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Functional brain network (FBN) provides an effective biomarker for understanding
brain activation patterns and a diagnostic criterion for neurodegenerative diseases
detections. Unfortunately, it remains challenges to estimate the biologically meaningful
or discriminative FBNs accurately, because of the poor quality of functional magnetic
resonance imaging data or our limited understanding of human brain. In this study,
a novel FBN estimation model based on group similarity prior was proposed. In
particular, we extended the FBN estimation model to tensor form and incorporated the
tensor trace-norm regularizer to formulate the group similarity constraint. To verify the
proposed method, we conducted experiments on identifying mild cognitive impairments
(MCIs) from normal controls (NCs) based on the estimated FBNs. Experimental
results illustrated that our method is effective in modeling FBNs. Consequently, we
achieved 91.97% classification accuracy, outperforming the state-of-the-art methods.
The post hoc analysis further demonstrated that more biologically meaningful functional
brain connections were obtained using our proposed method.

Keywords: functional brain network, functional magnetic resonance imaging, group similarity constraint, mild
cognitive impairment, Pearson’s correlation, partial correlation

INTRODUCTION

As a neurodegenerative disorder, Alzheimer’s disease (AD) is one of the most common causes of
dementia (Wee et al., 2012). According to a recent report (Bain et al., 2008), the incidence of AD
doublets every 5 years after age 60. AD seriously interferes with patients’ daily life, affects their
memory and ability to communicate, and eventually causes their deaths. Unfortunately, there is no
effective treatment for AD thus far. Hence, it is quite important to delay the onset and progression
of AD during its early stages via pharmacological and behavioral interventions.

Mild cognitive impairment (MCI) is often considered as a critical time window and treatment
period for the prediction or delaying the conversion in AD (Wee et al., 2012). In some
recent statistical studies, nearly 10–15% patients with MCI develop probable AD each year

Frontiers in Neuroscience | www.frontiersin.org 1 March 2020 | Volume 14 | Article 165

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00165
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2020.00165
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00165&domain=pdf&date_stamp=2020-03-10
https://www.frontiersin.org/articles/10.3389/fnins.2020.00165/full
http://loop.frontiersin.org/people/910142/overview
http://loop.frontiersin.org/people/747255/overview
http://loop.frontiersin.org/people/909484/overview
http://loop.frontiersin.org/people/459985/overview
http://loop.frontiersin.org/people/524024/overview
http://loop.frontiersin.org/people/558661/overview
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00165 March 9, 2020 Time: 17:51 # 2

Gao et al. Group Similarity Constraint FBN Estimation

(Grundman et al., 2004; Misra et al., 2009). The early detection
and accurate diagnosis of MCI is considered a significant means
of slowing AD progression (Alzheimer’s Association, 2017).

As a successful non-invasive technique, functional magnetic
resonance imaging (fMRI) provides an effective method of
measurement for revealing brain activities and patterns (Brunetti
et al., 2006; Kevin et al., 2008; Jin et al., 2010). However,
because spontaneous brain activity is random and asynchronous
across subjects and scanners, it remains a challenge to identify
MCI patients from normal controls (NC) by directly using
the imaging information. Furthermore, high-order FBN-based
statistical information provides new perspectives for discovering
brain activity and connection patterns, thus improving our ability
to understand brain information (Smith et al., 2011; Sporns, 2011;
Wee et al., 2012; Stam, 2014; Rosa et al., 2015). In addition,
various research has shown that the changing of functional
brain networks are closely related to various neurological and
psychological diseases such as AD (Supekar et al., 2008; Huang
et al., 2009; Liu F. et al., 2012), MCI (Fan and Browndyke, 2010;
Wee et al., 2012, 2014; Yu et al., 2016), autism spectrum disorder
(ASD) (Theije et al., 2011; Gotts et al., 2012), Parkinson’s disease
(PD) (Baggio et al., 2014), etc. All of these depend heavily on
the quality of the final estimated FBN. Hence, improved FBN
reliability is crucial to such estimates (Li et al., 2019a).

According to a FBN research review (Smith et al., 2011),
correlation-based methods such as Pearson’s correlation (PC)
(Li et al., 2017) and sparse representation (SR) (Lee et al.,
2011; Zhou et al., 2014), are generally more sensitive than
complex, high-order methods. However, due to the influence
of noise in the observed data, correlation-based brain networks
inevitably exhibit dense connections and thus contain substantial
noise or false connections. One solution is to introduce sparse
priors, as is done in the thresholding and SR (LASSO) methods.
Actually, the topological structure of an FBN involves more
than just sparsity (Sporns, 2011). Several studies (Lee et al.,
2011; Qiao et al., 2016; Wee et al., 2016; Yu et al., 2016;
Li et al., 2017, 2019b) have been focused on incorporating
additional biological priors into FBNs to make them more
discriminative. In practice, sparsity, modularity, group-sparsity,
low-rank, and scale-free priors are commonly used (Lee et al.,
2011; Qiao et al., 2016; Wee et al., 2016; Yu et al., 2016;
Li et al., 2017). Moreover, priors can also be obtained from
data quality (Li et al., 2019a) and other high-quality data (Li
et al., 2019b). Note that most of the biological/data priors can
be formulated into a regularized framework. This illustrates
that a reliable FBN estimation model should both fit the
data well and effectively encode brain organization priors
(Qiao et al., 2016).

Despite the advantages of existing FBN estimation methods,
it is currently still an open field to estimate FBNs due to
the complex of human brains and the poor quality of the
observed data. In this paper, we focus on the group similarity
prior of FBN (Wee et al., 2014), as shown in Figure 1A.
In contrast, most current FBN estimation methods focus
primarily on a single participant and rarely consider inter-
group information from cross-participants, which result in
different network topological structures across subjects. This

performance inevitably makes comparisons between subjects
difficult and thus can degrade the generalization performance
of trained classifiers. Besides, the existing group constraint
methods are mainly based primarily on the group sparsity
penalty (i.e., l2,1-norm) to mitigate inter-subject variability (Wee
et al., 2014; Yu et al., 2016). However, the specific information
from individuals can be ignored, due to the additional l2,1-
norm can often over-penalized or under-penalized connections
of estimated FBN as shown in Figure 1B. In addition, some
researchers have focused on group-fused multiple graphical-lasso
schemes (Liang et al., 2016, 2018), which alleviating the issue
of group sparsity constraints in some extent. As mentioned
above, existing group-based FBN estimation approaches still have
great potential.

In this paper, we use the regularization framework to
incorporate the group similarity constraint into the FBN
estimation model. In detail, we formulate the group similarity
prior as a tensor low-rank (TLR) regularizer and incorporate
it into the FBN estimation model. In addition, we further
incorporate the sparse and tensor low-rank (STLR) for better
FBN estimation. Since the low-rank is NP-hard, we optimize
its upper limit (i.e., the trace norm penalization) for better
calculation efficiency. In particular, we adopt Parallel factor
analysis (PARAFAC) to calculate its eigenvalues (Liu X. et al.,
2012) and design a proximal operator to estimate the FBN with
the group similarity constraint. In the end, we incorporate the
trace norm regularizer into the SR and PC models to create a
simple test platform. To verify the proposed methods, we adopt
an estimated FBN for MCI identification. In fact, the proposed
method uses the group similarity constraints to shrink the FBN
solution space, and thus can estimate more discriminative FBNs
effectively. The highlights of this paper include:

1. We incorporate the group similarity constraint into the
FBN estimation model using a low-rank regularizer. In
addition, we further relax it into a trace norm regularizer
and design an optimization algorithm to estimate FBNs
with group similarity.

2. We use group similarity-based FBNs to separate
MCIs from NCs. The experimental results show
that the proposed scheme outperforms the baseline
methods. Moreover, the proposed methods can
provide more biologically meaningful connections
than existing methods.

3. We provide an effective FBN estimation module useful in
modeling the group similarity prior. The module is flexible
enough to incorporate into other FBN estimation models.
The experimental results show that the proposed module
can effectively improve the MCI classification accuracies of
the estimated FBNs.

4. We identified the most significant functional connections
and the most discriminative brain regions using the
proposed FBN estimation model. This analysis of
functional connectivity and graph theory attributes can
be used to discover biologically meaningful biomarkers
and further elucidate the topological properties of a brain
network that is experiencing MCI.
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FIGURE 1 | The motivation for the proposed tensor based FBN estimation model. (A) The estimated FBNs tend to have a group constraint. (B) The group lasso may
easily lose discriminative features since it over-penalized or under-penalized connections from all subjects. In contrast, the tensor low-rank can effectively avoid this
issue and thus naturally provide more discriminative connections.

The remainder of this paper is organized as follows. In
Section 2, we introduce our data preparation methodology.
The proposed methods, i.e., the group similarity-based FBN
estimation schemes, including the motivations, models, and
algorithms are introduced. In Section 3, we evaluate the proposed
methods using MCI identification experiments. A discussion and
conclusions are presented in Sections 4 and 5, respectively.

MATERIALS AND METHODS

Data Acquisition
For this study, we adopted publically available neuroimaging data
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (Jack et al., 2010)1. ANDI was launched in 2003 by the
National Institute on Aging, the National Institute of Biomedical
Imaging and Bioengineering, the Food and Drug Administration,
private pharmaceutical companies, and non-profit organizations.
The initial goal of ADNI was to define biomarkers for use in
clinical trials and to determine the best way to measure the
treatment effects of AD therapeutics.

In particular, 137 participants including 68 MCIs and 69
NCs were adopted in this experiment, which was similar
to a previous study (Zhou et al., 2018). The scanning
parameters included: TR/TE = 3000/30 mm, flip angle = 80,
imaging matrix = 64 × 64, 48 slices, 140 volumes, and
voxel thickness = 3.3 mm. The SPM8 toolbox2 and DPARSFA
(version 2.2) (Chao-Gan and Yu-Feng, 2010) were used to
preprocess the fMRI data using the well-accepted pipelines. The
preprocessing pipeline included removing the first 10 volumes,
slice timing, realigning, normalizing, spatially smoothing,
temporally detrending, regressing out covariates (ventricle and
WM signals, as well as six head-motion parameters), and
temporally filtering. We followed previous work (Chen et al.,
2016, 2017) to alleviate head motion effects and artifacts and
excluded subjects with more than 2.5 min (50 frames) of data
with FD > 0.5 from further analysis (Power et al., 2012). Finally,

1http://adni.loni.ucla.edu
2http://www.fil.ion.ucl.ac.uk/spm/

we used the automated anatomical labeling (AAL) atlas (Tzourio-
Mazoyer et al., 2002) to partition pre-processed blood-oxygen
level dependent (BOLD) signals into 116 ROIs with 137 volumes.
Finally, for kth participants, we put these volumes into a data
matrix X(k) ∈ RN × T(X for short). For more details, please
refer to Zhou et al. (2018).

Functional Brain Network Estimation
After obtaining fMRI data matrix X from the R-fMRI data, we
performed FBN estimation. As mentioned above, correlation-
based FBN estimation methods have been demonstrated to be
more sensitive than some complex higher-order methods (Smith
et al., 2011). Therefore, this paper focuses on correlation-based
methods and adopts them as a baseline. In particular, we first
defined the data matrix (i.e., the BOLD signal matrix) X ∈
RN × T , where T is the number of volumes and N is the number
of ROIs. The fMRI time series associated with the ith ROI is
represented by xi ∈ RT, i = 1, · · · ,N.

Correlation-Based Methods
As the simplest and most widely used FBN estimation
schemes, PC-based FBN estimation methods account for a
large proportion of FBN studies (Smith et al., 2013). The FBN
edge weights W =

(
Wij

)
∈ RN × N can be calculated via PC

as follows:

Wij ×
(xi − xi)

T(xj − xj)√
(xi − xi)

T (xi − xi)
√
(xj − xj)

T(xj − xj)
, (1)

In Eq. (1), xi − xi is a centralized counterpart of xi. Due to the
effects of the noise in the fMRI data, PC always generates dense
FBNs. Thus, a thresholding scheme is often used to make the PC-
based FBNs sparse by filtering out the noisy or weak connections.
The PC based FBN can be expressed as follows:

Wij
(new)

×

{
Wij, Wij > threshold

0, otherwise
, (2)

where Wij
(new) denotes the connection value between nodes i and

j after thresholding.
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When one compares PC measures to full-correlation cross
ROIs, one notes that the interaction among multiple ROIs is
neglected due to the cofounding effect. In contrast, a partial
correlation is proposed by regressing out the confounding
effects from other ROIs. However, the partial correlation-
based methods can easily be ill-posed due to the singularity
of the covariance matrix 6 × XTX. One simple solution
is to incorporate an l1-norm regularizer into the partial
correlation model (Lee et al., 2011), thus naturally incorporating
the FBN sparsity prior (SR). The SR model is as follows:

minWij

∑n

i = 1

∣∣∣∣xi −
∑

j6=i
Wijxj

∣∣∣∣2 + λ∑
j 6=i

∣∣Wij
∣∣, (3)

The matrix form is proposed as
follows:

minW
∣∣∣∣X-XW

∣∣∣∣2
F + λ

∣∣∣∣W∣∣∣∣
1

s.t.Wii = 0,∀i = 1, · · · , n, (4)

Note that the l1-norm regularizer in Eq. (4) plays a key role in
achieving a sparse, stable solution (Lee et al., 2011).

Regularization Framework for FBN Estimation
Based on the above description, both PC- and SR-based FBN
estimation models can be summarized into the regularized FBN
learning framework. We can naturally incorporate a regularized
term and statistical information into the objective function in
order to construct a new FBN estimation platform. Specifically,
the platform can be formulated using a matrix-regularized
learning framework as follows:

minWf (X,W)+ λR (W), s.t.W ∈ 4, (5)

where f (X,W) models the FBN statistical information and
R (W) is the regularization term used to incorporate FBN
biological priors and stabilize solutions. In addition, some specific
constraints such as symmetry or positive semi-definiteness may
be included in 4 to shrink the W search space. This provides
an effective way of obtaining a better FBN. The λ is a hyper-
parameter that controls the balance between the first (data-
fitting) and second (regularization) terms.

Most of the recently proposed FBN estimation
models (Higgins et al., 2018; Li et al., 2018; Wang
et al., 2018; Zhou et al., 2018) can be unified under
this regularized framework by re-designing the two
terms in Eq. (5). Popular data-fitting terms include∣∣∣∣W–XTX

∣∣∣∣2
F used in Eq. (2) and

∣∣∣∣X–XW
∣∣∣∣2

F used in
Eq. (4), while popular regularization terms include l1-
norm (Huang et al., 2010), trace norm, their combination
(Qiao et al., 2016), etc.

Sparse and Low-Rank-Based FBN Estimation
Before we introduce the proposed method, we would like to
review the sparse and low-rank-based (SLR) FBN estimation
model briefly (Qiao et al., 2016). The sparsity and low-rank
regularizers, i.e., the l1-norm and trace norm) causes sparse
and similar connections across each brain region, naturally

incorporating estimated FBN modularity priors. The SLR FBN
estimation model is given as follows:

minW
∣∣∣∣X−XW

∣∣∣∣2
F + λ

∣∣∣∣W∣∣∣∣
1 + γ

∣∣∣∣W∣∣∣∣
∗
, (6)

where X is the BOLD signal data, W represents the estimated
FBNs, λ

∣∣∣∣W∣∣∣∣
1 is the sparsity regularizer and γ

∣∣∣∣W∣∣∣∣
∗

is the
low-rank regularizer.

Group Sparsity-Based FBN Estimation
However, the abovementioned FBN estimation models are unable
to deal with inter-subject variability problems because the FBN
is estimated at an individual level, which easily causes different
network topological structures across subjects To mitigate the
effects of inter-subject variability, Wee et al. proposed a group-
constrained sparse linear regression model (Wee et al., 2014)
that applied the idea of joint feature selection in group-lassos to
regression problems (Yuan and Lin, 2006). In particular, a group
sparsity regularizer (GSR, i.e., l2,1-norm) was incorporated into
the FBN estimation model. The GSR FBN estimation model is
given as follows:

minW j

N∑
k = 1

∣∣∣∣Xk
j−XkWk

j
∣∣∣∣2

F
+ λ

∣∣∣∣W∣∣∣∣
2,1, (7)

where Xk
j is the BOLD signal of the jth ROI and kth participant,

Xk is the data matrix of k participants, WK
j represents the

functional connections of the jth ROI and kth participant, and
λ
∣∣∣∣W∣∣∣∣

2,1 is the group sparsity regularizer. Relative to the SR
method, this minimizes inter-subject variability via an additional
l2-norm regularizer across all subjects. However, these methods
may penalize too much for estimated FBNs. For example, if
a functional connection is removed from the MCIs but exists
in NCs and the weight of this connection in the NCs is
slightly larger than in MCIs, the GSR method tends to force
removal of this connection from the NCs. In addition, if the
number of NCs or the weight of this connection in the NCs is
substantially larger than in the MCIs, the GSR method tends
to force this connection to exist in the MCIs. Thus, a GSR can
lose discriminative information from estimated FBNs, as shown
in Figure 1B.

Methods
To incorporate group constraints easily and directly, we first
extended the existing matrix regularization framework to tensor
form as follows:

minW
∑n

k = 1
f (X(k),W(k))−λR(W) (8)

where X(k) ∈ RN × T represents the input data of the kth
participant., ROI is the number of predefined ROIs, T is
the duration of data observation, and n is the number of
participants. W ∈ RN × N × K represents the estimated FBNs
and W(k) ∈ RN × N represents the corresponding FBN of the
kth participant. K is the number of participants. Obvious,
in Eq. (8), W is 3-dimensional tensors. As with the matrix
regularization framework, in Eq. (8),

∑n
k = 1 f (X(k),W(k)) is

Frontiers in Neuroscience | www.frontiersin.org 4 March 2020 | Volume 14 | Article 165

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00165 March 9, 2020 Time: 17:51 # 5

Gao et al. Group Similarity Constraint FBN Estimation

the data-fitting term and R(W) is the regularization term
in tensor format.

As shown in Figure 1, the abovementioned l2,1-norm
penalty excessively punishes the estimated FBNs, which leads to
interference across various groups in the data. To alleviate this
issue, this paper uses the tensor regularization framework to relax
the l2,1-norm penalty and naturally introduce the tensor low-rank
(TLR) regularizer to formulate the group similarity prior. The
proposed tensor low-rank-based FBN estimate can formulated
as follows:

minW
∑K

k = 1
f (X(k),W(k))+ λR(W)lowrank (9)

For the regularized terms in Eq. (9), R(W)lowrank indicates the
rank of tensor W, which can be represented by number of
non-zero elements in the eigenvalue of W. Unfortunately, the
low-rank regularizer is non-convex with respect to W and is NP-
hard to solve. Thus, we relax it to trace-norm

∣∣∣∣W∣∣∣∣
∗ and obtain

the following optimization model:

minW
∑K

k = 1
f (X(k),W(k))+ λ

∣∣∣∣W∣∣∣∣
∗ (10)

Here, we aim to capture the partial correlation of the observed
fMRI data due to its empirical effectiveness. In particular, we
adopted SR as a testing platform since the PC method suffers
from cofounding effects. In particular, we used

∣∣∣∣Xk
j− Xk Wi

j
∣∣∣∣2

F
as

the data-fitting term to formulate the inverse covariance structure
(i.e., partial correlation) in the data, and added a l1-norm penalty
to encode the sparse priors, resulting in the following Sparse and
Tensor Low-Rank (STLR) optimization model.

minW
∑K

k = 1

∣∣∣∣Xk
−XkWk∣∣∣∣2

F + λ
∣∣∣∣W∣∣∣∣

∗ + γ
∣∣∣∣W∣∣∣∣

1 (11)

where λ and γ are hyper-parameters used to control the
balance between the three terms in the objective function.
It should also be noted that the data fitting term can be
designed as

∣∣∣∣Wk
−XkTXk

∣∣∣∣2
F to capture full correlation statistics.

In addition, when γ = 0, the proposed method reduces
to the network learning model based on the traditional
sparse regression FBN estimation method given in Eq. (4).
As we can see in Eq. (11), when λ = 0, Eq. (8) will
be reduced to TLR.

Algorithm
Because the l1-norm and trace penalties exist, the proposed
scheme is convex but non-differentiable. This leads to a non-
trivial problem. Fortunately, several approaches have been
proposed for dealing with such issues (Donoho and Elad, 2003;
Meinshausen and Bühlmann, 2006; Tomioka and Sugiyama,
2009). In this paper, we use the proximal method (Combettes
and Pesquet, 2011) to solve the proposed optimal FBN estimation
model because of its simplicity and efficiency. The details are
given as follows:

First, we address the STLR or TLR data-fitting term (i.e.,∑n
k = 1

∣∣∣∣Xk
−XkWi

∣∣∣∣2
F), whose gradient with respect to Wk is

∇Wk f
(
Xk,Wk)

= XkTXkWk
− XkTXk. For each iteration, we

first update the W according to the gradient descent criterion:

Wk
t = Wk

t−1 − at∇f
(

Xk,Wk
t−1

)
, (12)

where at denotes the gradient descent step size. The initial value
of the step size at was set to 0.001 and subsequently adaptively
updated based on the line search scheme proposed by Nemirovski
(Nesterov, 1983) using the SLEP toolbox3.

Second, we address the regularization term
∣∣∣∣W∣∣∣∣

1.
According to the definition of a proximal operator (Combettes
and Pesquet, 2011), the proximal operator of

∣∣∣∣W∣∣∣∣
1 is

equivalent to the following soft thresholding operation
on W,

prox
λ
∣∣∣∣·∣∣∣∣

1
(W) = [sign

(
Wij

)
× max(Wij − λ, 0)]n × n,(13)

Similarly, the proximal operator λ
∣∣∣∣W∣∣∣∣

∗
corresponds to a

shrinkage operation on the singular values of W as follows.

prox
λ
∣∣∣∣·∣∣∣∣∗ (W) =

∑R

r = 1
max(λr − λ, 0)a(1)ir a(2)jr a(3)kr (14)

Here, air, ajr, akr is a vector in unit norm space and λr is the
corresponding eigenvalue based on the parallel factor analysis
(PARAFAC) (Liu X. et al., 2012). Then, the final algorithm is given
in Table 1:

TABLE 1 | The Algorithm for Estimating the FBN based on STLR/TLR.

Input: X,λ

Output: W

Initialize W

while not converged

Wk1 = gradient(W);

Wk1 = prox
λ
∣∣∣∣·∣∣∣∣∗ (Wk);

Wk1 = prox
λ
∣∣∣∣·∣∣∣∣

1
(Wk);

End

EXPERIMENT

Experimental Setting
After obtaining the FBNs of all subjects, the main task remaining
was to use the aforementioned FBNs to train a classifier that
could separate ASDs from NCs. Since the FBN matrix was
symmetric, we used only its upper triangular elements as
classification input features. Even so, the feature dimensions
remained too high to train a classifier with good generalization
due to the limited training sample availability in this study.
Therefore, we performed feature filtering before classification
training. Specifically, the classification pipeline included the
following two main steps. A flow chart is given in Figure 2.
First, we estimated FBNs for each individual using PC4, SR,

3http://yelabs.net/software/SLEP/
4In order to improve PC flexibility and conduct fair comparisons, we introduced a
hard-thresholding PC parameter by reducing a portion of weak connections.
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FIGURE 2 | This flowchart shows the TLR/STLR implementation in group
level FBN estimation and use of LOOCV for classification.

SLR, GSR, TLR and STLR. The estimated FBNs are shown in
Figure 3. After we obtained the estimated FBNs, we sought
to determine how to use these connections to separate MCIs
from NCs. It should be noted that both the feature selection
and classifier design have large influences on the final accuracy
(Wee et al., 2014). Because of this and because our focus
was FBN estimation, we adopted the simplest feature selection
method (t-test with p-value < 0.01) and used the most
popular linear SVM classifier with default parameter C = 1
(Chang and Lin, 2007).

Due to the small sample size, we used the leave one out cross
validation (LOOCV) strategy to verify method performance. In
this strategy, only one subject was left out of testing while the
others were used to train the models and determine optimal
parameters. To choose optimal parameters, an inner LOO cross-
validation was further conducted on the training data using a
grid-search strategy. In the outer loop, we chosen the training
and testing dataset to re-select feature and re-train the model
by the selected parameters. More specifically, for the regularized
parametersλ and γ , the candidate value range was [2−5, 2−4,
· · ·, 24, 25

]. For the hard threshold of PCthreshold, we used 20
sparsity levels with a range of [5%, 10%, · · · , 95%, 100%]. For
example, 90% means that 10% of the weak edges were filtered
out of the FBN. In the outer loop, we used a training and testing
dataset to re-select features and re-train the model based on the
selected parameters.

Network Visualization
For visual comparison of the FBNs constructed using the PC,
SR, SLR, GSR, TLR and STLR methods, we first show the
FBN adjacency matrices. W is shown as constructed via various
methods in Figure 3. It can be observed from Figure 3 that the
PC-based FBNs (i.e., Figure 3A) are quite different from the SR-
based FBNs (i.e., Figures 3B–F) since they use a different data-
fitting term [i.e., the first term in Eq. (5)]. Moreover, the topology
of the FBN as estimated via SLR is similar to those produced by
STLR and TLR because (1) both methods employ the same data-
fitting term and (2) the low-rank and sparse regularity behind

SLR (i.e., the trace norm in the matrix scheme) are based on the
STLR result (i.e., the trace norm in the tensor scheme).

MCI Identification
The MCI versus NC classification results from the ADNI dataset
are given in Table 2. The proposed STLR method achieved the
best accuracy in this experiment. In addition, the SLR and GSR
results are also provided in Figure 4 and Table 2.

A set of quantitative measurements, including accuracy,
sensitivity and specificity, were used to evaluate the classification
performances of six different methods (PC, SR, SLR, GSR, TLR
and STLR). The mathematical definitions of these three measures
follow:

Accuracy =

TruePostive + TrueNegative
TruePostive + FalsePostive + TrueNegative + FalseNegative

,

(15)

Sensitivity =
TruePostive

TruePostive + FalseNegative
, (16)

Specificity =
TrueNegative

TrueNegative + FalsePostive
, (17)

Here, TruePositive is the number of positive subjects that
are correctly classified in the ASD identification task. Similarly,
TrueNegative, FalsePostive, and FalseNegative are the quantities
of their respective, corresponding subjects. In addition, the ROC
of these methods is provided in Figure 4.

Sensitivity to Network Model Parameters
Regardless of the FBN estimation method used, the classification
accuracy is sensitive to various parameters (e.g., regularized
SLR, GSR, TLR, and STLR parameters). Therefore, in our above
classification experiments, we determine classification results
with various parameters based on LOOCV. In Figure 5, we show
the classification accuracies that correspond to various STLR
parametric combinations. Figure 5 shows that we achieve the best
accuracy (92.70%) with λ = 2−3 (for sparsity) and γ = 24 (for
tensor low-rank).

Most Discriminant Brain Regions and
Consensus Connections
As the selected connections in each inner loop might be
different. We recorded all selected features during the training

TABLE 2 | Classification performance of various FBN estimation methods on
the ADNI dataset.

Method Accuracy Sensitivity Specificity

PC 67.15 72.06 62.32

SR 78.10 79.41 76.81

SLR 80.29 80.88 79.71

GSR 83.21 88.24 78.26

TLR 85.40 86.96 83.82

STLR 91.97 92.65 91.30
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FIGURE 3 | The FBN adjacency matrices of a certain subject, constructed by (a) PC, (b) SR, (c) SLR, (d) GSR, (e) TLR and (STLR).

process. The statistics of the selected connections include a
mean of 131.08 and variance 4.15. In addition, we further
record the consensus connections for the classification model
in each inner LOOCV loops. As mentioned above, we select
the consensus connections with p-value < 0.01 in each loops,
resulting in the 82 consensus connections shown in Figure 6.
The thickness of an arc indicates the discriminative power
of an edge, and is inversely proportional to the estimated
p-values. The arc colors in Figure 6 are randomly generated
to differentiate ROIs. In particular, there are 19 functional
network connections that show decreased functional connectivity
in patients with MCI.

In addition, we provide the most significant MCI and
NC brain regions. In particular, the top 20 brain regions
(without the cerebellum) with the largest number of
discriminative connections (p < 0.01) are given in Table 3.
The experimental results demonstrate that the brain
regions that most discriminate between MCIs and NCs are
distributed primarily in the thalamus, middle temporal gyrus,
hippocampus, parahippocampal gyrus, inferior parietal (which
corresponds to the subcortical network), Default mode network
(DMN), dorsal attention network, and fronto-parietal task
control network.

STLR on an Independent Dataset
To evaluate the purposed scheme further, we re-selected 50
independent participants (including 27 MCIs and 23 NCs) from
the ADNI dataset to create an independent test dataset. Following
the same preprocessing pipelines as mentioned above, the model
was pre-trained on the aforementioned dataset with λ = 2−3

(for sparsity) and γ = 24 (for tensor low-rank). Consequently,
it achieved 86.00% accuracy, 91.30% sensitivity, and 85.19%
specificity, which further demonstrated the effectiveness of the
proposed method.

Altered Functional Network Topological
Properties in MCI Patients
Based on the FBN estimated via STLR with λ = 2−3 (for
sparsity) and γ = 24 (for tensor low-rank), several global
graph theory metrics, including clustering coefficients (Cp), the
shortest path length (Lp), the normalized clustering coefficient
(γ), the normalized characteristic path length (λ), as well as
small-world (σ) and global efficiencies (Eglobal), were calculated
to uncover the topological properties of functional networks
in MCI and NC groups (Table 4). Moreover, we employed
Modified Greedy strategy to calculate the modularity scores
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of the estimated FBNs (Newman, 2006). As expected, both
groups fit γ = Cp

real / Cp
rand >1, λ = Lp

real / Lp
rand
≈1 and

σ = γ/λ>1. Thus, the functional networks of MCI patients

FIGURE 4 | The ROC results of different methods.

and NCs exhibit small-world topological attributes (Watts and
Strogatz, 1998). This means that the brain networks of the
two groups maintain complex, efficient neural architectures that
optimize the balance between local specialization and global
integration (Sporns and Zwi, 2004; Achard and Bullmore,
2007; Sporns, 2012). Further comparisons suggest that the
small-world σ-values of MCI patients are lower than those
of NCs, which indicates the disruption of the “economic
small-world” (i.e., reductions in the effective segregation and
integration of information in the brain network). Furthermore,
we found the Cp-values and modularities (Q-values) in MCI
patients to be significantly lower than those in NC groups
(P < 0.01). These changes in Cp and modularity suggest
reduced local information processing network segregation in
MCI patients. Although there is no significant difference between
MCIs and NCs in Lp and Eglobal, the lower values of these
two global topological attributes in MCIs indicate decreased
network integration.

Using the definition of “hubs” (Sporns, 2011), we identified
hub nodes in MCI patients and NCs. As shown in Table 5,
the common MCI and NC hub regions are located primarily
in the bilateral superior temporal, bilateral heschl, right
middle frontal, and left angular gyrus. Most are distributed
in the DMN, auditory network, fronto-parietal task control
network, and dorsal attention network. Moreover, it is notable
that some hub nodes are present only in MCI patients but
absent in NCs. These are the several hubs found in the right
middle temporal and left middle frontal gyrus. In addition,

FIGURE 5 | Classification accuracy based on the networks estimated by the proposed method with different regularized parametric values in the interval [2−5,25].
The results are obtained by LOO test on all subjects.

Frontiers in Neuroscience | www.frontiersin.org 8 March 2020 | Volume 14 | Article 165

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00165 March 9, 2020 Time: 17:51 # 9

Gao et al. Group Similarity Constraint FBN Estimation

FIGURE 6 | (A) The most significant functional connections mapped on the ICBM 152 template using the BrainNetViewer package (http://nitrc.org/projects/bnv/).
The green and red lines represent connection weights that are decreased and increased in MCIs, respectively. (B) The consensus connections, selected via LOOCV,
between MCI and NC for 116 AAL template ROIs. The arc thickness indicates the discriminative power of an edge, which is inversely proportional to the estimated
p-values. This figure was created using a Matlab function, circularGraph, shared by Paul Kassebaum
(http://www.mathworks.com/matlabcentral/fileexchange/48576-circulargraph).

there are some hub nodes found in HCs but not in MCI
patients. They are located on the right inferior parietal
and right middle frontal gyrus. These discriminative brain
regions are distributed mainly in the DMN, fronto-parietal
task control, and dorsal attention networks. Differences
in subnetworks and corresponding brain regions play
important roles in differential diagnosis of MCI relative to
NC status.

DISCUSSION

The human brain is one of the most complex systems in
the world. To ensure efficient brain information interactions,
the FBN should have more “structures” than sparsity (Smith
et al., 2011; Sporns, 2011). In this work, we incorporated
a tensor low-rank regularizer to model the group similarity
priors of the estimated FBNs. The MCI versus NC classification
capabilities of the proposed models were verified using the
ADNI dataset. Based on the results, we give the following
brief discussion.

1. STLR-based methods were more accurate than baseline and
state-of-art methods on our dataset. One possible reason
is that the STLR scheme naturally incorporates additional
information from inter-group subjects, and thus can produce
clearer or more discriminative FBNs. It should also be noted
that the proposed scheme is a flexible module. In addition
to using SR-based models, it can be easily adopted using
other FBN estimation models such as PC-based, Bayesian,
or Granger causal-based networks. Also, we can incorporate
other biological group priors into the tensor-based FBN
estimation models.

2. The most discriminative functional connections and the
corresponding predominating brain regions were discussed.
By projecting brain regions with significant brain network
functional connectivity differences and graph theory metrics
to subnetworks, we found that the differences between MCI
patients and NCs were distributed mainly in the DMN, dorsal

TABLE 3 | The top 20 brain regions (without the cerebellum) with largest number
of discriminative connections.

AAL Number Corresponding brain regions Sub-networks

77 Thalamus_L Subcortical network

85 Temporal_Mid_L Dorsal attention network

6 Frontal_Sup_Orb_R Default mode network

9 Frontal_Mid_Orb_L Default mode network

38 Hippocampus_R Default mode network

39 ParaHippocampal_L Default mode network

61 Parietal_Inf_L Dorsal attention network

62 Parietal_Inf_R Dorsal attention network

70 Paracentral_Lobule_R Sensory/somatomotor hand

71 Caudate_L Fronto-parietal task control

72 Caudate_R Fronto-parietal task control

75 Pallidum_L Subcortical network

11 Frontal_Inf_Oper_L Executive control network

13 Frontal_Inf_Tri_L Executive control network

24 Frontal_Sup_Medial_R Fronto-parietal task control

42 Amygdala_R Subcortical network

45 Cuneus_L Visual network

47 Lingual_L Default mode network

73 Putamen_L Salience network

78 Thalamus_R Subcortical network
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TABLE 4 | Statistical result of topological properties between MCIs and NCs.

MCI NC

Cp* 0.216 ± 0.016 0.262 ± 0.022

Lp 9.459 ± 2.956 9.886 ± 1.712

γ 1.147 ± 0.069 1.186 ± 0.099

λ 1.056 ± 0.018 1.062 ± 0.019

σ 1.086 ± 0.052 1.117 ± 0.088

Eglobal 0.032 ± 0.003 0.033 ± 0.002

Q* 0.202 ± 0.000 0.959 ± 0.000

*Significant with FDR (0.05).

TABLE 5 | Hubs in MCI and NCs defined with the degree.

AAL Number Corresponding brain regions Sub-networks

MCI 88 Temporal_Pole_Mid_R Default mode network

79 Heschl_L Auditory network

10 Frontal_Mid_Orb_R Default mode network

80 Heschl_R Auditory network

81 Temporal_Sup_L Auditory network

65 Angular_L Default mode network

87 Temporal_Pole_Mid_L Default mode network

9 Frontal_Mid_Orb_L Fronto-parietal task control

83 Temporal_Pole_Sup_L Auditory network

84 Temporal_Pole_Sup_R Auditory network

NC 79 Heschl_L Auditory network

81 Temporal_Sup_L Auditory network

65 Angular_L Default mode network

66 Angular_R Default mode network

87 Temporal_Pole_Mid_L Default mode network

10 Frontal_Mid_Orb_R Default mode network

80 Heschl_R Auditory network

62 Parietal_Inf_R Dorsal attention network

84 Temporal_Pole_Sup_R Auditory network

83 Temporal_Pole_Sup_L Auditory network

AAL, the automated anatomical labeling atlas.

attention, frontoparietal task, executive control, and auditory
networks. Of these, the DMN had the most significant
discriminative ability. Changes in these subnetworks were
consistent with the results of previous cognitive function
studies such as those on spatial attention (Rolle et al., 2017),
executive function (Liao et al., 2019), and auditory function
(Bi et al., 2018) that reference subnetworks in MCI patients.
Moreover, the DMN has been regarded as the core part of a
functional center (Liu et al., 2019) that is involved in episodic
memory and is thought to be the major cognitive domain
impaired during early-stage AD (Eyler et al., 2019). That
the DMN contains the most distinguishing information for
MCI identification was verified using our proposed methods.
Furthermore, in our study, we located the predominant
brain regions (i.e., the thalamus, middle temporal gyrus,
hippocampus, parahippocampal gyrus, and inferior parietal
and middle frontal gyrus) for MCI diagnosis.

3. Brain network patterns are altered in MCI patients. Our
study found that the global topological properties of MCI

patients and NCs fit the small-world attribute. That is,
the brain networks of MCI and NC groups conform to
“economic small-world” classification, which uses rapid, real-
time information processing across separate brain regions to
maximize efficiency with minimal cost and to render resilience
against pathological attacks (Sporns and Zwi, 2004; Sporns,
2012; Liao et al., 2017). Statistical analysis suggested that the
value of small-world σ was lower in MCI patients than in NCs,
which indicated disruption of brain network integration and
segregation. This MCI small-world result is consistent with
previous research (Yu et al., 2018). Moreover, the significantly
decreased Cp and modularity values noted in MCI patients
further verified the reduction in brain network functional
segregation. Lower Cp- and Q-values suggest less concentrated
clustering of local connections and a weaker capacity for
specialized processing within densely interconnected groups
of brain regions in MCI patients (Rubinov and Sporns, 2010).

However, since the proposed scheme is a simple attempt to
model the group similarity prior, there are several limitations
in the proposed methods that should be improved upon
via future work.

1. In this paper, we provide only simple verification to
validate the effectiveness of the TL scheme and do not
consider other factors (e.g., Atlas selection and data
preprocessing). Therefore, we simply adopt the commonly
used AAL atlas to define ROI. In the future, we would like
to consider using a functional template (e.g., Power264) to
alleviate this issue.

2. In this paper, we use only the tensor low-rank module
to formulate the group similarity prior. In fact, the brain
has a highly complex structure, and group similarity
can be formulated into other formats. Therefore, we will
use more abundant biological/physical priors to construct
appropriate regular terms and further improve the current
group-constraint model in future studies.

3. The global graph theory metrics (i.e., Cp, Lp, and small-
world) were areas of focus in our study. However, nodal
and other graph theory metrics could also be used to
describe the complex topological mechanisms of brain
networks. In future research, more graph theory metrics,
such as the nodal shortest path length, local efficiency,
and participant coefficient of modularity may be used
to elaborate upon more specific local brain network
topological properties.

CONCLUSION

Human brain patterns still need deep exploration. Thus,
providing better brain descriptions remains challenging and
meaningful. Inspired by the group similarity priors, we
introduced the tensor based FBN estimation scheme. In
particular, we proposed TLR and STLR to estimated FBN. More
specially, we used the PARAFAC decomposition to capture
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FBNs with low-rank topologies. Finally, we applied the
estimated FBNs to classification. The results illustrate that the
introduction of the group similarity constraint can effectively
improve baseline method performance. The post hoc analysis
further showed that more biologically meaningful functional
brain connections were obtained by incorporating the group
similarity prior.
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