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SUMMARY
Anti-CD19 chimeric antigen receptor (CAR) T cell therapy for relapsed or refractory (r/r) large B cell lymphoma
(LBCL) results in durable response in only a subset of patients. MYC overexpression in LBCL tumors is asso-
ciated with poor response to treatment. We tested whether an MYC-driven polyamine signature, as a liquid
biopsy, is predictive of response to anti-CD19CAR-T therapy in patientswith r/r LBCL. Elevated plasma acet-
ylated polyamines were associated with non-durable response. Concordantly, increased expression of sper-
midine synthase, a key enzyme that regulates levels of acetylated spermidine, was prognostic for survival in
r/r LBCL. A broad metabolite screen identified additional markers that resulted in a 6-marker panel (6MetP)
consisting of acetylspermidine, diacetylspermidine, and lysophospholipids, which was validated in an inde-
pendent set from another institution as predictive of non-durable response to CAR-T therapy. A polyamine
centric metabolomics liquid biopsy panel has predictive value for response to CAR-T therapy in r/r LBCL.
INTRODUCTION

Theuseofadoptively transferredTcellsmodifiedwithchimerican-

tigen receptor (CAR) has heralded a new era in the treatment of

large B cell lymphoma (LBCL) for patients with relapsed or refrac-

tory (r/r) LBCL.1–4 Three CD19-CAR-T cell products are approved

for r/r LBCL—axicabtagene ciloleucel,2 tisagenlecleucel,3 and li-

socabtagene maraleucel.4 However, despite remarkable overall

response rates (ORRs), long-term durability of responses with

these therapies was only observed in approximately 30%–40%

of patients.2–4
Cell Report
This is an open access article under the CC BY-N
Currently, there is a paucity of biomarkers that can predict pa-

tients with LBCL who are unlikely to achieve durable responses

withCAR-Tcell therapy.Prior studieshaveshown thatbiomarkers,

suchaselevated lactatedehydrogenase (LDH) levels, that serveas

ameasureof tumorburden, c-reactiveprotein (CRP), increased tu-

mor interferon signaling, and elevated interleukin-6 (IL-6) at base-

lineare associatedwith increased riskof early diseaseprogression

after CAR-T cell therapy in r/r LBCL.3,5,6 However, external valida-

tion of these findings has been limited. Thus, there is a need for

additional biomarkers to identify patients with LBCL at high risk

of relapse after CAR-T cell therapy.
s Medicine 3, 100720, November 15, 2022 ª 2022 The Author(s). 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1. Patient and tumor characteristics and incidence of CRS and ICANS in the test and validation cohorts

Test set Validation set

Ongoing CRa PD/PRa Ongoing CRb PDb

Participants, N 15 28 11 17

Age, mean ± SD 57 ± 16 60 ± 12 65 14 55 ± 15

Gender, N (%)

Female 2 (13) 11 (39) 7 (64) 5 (29)

Male 13 (87) 17 (61) 4 (36) 12 (71)

Disease type, N (%)

DLBCL 13 (87) 21 (75) 8 (73) 13 (76)

TFL 2 (13) 7 (25) – –

MCL – – 2 (18) 2 (12)

tCLL – – – 1 (6)

BCP-ALL – – 1 (9) 1 (6)

Stage, N (%)

I–II 4 (27) 5 (18) 4 (36) 4 (23)

III–IV 11 (73) 23 (82) 6 (55) 12 (71)

Unknown – – 1 (9) 1 (6)

Bulky disease, N (%)

< 10cm 8 (53) 20 (71) – –

R 10cm 3 (20) 3 (11) – –

Unknown 4 (27) 5 (18) – –

ABC/GCB status, N (%)

ABC 3 (20) 7 (25) – –

GCB 7 (47) 16 (57) – –

Unknown 5 (33) 5 (18) – –

Bcl-2/Bcl-6 expressors, N (%)

No 5 (33) 9 (32) – –

Yes 5 (33) 11 (39) – –

Unknown 5 (33) 8 (29) – –

Double/Ttiple Hitc, N (%)

No 9 (60) 15 (54) – –

Yes 1 (7) 7 (25) – –

Unknown 5 (33) 6 (21) – –

ECOG at day 0, N (%)

0 3 (20) 5 (18) 4 (36) 2 (12)

1 8 (53) 20 (71) 7 (64) 8 (47)

2 4 (27) 1 (4) – 4 (23)

3 – 2 (7) – 3 (18)

IPI score

0 1 (7) 1 (4) – –

1 3 (20) 4 (14) – –

2 6 (40) 7 (25) – –

3 3 (20) 10 (36) – –

4 2 (13) 6 (21) – –

LDH (U/L) at day 0, mean ± SD 276 ± 110 341 ± 192 231 ± 86 423 ± 286

CRS grade, N (%)

0 1 (7) 2 (7) – 2 (12)

1 8 (53) 14 (50) 7 (64) 7 (41)

2 6 (40) 10 (36) 3 (27) 5 (29)

(Continued on next page)
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Table 1. Continued

Test set Validation set

Ongoing CRa PD/PRa Ongoing CRb PDb

3 – 1 (4) 1 (9) 3 (18)

4 – 1 (4) – –

ICANs grade, N (%)

0 8 (53) 11 (39) 4 (36) 10 (59)

1 1 (7) 4 (14) 4 (36) 5 (29)

2 2 (13) 2 (7) 2 (18) 1 (6)

3 3 (20) 7 (25) – 1 (6)

4 1 (7) 4 (14) 1 (9) –

CR, complete response; PD, progressive disease; PR, partial response; DLBCL, diffuse large B cell lymphoma; TFL, transformed follicular lymphoma;

MCL, mantle cell lymphoma; tCLL, T cell chronic lymphocytic leukemia; BCP-ALL, B cell precursor acute lymphoblastic leukemia; ABC, activated B

cell; GBC, germinal center B cell; ECOG, Eastern Cooperative Oncology Group; IPI, International Prognostic Index; LDH, lactate dehydrogenase; CRS,

cytokine release syndrome; ICANS, immune effector cell-associated neurotoxicity syndrome.
aBased on 6 month follow-up period.
bBased on 3 month follow-up period.
cMYC plus Bcl-2 and/or Bcl-6 rearrangements.
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MYC is an oncogenic driver of LBCL pathogenesis.7,8 Recent

findings from the JULIET trial suggest that baseline MYC overex-

pression in r/r diffuse DLBCL (DLBCL) tumors is inversely associ-

ated with durable response to CAR-T cell therapy.9 Oncogenic

MYCregulates transcriptionof several polyaminemetabolizingen-

zymes, resulting in increased levels of circulating polyamines.10–12

Here, we tested the utility of plasma polyamines for predicting

poor response to CAR-T cell therapy as part of a comprehensive

plasma metabolomics profiling and observed elevated levels of

several polyamines to be associated with worse progression-

free survival (PFS) and overall survival (OS). Comprehensive me-

tabolomics profiling resulted in a panel consisting of polyamines

and lysophospholipids, which was validated in an independent

set for prediction of poor response to CAR-T therapy among pa-

tients with r/r LBCL.

RESULTS

Identification of predictive metabolite signatures and
model development
A test cohort consistingof plasmasamples collectedwithin 4 days

preceding anti-CD19 CAR-T cell therapy from 43 patients with r/r

LBCL at the MD Anderson Cancer Center was assembled to test

the performance of polyamines and other metabolites as poten-

tially predictive of response to CAR-T cell therapy (test set). Base-

line patient and tumor characteristics are provided in Table 1. Pa-

tients were treated with either axicabtagene ciloleucel (N = 39) or

tisagenlecleucel (N = 4). The median duration of follow up in the

test cohort was 11 months (range 0.5–27.6 months). Median

PFS was 4 months (Figure S1). Three patients died early due to

adverse events prior to response assessment at day 30. Among

the 40 evaluable patients, 15 (37%) had an ongoing complete

response (CR), one had an ongoing partial response (PR) at

6monthsof followup, and 24 (60%) hadprogressive disease (PD).

Four plasma polyamines (acetylspermidine [AcSpmd],

diacetylspermidine [DiAcSpmd], diacetylspermine [DAS], and

N-(3-acetamidopropyl)pyrrolidin-2-one)) were detected and
quantified (Table S1). Cox proportional hazard models revealed

that elevated levels of the polyamines AcSpmd, DiAcSpmd,

and DAS were associated with worse PFS and OS (Figure 1A).

At 95% specificity, AcSpmd, DiAcSpmd, and DAS had resultant

sensitivities of 17.9%, 32.1%, and 21.4%, respectively, at 95%

for identifying patients who had PD/PR or who died within

6 months post CAR-T cell treatment (Table S2). Plasma levels

of acetylated polyamines, particularly DAS, were positively

correlated with tumor staining for MYC (Table S3). We further as-

sessed intra-patient levels of AcSpmd, DiAcSpmd, and DAS up

to 16 days post CAR-T cell infusion, the results of which showed

that polyamines remained high in patients who had PD/PR or

who died within 6 months post CAR-T cell treatment compared

with those with an ongoing CR (Figure 2).

Complementary to the three polyamines (AcSpmd, DiAcSpmd,

and DAS), untargeted metabolomic analyses of these plasma

samples yielded an additional 746 annotatedmetabolite features.

Of these, 56 additional metabolites other than polyamines were

found to be statistically significantly (2-sided p < 0.05) associated

with PFS, and 19metabolites were prognostic for OS, of which 15

were prognostic for both PFS andOS (Table S1). In the case of in-

dividual lipid species, to mitigate non-specificity due to external

factors such as dietary patterns or randomness, emphasis was

given to those lipids that showed uniformity in the performance

characteristics among the entire lipid class (i.e., >80% of the de-

tected individual lipids in each lipid class exhibited concordant as-

sociations with clinical outcomes). On this basis, we found that

several cancer-relevant lysophospholipids10,13,14 were associ-

ated with worse survival outcomes (Figure 1).

Cox proportional hazard models with LASSO regularization

were used to select predictive metabolites, which resulted in a

6-marker metabolite panel (6MetP) consisting of AcSpmd,

DiAcSpmd on the basis of their increased levels, and four lyso-

phospholipids (lysophosphatidylcholine [16:0], lysophosphati-

dylcholine [14:0], plasmanyl-lysophosphatidycholines [P-18:0

or O-18:1], and plasmanyl-lysophosphatidycholine [P-18:1 or

O-18:2]) on the basis of their reduced levels for predicting PFS.
Cell Reports Medicine 3, 100720, November 15, 2022 3
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Figure 1. Association between circulating lysophospholipids and polyamines with progression-free survival and overall survival in patients

with B cell lymphoma treated with CAR-T

(A and B) Dot plots represent hazard ratios (HRs) (95% CI) per unit increase in log2 scale of detected polyamines and lysophospholipids for progression-free

survival (PFS) and overall survival (OS) in the test set (A) and the validation set (B).
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In multivariable Cox proportional hazard models, adjusting for

other significant (1-sided p < 0.05) variables, the 6MetP score

yielded a hazard ratio (HR) of 3.65 (95% confidence interval

[CI]: 1.38–9.67) per unit increase (Table S4). Assumptions of

Cox proportional hazard were met in our model.

The 6MetP panel had an area under the receiver operating

characteristic curve of 0.79 (95% CI: 0.65–0.93) with 40% sensi-

tivity at 95% specificity for discriminating patients who had PD/

PR or who died within 6 months post CAR-T cell treatment from

those that had an ongoing CR (Figure 3A and S2). Next, using log

rank test statistics from the Coxmodel, we calculated an optimal

change point for the 6MetP score to yield the greatest difference

between individuals in the two already defined groups (disease

progression versus no disease progression) (Figure S3). Ka-

plan-Meier survival curves revealed that patients with 6MetP

scores above the cutoff value had statistically significantly worse

PFS and worse OS (Figure 4A log rank Mantel Cox test 2-sided

p < 0.001). No statistically significant association was observed

between the 6MetP score and cytokine release syndrome (CRS)

or immune effector cell-associated neurotoxicity syndrome

(ICAN) toxicity (data not shown).

Testing of the metabolite biomarker panel in an
independent validation set
Validation of individual candidate metabolites as well as of the

6MetPusingfixedmodel coefficients andcutoff values for predict-

ing PFS following anti-CD19 CAR-T cell treatment was performed

in an independent validation set consisting of serumsamples from

28 patients with r/r LBCL who subsequently received anti-CD19

CAR-T cell therapy (Table 1). The median duration of follow up in

the validation cohort was 12 months (range 0.3–24.8 months). In

the validation set, 11 (39%) of the 28 patients had an ongoing
4 Cell Reports Medicine 3, 100720, November 15, 2022
CR at 6 months of follow up, whereas the other 17 (61%) patients

had PD or died. Median PFS and OS among non-responders was

2.9 and 8.25 months, respectively (Figure S1).

In the validation set, elevated circulating polyamines were

associated with poor PFS and poor OS, as was the case for

reduced levels of lysophospholipids (Figure 1B). The fixed

6MetP yielded an area under the receiver operating character-

istic curve (AUC) of 0.71 (95%CI: 0.52–0.90) with 41% sensitivity

at 95% specificity for distinguishing patients who relapsed or

died within 6 months post CAR-T cell treatment from those pa-

tients who had an ongoing CR (Figure 3B and S2). In multivari-

able analyses, when considering other variables that were statis-

tically significantly associated with PFS, the fixed 6MetP score

as a continuous variable was independently associated with

worse PFS (HR: 2.31 [95% CI: 1.05–5.05]) (Table S5). A 6MetP

score above the cutoff value that was established in the test

set was found to be a statistically significant (log rank Mantel

Cox test 1-sided p < 0.05) prognostic indicator of worse PFS

as well as OS in the validation set (Figure 4B).

mRNA expression of polyamine metabolizing enzymes is

prognostic in B cell lymphomas and is associated with reduced

tumor immune cell infiltrates.

Our analyses revealed that elevated levels of circulating poly-

amines are prognostic for poor PFS and OS among patients

receivingCAR-Tcell therapy.Weassessedwhether thecirculating

polyamine signature may be accounted for based on increased

expression of polyamine synthesizing enzymes in LBCL tumors.

We analyzed the Basso lymphoma gene-expression dataset16

and found thatmRNAexpression of enzymes central to polyamine

metabolism were statistically significantly higher (Wilcoxon rank

sum test 2-sided p < 0.05) in DLBCL cells compared with healthy

B lymphocytes (Figure 5A). Next, we assessed for association



Metabolite Responders Non-Responders Pval
DAS -0.077 (-0.107 to -0.065) 0.086 (0.062 to 0.115) <0.0001

AcSpmd 0.028 (0.013 to 0.048) 0.074 (0.057 to 0.087) <0.0001
DiAcSpmd 0.034 (0.020 to 0.034) 0.069 (0.057 to 0.078) <0.0001

Intra-patient slopes considering random variables for intercept and slope

Days Post CAR T Infusion

ecnadnubA
evitale

R

Diacetylspermine (DAS)

Days Post CAR T Infusion

Diacetylspermidine (DiAcSmd)

Days Post CAR T Infusion

Acetylspermidine (AcSmd)

Responders Non-Responders

Figure 2. Circulating polyamine levels post CAR-T cell infusion in patients with r/r LBCL

Linear mixed models with random intercept and slope were incorporated to calculate the association between polyamine levels following CAR-T infusion. Re-

ported values (slope and intercepts) in the table are the average representation of all calculated coefficients for each patient. p valueswere calculated from 10,000

bootstraps of the delta value between responders and non-responders.
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between gene expression of these polyamine metabolizing en-

zymes (PMEs) and PFS in the TCGA-DLBCL dataset. Of the

PMEs, elevated mRNA expression of spermidine synthase

(SRM) was identified as a statistically significant poor-prognostic

indicator of PFS (Figures 5B and 5C). Analysis of two additional in-

dependent B cell lymphoma transcriptomic datasets17,18 similarly

revealed elevated gene expression of SRM in LBCLs to be associ-

ated with statistically significantly worse OS (Figures 5B and 5C).

Thus, elevated plasma polyamines reflect increased mRNA

expression of PMEs in tumor samples, both of which are associ-

ated with poor prognosis in B cell lymphoma.

Using the TCGA-DLBCL and the Ma19 DLBCL transcriptomic

datasets, we additionally assessed the relationship between

gene expression of PMEs and the tumor immunophenotype and

found that elevatedmRNA levels of the PMEs ornithine decarbox-

ylase 1 (ODC1),SRM, and spermine synthase (SMS) were consis-

tently negatively correlated with immune-checkpoint-blockade-

related genes including cytotoxic T lymphocyte-associated

protein 4 (CTLA4) and programmed cell death 1 (PD-1) as well

as gene-based signatures of regulatory T cells (Tregs), T helper

17 (Th17) cells, T follicular helper (Tfh) cells, natural killer cells,

and eosinophils (Figure 5D; Tables S4, S6, and S7), suggesting

that LBCLs with elevated polyamine metabolism may exhibit

low immune infiltration.

DISCUSSION

Only a subset of patients with r/r LBCL receiving anti-CD19

CAR-T cell therapy will achieve a durable response, with over
half of the patients exhibiting disease relapse by 12 months after

treatment.21 The paucity of biomarkers that can predict durable

responses is a significant limiting factor for the individualized

management of patients undergoing treatment with CAR-T cell

therapy. We tested the hypothesis that altered polyamine meta-

bolism in LBCL may lead to a predictive liquid biopsy marker

combination. We used a training and validation approach to

interrogate the circulatingmetabolome and develop ametabolite

panel consisting of AcSpmd, DiAcSpmd, and lysophospholipids

that is predictive of poor response to anti-CD19 CAR-T cell treat-

ment and that identifies patients at high risk of disease progres-

sion. Importantly, when adjusting for other known risk factors

including Eastern Cooperative Oncology Group (ECOG) status22

and circulating LDH levels,5 the 6MetP score remained an inde-

pendent prognostic indicator of poor PFS following CAR-T cell

treatment.

MYC overexpression in r/r DLBCL tumors prior to CAR-T ther-

apy has been reported to be negatively associated with durable

response to CAR-T cell therapy.9 In our study, MYC overexpres-

sion in r/r DLBCL showed a tendency to be associated with poor

response to CAR-T therapy. Polyamine metabolism upregulation

through oncogenic MYC is a common metabolic irregularity in

aggressive cancers, including lymphomas.11,23,24 Specifically,

MYC is an established transcriptional regulator of PMEs,

including ODC1, SRM, and SMS, that yield non-acetylated poly-

amines. The catabolism of polyamines to their acetylated deriva-

tives is mediated by spermidine/spermine N1-acetyltransferase 1

(SAT1), which is responsive to intra-cellular polyamine levels.11,25

Here, we provide evidence that acetylated polyamines in the
Cell Reports Medicine 3, 100720, November 15, 2022 5
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Figure 3. Predictive performance of the 6-marker metabolite panel

(6MetP) for CAR-T cell response in the test and validation set

(A and B) AUC curves are shown using the 6MetP scores for distinguishing

patients who had who progressive disease or died within 6 months following

CAR T cell treatment from those patients who had an ongoing complete

response in the test set (A) and the validation set (B).
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blood are predictive of non-durable response to CAR-T cell ther-

apy in patients with r/r DLBCL. Moreover, our data suggest that

circulating acetylated polyamine levels may function as a better

predictor of therapeutic outcome to CAR-T cell therapy

compared with upstream MYC expression.

We additionally provide evidence that elevations in circulating

polyamines are associated with LBCL tumors that are character-

ized by low immune cell infiltrate. In prior studies of triple-nega-

tive breast cancer, we reported an association between plasma

DAS and tumor spermine synthase with outcome.11 A lack or

paucity of infiltrating T cells in tumors with elevated levels of

PMEs attenuates efficacy of immunotherapies, including

CAR-T cell therapy.26 Similarly, decreased antigen expression

before CAR-T cell treatment or antigen loss or antigen-low

escape following CAR-T cell treatment are associated with

CAR-T cell therapy resistance.27 Mechanistically, excessive pro-

duction and absorption of polyamines from the microenviron-

ment by cancer cells promotes their proliferation and immune

evasion.28–30 Recently, Jain and colleagues showed that

myeloid-derived suppressor cells (MDSCs) and higher IL-6 cyto-

kine levels are associated with reduced CAR-T cell expansion

and poor anti-lymphoma responses after anti-CD19 CAR-T cell

therapy.6 Polyamines have been reported to increase MDSCs

and lead to an immunosuppressive tumor microenvironment.31

Moreover, polyamines have been shown to be important for

effector function of several immune cell types including

T cells.32–34 Collectively, this suggest a possible pathophysio-

logic mechanism by which polyamines could dampen the effect

of CAR-T cell therapy and support development of therapeutic

strategies to target polyamine metabolism and uptake using

agents, such as the small-molecule ODC1 inhibitor difluorome-

thylornithine (DFMO) or the polyamine transporter inhibitor

AMXT-1501, to augment the efficacy of CAR-T cell therapy.35,36

Lysophopholipids, particularly lysophosphatidycholines, are

bioactive lipids that are scavenged and metabolized by cancer
6 Cell Reports Medicine 3, 100720, November 15, 2022
cells to promote cancer cell growth.10,37,38 Decreased levels of

lysophospholipids are frequently reported in plasma of individ-

uals presenting with various malignancies including pancreas,

lung, ovarian, and colorectal cancers.10,13,14 Metabolic plasticity

of T cells is crucial to maintain high invasion potential and cyto-

toxic function. To this end, prior studies have shown that the ly-

sophosphatidylcholine (LPC)-scavenging receptor MFSD2A is

highly expressed in activated T cells and memory T cells, and

transient increases in intra-cellular LPCs parallels and potenti-

ates T cell activation.32,39,40 Conditional loss of MFSD2A in

CD8+ T cells was shown to reduce LPCuptake, resulting in atten-

uated effector function and reduced memory T cell formation

andmaintenance.39 Therefore, it is likely that lower bioavailability

of circulating lysophospholipids may diminish proliferation and

functions of CAR-T cells, resulting in lower clinical efficacy. Prior

studies have demonstrated that targeting lysophospholipid

metabolism using edelfosine, a synthetic alkyl-lysophopholipid,

exerts preferential toxicity to cancer cells.41–43 Edelfosine may

thus provide another potential strategy for enhancing efficacy

of CAR-T treatment.

There are some limitations of our study. We found that

elevated tumoral gene expression of SRM is associated with

poor prognosis in lymphomas regardless of CAR-T cell treat-

ment. This suggests that increased plasma acetylated poly-

amine levels may indicate an aggressive manifestation of LBCL

that is less likely to respond to CAR-T cell therapy. Nevertheless,

the primary translational goal of the current study was to identify

and establish a clinically relevant metabolite panel that predicts

response to CAR-T treatment in r/r LBCL. Here, we report a

metabolite panel for risk of non-durable response to CAR-T ther-

apy among patients with r/r LBCL. While the size of the available

cohorts described in our study was limited, our independent vali-

dation of the fixed 6MetP score and derived cutoffs in samples

from an independent site provides confidence in the findings.

Moreover, we provide plausible mechanism consistent with the

state of the field, although we acknowledge that further investi-

gations will be needed to define the detailed mechanism(s) by

which metabolite features impact response to CAR-T treatment.

With CAR-T therapy being increasingly explored as a frontline

treatment for lymphoma, it remains to be determined whether

the metabolite panel can also identify individuals with newly

diagnosed lymphoma who are unlikely to respond to CAR-T

therapy.

In conclusion, we established a blood-based metabolite panel

that identifies patients who are less likely to respond to anti-

CD19CAR-T cell treatment andwho are at high risk of lymphoma

progression. Further validation of our 6MetP for predicting non-

response to CAR-T cell treatment and poor prognosis is war-

ranted in a larger sample size. The 6MetP, in combination with

other established risk markers,5 may provide a useful tool for

the management of patients with r/r LBCL.
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Figure 4. Association between 6MetP scores and PFS and OS in patients with B cell lymphoma treated with CAR-T

(A) Kaplan-Meier survival curves illustrate the association between the 6MetP > or% an optimal cutoff value for prognosticating PFS and OS in the test set. The

cutoff was established using log rank statistics15 in the test set and represents the optimal cutoff value for prognosticating PFS. Mantel Cox log rank tests were

used to compare differences in survival curves, and 2-sided p values are reported.

(B) Kaplan-Meier survival curves illustrate the association between the 6MetP > or% an optimal cutoff value established in the test set for prognosticating PFS

and OS in the validation set. Mantel Cox log rank tests were used to compare differences in survival curves, and 1-sided p values are reported.
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Figure 5. B cell lymphomas exhibit elevated mRNA expression of polyamine metabolizing enzymes and high spermidine synthase gene
expression is prognostic for poor OS

(A) Violin plots illustrating mRNA expression of polyamine-metabolizing enzymes (PMEs) in diffuse large B cell lymphoma and normal B lymphocytes in the Basso

lymphoma dataset.16 Statistical significance was determined by 2-sided Wilcoxon rank sum test. ODC1, ornithine decarboxylase 1; AMD1, adenosylmethionine

decarboxylase 1; SRM, spermidine synthase; SMS, spermine synthase; SAT1, spermidine/spermine N1-acetyltransferase 1.

(B) Dot plots illustrating HRs (95%CI) per unit increase inmRNA expression of PMEs, and PFS in The Cancer GenomeAtlas (TCGA)-diffuse large B cell lymphoma

(DLBCL) transcriptomic dataset and overall survival in the Lenz17 and Shipp18 B cell lymphoma transcriptomic datasets.

(C) Kaplan-Meier survival curves for association betweenmRNA expression of SRM>or% an optimal change point value,15 and PFS in the TCGA-DLBCLdataset

and overall survival in the Lenz17 and Shipp18 B cell lymphoma datasets, respectively.

(D) Dot plots illustrate spearman r coefficients (95%CI) for association betweenmRNA expression of PMEsODC1, SRM, and SMSwith gene-based signatures of

immune-cell infiltrates and immune-checkpoint-blockade-related genes in the TCGA-DLBCL andMa DLBCL19 transcriptomic datasets. Gene-based signatures

were according to Bindea et al.20 ODC1, ornithine decarboxylase 1; AMD1, adenosylmethionine decarboxylase 1; SRM, spermidine synthase; SMS, spermine

synthase; SAT1, spermidine/spermine N1-acetyltransferase 1.
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Materials availability
This study did not generate new reagents. There are restrictions to the availability of human biospecimens due to existing MTA.

Data and code availability
d Relevant data supporting the findings of this study are available within the Article and Supplemental Materials.

d No new code was generated for this study.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects
The human plasma and serum samples were collected through an international collaboration between MD Anderson Cancer Center

(MDACC), Houston, USA, and German Cancer Research Center (DKFZ), Heidelberg, Germany. The clinical data and patient’s serum

samples were collected under existing Institutional Research Board (IRB) approved protocols at each center and conducted in accor-

dance with institutional guidelines and the principles of the Declaration of Helsinki. All participants had consent for the use of samples

in ethically approved studies. Response status was determined by Lugano 2014 classification.44 Cytokine release syndrome (CRS)
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and immune effector cell-associated neurotoxicity syndrome (ICANS) were prospectively graded and managed according to the

CAR T-cell therapy associated toxicity guidelines.45 For MDACC cohort analysis, plasma samples were obtained from 43 sequential

r/r LBCL patients before they received CAR T-cell infusion as a standard of care product. Of the 43 samples, 39 were collected on the

day of treatment (day 0) and the remaining 4 were collected within 4 days prior to CAR T-cell therapy. Patients who were enrolled in

CAR T-cell clinical trials were excluded from the study. For validation purpose, serum samples obtained on day of treatment prior to

CAR T-cell infusion from another 28 patients from German (DKFZ) r/r LBCL cohort were analyzed.

METHOD DETAILS

Assessment of MYC rearrangement and protein expression
Information regarding MYC rearrangement and protein expression was obtained from the pathology report documented in the elec-

tronic medical record. Fluorescence in situ hybridization (FISH) analysis was used to determine MYC, BCL2, and BCL6 gene rear-

rangements. For MYC rearrangement detection, a MYC dual color break apart rearrangement probe located at 8q24.2 (Abbott

Molecular) was used – 5’MYC – centromeric (spectrum orange)/3’MYC- telomeric (spectrum green). The cutoff for positivity of

MYC rearrangement at MDACC pathology lab is 8.1%. For MYC protein expression, lymphoma tissue was stained with anti-c-

MYC (Ventana, Cat # 790-4628) and results documented as percentage of cells positive for c-MYC expression.

Metabolomic analysis
Sample extraction

Primary metabolites and biogenic amines. Plasma and serum metabolites were extracted from pre-aliquoted biospecimens (15mL)

with 45mL of LCMSgrademethanol (ThermoFisher) in a 96-well microplate (Eppendorf). Plates were heat sealed, vortexed for 5min at

750 rpm, and centrifuged at 20003 g for 10 min at room temperature. The supernatant (30mL) was carefully transferred to a 96-well

plate, leaving behind the precipitated protein. The supernatant was further diluted with 60mL of 100 mM ammonium formate, pH3

(Fisher Scientific). For Hydrophilic Interaction Liquid Chromatography (HILIC) positive ion analysis, 15mL of the supernatant and

ammonium formate mix were diluted with 195mL of 1:3:8:144 water (GenPure ultrapure water system, Thermofisher): LCMS grade

methanol (ThermoFisher): 100 mM ammonium formate, pH3 (Fisher Scientific): LCMS grade acetonitrile (ThermoFisher). For the

HILIC negative ion analysis, 15mL of the supernatant and ammonium formate mix were diluted with 90mL of LCMS grade acetonitrile

(ThermoFisher). For C18 analysis, 15mL of the supernatant and ammonium formate mix were diluted with 90mL water (GenPure ul-

trapure water system, ThermoFisher) for positive and negative ion modes, respectively. Each sample solution was transferred to

384-well microplate (Eppendorf) for LCMS analysis.

Complex lipids. Pre-aliquotedserumorplasmasamples (10mL)wereextractedwith30mLof LCMSgrade2-propanol (ThermoFisher) in

a 96-well microplate (Eppendorf). Plateswere heat sealed, vortexed for 5min at 750 rpm, and centrifuged at 2000 x g for 10min at room

temperature.The supernatant (10mL)wascarefully transferred toa96-well plate, leavingbehind theprecipitatedprotein.The supernatant

was further diluted with 90mL of 1:3:2 100 mM ammonium formate, pH3 (Fischer Scientific): LCMS grade acetonitrile (ThermoFisher):

LCMS grade 2-propanol (ThermoFisher) and transferred to a 384-well microplate (Eppendorf) for lipids analysis using LCMS.

Untargeted analysis of primary metabolites and biogenic amines. Untargeted metabolomics analysis was conducted on Waters

AcquityTM UPLC systemwith 2D column regeneration configuration (I-class and H-class) coupled to a Xevo G2-XS quadrupole time-

of-flight (qTOF) mass spectrometer. Chromatographic separation was performed using HILIC (AcquityTM UPLC BEH amide, 100 Å,

1.7 mm 2.13 100 mm, Waters Corporation, Milford, U.S.A) and C18 (AcquityTM UPLC HSS T3, 100 Å, 1.8 mm, 2.13 100 mm, Water

Corporation, Milford, U.S.A) columns at 45�C.
Quaternary solvent system mobile phases were (A) 0.1% formic acid in water, (B) 0.1% formic acid in acetonitrile and (D) 100 mM

ammonium formate, pH 3. Samples were separated using the following gradient profile: for the HILIC separation a starting gradient of

95% B and 5% D was linearly changed to 70% A, 25% B and 5% D over a 5 min period at 0.4 mL/min flow rate, and to 100% A over

1 min, followed by another 1 min isocratic gradient at 100% A at 0.4 mL/min flow rate to initiate the starting gradient for the next C18

run. For C18 separation, the chromatography gradient was as follows: starting conditions, 100% A, with a linear change to 5% A,

95% B over a 5 min period at 0.4 mL/min flow rate, reverted back to 95% B, 5% D over 1 min, and then followed by 1 min isocratic

gradient at 95% B, 5% D at 0.4 mL/min for the next HILIC run.

A binary pump was used for column regeneration and equilibration. The solvent system mobile phases were (A1) 100 mM ammo-

nium formate, pH 3, (A2) 0.1% formic in 2-propanol and (B1) 0.1% formic acid in acetonitrile. The HILIC column was stripped using

90% A2 for 5 min at 0.25 mL/min flow rate, followed by a 2 min equilibration using 100% B1 at 0.3 mL/min flow rate. Reverse phase

C18 column regeneration was performed using 95% A1, 5% B1 for 2 min followed by column equilibration using 5% A1, 95% B1 for

5 min at 0.4 mL/min flow rate.

Untargeted analysis of complex lipids. For the lipidomic assay, untargeted metabolomics analysis was conducted on a Waters

Acquity UPLC system coupled to a Xevo G2-XS quadrupole time-of-flight (qTOF) mass spectrometer. Chromatographic separation

was performed using a C18 (AcquityTM UPLC HSS T3, 100 Å, 1.8 mm, 2.1 3 100 mm, Water Corporation, Milford, U.S.A) column at

55�C. The mobile phases were (A) water, (B) acetonitrile, (C) 2-propanol and (D) 500 mM ammonium formate, pH 3. A starting elution

gradient of 20%A, 30%B, 49%Cand 1%Dwas linearly changed to 4%A, 14%B, 81%Cand 1%D for4.5min, followed by isocratic

elution at 4% A,14% B, 81% C and 1%D for 2.1 min and column equilibration with initial conditions for 1.4 min.
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Mass spectrometry data acquisition. Mass spectrometry data was acquired using ‘sensitivity’ mode in positive and negative

electrospray ionization mode within 50–800 Da range for primary metabolites and 100–2000 Da for complex lipids. For the elec-

trospray acquisition, the capillary voltage was set at 1.5 kV (positive), 3.0 kV (negative), sample cone voltage 30 V, source temper-

ature at 120�C, cone gas flow 50 L/h and desolvation gas flow rate of 800 L/h with scan time of 0.5 sec in continuum mode. Leucine

Enkephalin; 556.2771 Da (positive) and 554.2615 Da (negative) was used for lockspray correction and scans were performed at

0.5sec. The injection volume for each sample was 3mL for complex lipids, and 6mL for primary metabolites. The acquisition was

carried out with instrument auto gain control to optimize instrument sensitivity over the samples acquisition time.

Data were processed using Progenesis QI (Nonlinear, Waters). Peak picking and retention time alignment of LC-MS andMSe data

were performed using Progenesis QI software (Nonlinear, Waters). Data processing and peak annotations were performed using an

in-house automated pipeline as previously described.10–12,46 Annotationswere determined bymatching accuratemass and retention

times using customized libraries created from authentic standards and by matching experimental tandem mass spectrometry data

against the NIST MSMS, LipidBlast or HMDB v3 theoretical fragmentations; for complex lipids retention time patterns characteristic

of lipid subclasses was also considered. To correct for injection order drift, each feature was normalized using data from repeat in-

jections of quality control samples collected every 10 injections throughout the run sequence. Measurement data were smoothed by

LocallyWeighted Scatterplot Smoothing (LOESS) signal correction (QC-RLSC) as previously described. Values are reported as ratios

relative to the median of historical quality control reference samples run with every analytical batch for the given analyte.10–12,46

Gene expression datasets
Gene expression data for primary treatment-naı̈ve LBCLs and associated clinical information from The Cancer Genome Atlas

(TCGA)-DLBCL and the Ma B-Cell malignancies19 datasets were downloaded from cbioportal.47 Gene expression data and associ-

ated clinical information for the Basso Lymphoma,16 Lenz B-cell lymphoma,17 and Shipp B-Cell lymphoma18 datasets were down-

loaded from Oncomine database.48 The identifies of specific immune cell infiltrations were computationally inferred using RNA-seq

data based on gene sets overexpressed in one of 24 immune cell types, according to Bindea et al.20

Statistical analysis
For data analysis, we use PFS as our primary outcome of interest. Cox proportional hazard models with Least Absolute Shrinkage

and Selection Operator (LASSO) regularization using glmnet package in R statistical software49 were used to select metabolite fea-

tures and develop a biomarker panel for predicting PFS. LASSO in the cox regression adds a constraint to the optimization function.

Here, the Cox model assumes a semi-parametric form for the assumes a semi-parametric form for the hazard:

hiðtÞ = h0ðtÞext
i
b

where hi(t)is the hazard for patient i at time t, h0(t)is a shared baseline hazard, and b is a vector of size p (p = number of features in our

samples).

The corresponding partial likelihood to maximize for the cox equation is:

LðbÞ =
Ym

i = 1

e
xt
jðiÞb

P
j˛Ri

ext
i
b

Ri is the set of indices, j, with yj R ti (those at risk at time ti). This equation subjects to the following constrain:

a
X��bj

�� + ð1 � aÞ
X

b2
j % c

a = 1 gives the lasso penalty in these equations.

bs that are deemed not important in the likelihood function are shrunk to be zero, resulting in a simplified regression model.

Coefficients of the selected features were derived in the Test Set and applied to the Validation Set. To test for the proportionality of

Hazard assumption of a Cox regression, we utilized the method of Patricia et al.50

Log rank statistic based methods as described by Contal and O’Quigley15 were used to determine optimal cutoff value for the

model to distinguish patients that had progressive disease from those that had a complete response following CAR-T treatment. Ka-

plan-Meier survival analyses were performed using R Version 1.1.442. Log-rank (Mantel-Cox) tests were used to assess for statistical

differences between survival curves.

Linear mixed models with random intercept and slope were incorporated to calculate the association between polyamine levels

following CAR-T infusion. Reported values (slope and intercepts) are the average representation of all calculated coefficients for

each patient. P-values were calculated from 10,000 bootstraps of the delta value between responders and non-responders.

Area under the Receiver Operating Characteristic curves (AUC) were generated using R (R version 3.6.0). The 95% confidence

intervals presented for individual performance of each biomarker were based on the bootstrap procedure in which we re-sampled

with replacement 1000 times. For two-class comparisons, statistical significance was determined usingWilcoxon rank sum test. Sta-

tistical significance was determined at p-values <0.05 for all analyses unless otherwise stated. Figures were generated in Graph Pad

Prism Version 8.0 (GraphPad Software, Inc. San Diego, CA, USA).
e3 Cell Reports Medicine 3, 100720, November 15, 2022
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