that the cell fill is not enriched in synapses, neither in neurons expressing CaMKII

wild type nor in neurons expressing either of the two K42 mutants. The glutamate stimuli did

not change synaptic localization under either condition (n.s.: not significant in 2-way ANOVA

with Bonferoni post test).

(TIF)
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