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Abstract: Human papillomaviruses (HPV) are the causative agents of cervical cancer and are also
associated with other genital malignancies, as well as an increasing number of head and neck
cancers. HPVs have evolved their life cycle to contend with the different cell states found in the
stratified epithelium. Initial infection and viral genome maintenance occurs in the proliferating
basal cells of the stratified epithelium, where cellular replication machinery is abundant. However,
the productive phase of the viral life cycle, including productive replication, late gene expression and
virion production, occurs upon epithelial differentiation, in cells that normally exit the cell cycle. This
review outlines how HPV interfaces with specific cellular signaling pathways and factors to provide
a replication-competent environment in differentiating cells.
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1. Introduction

Human papillomaviruses (HPV) are non-enveloped, small DNA viruses that exhibit a strict
tropism for epithelial cells. Over 200 types of HPVs have been identified and are classified into five
evolutionary genera (α, β, γ, µ, v) based on DNA sequence similarity [1]. The alpha group is the largest,
containing approximately 64 HPV types, and is divided based on tropism of each type for cutaneous
or mucosal epithelium. The cutaneous types cause common warts, which are rarely associated with
malignancy [2]. About 40 alpha HPVs infect the mucosal epithelium and are categorized as high-risk
or low-risk based on their association with cancer [1,3]. Low-risk types (e.g., HPV11 and HPV6) are
most commonly associated with benign genital warts, but are also implicated in the development of
laryngeal papillomas. The fifteen types termed high-risk (16, 18, 31, 33, 35, 39, 45, 51, 51, 56, 58, 59, 68,
73, 82) are classified as oncogenic based on their association with anogenital cancers [4]. In addition,
certain high-risk types, particularly HPV16, infect the oropharyngeal mucosa and are associated with
an increasing number of head and neck cancers [5]. Beta HPVs exhibit a tropism for the cutaneous
epithelium, with infection occurring early in life and typically producing an asymptomatic infection [6].
However, persistent infection with certain types of beta HPVs are associated with the development
of non-melanoma skin cancers at sun exposed sites, particularly in immunosuppressed patients and
patients with the rare disease epidermodysplasia verruciformis [7]. The mu, nu and gamma HPVs
infect the cutaneous epithelium and are most commonly associated with the formation of benign
papillomas [8].

Viruses 2017, 9, 261; doi:10.3390/v9090261 www.mdpi.com/journal/viruses

http://www.mdpi.com/journal/viruses
http://www.mdpi.com
http://dx.doi.org/10.3390/v9090261
http://www.mdpi.com/journal/viruses


Viruses 2017, 9, 261 2 of 21

2. HPV Life Cycle

The life cycle of HPV is intimately linked to the differentiation status of the host cell keratinocyte
and is characterized by three distinct phases of replication [9,10] (Figure 1). High-risk and low-risk
HPVs initiate infection by gaining access to the proliferating basal cells of the stratified epithelium
through a microwound [11]. Upon entry, HPV undergoes a transient round of replication referred
to as “establishment replication”, which results in a copy number of 50–100 viral genomes per cell.
Viral episomes are subsequently maintained in the undifferentiated basal cells by replicating along
with the host cell chromosomes. Only upon epithelial differentiation is the productive phase of the
viral life cycle activated, resulting in the amplification of viral genomes to thousands of viral copies
per cell in the suprabasal layers, as well as activation of late gene expression and virion assembly and
release [10,12]. Regulation of the viral life cycle in this manner allows HPV to avoid detection by the
immune response as high levels of viral gene expression as well as virion production are restricted to
the uppermost layers of the epithelium, which are not under immune surveillance [4].
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per cell. The expression of E6 and E7 allows for cell cycle re-entry upon differentiation, providing 
cellular factors for productive replication. E4 and E5 also contribute to efficient productive replication. 
Expression of L1 and L2 promotes the encapsidation of newly replicated genomes, resulting in virion 
release from the uppermost layers of the epithelium (brown hexagons). 

Due to the small coding capacity of the viral genome, HPV depends on the host DNA replication 
machinery to synthesize its DNA. While readily available in undifferentiated cells to stably maintain 
viral episomes, epithelial differentiation normally results in an exit from the cell cycle, limiting the 
availability of replication machinery in post-mitotic cells [13]. This provides a conundrum for HPV 
since differentiation is required to activate the productive phase of the life cycle, yet HPV also 
depends on cellular factors for replication. To support productive replication, HPV employs 
numerous mechanisms to subvert key regulatory pathways that regulate host cell replication, in turn 
maintaining differentiating cells active in the cell cycle. As such, HPV is able to reactivate cellular 
genes and signaling pathways necessary to support late gene expression and amplification of viral 
DNA. The majority of our insights into productive HPV replication have emerged from studying the 
alpha HPV types, primarily the high-risk types HPV16, HPV18 and HPV31. This review will focus 
on the mechanisms by which alpha HPVs renders post-mitotic, differentiating cells permissive for 
DNA synthesis during the productive phase of the viral life cycle.   

Figure 1. Human papillomavirus (HPV) Life Cycle. HPV infects the basal layer of the stratified
epithelium through a microwound. Upon entry into the cell, the virus transiently amplifies to 50–100
copies per cell. HPV genomes are maintained at a stable copy number in undifferentiated basal cells
by replicating along with cellular DNA. Upon differentiation, the productive phase of the life cycle is
activated, resulting in late gene expression and amplification of viral genomes to thousands of copies
per cell. The expression of E6 and E7 allows for cell cycle re-entry upon differentiation, providing
cellular factors for productive replication. E4 and E5 also contribute to efficient productive replication.
Expression of L1 and L2 promotes the encapsidation of newly replicated genomes, resulting in virion
release from the uppermost layers of the epithelium (brown hexagons).

Due to the small coding capacity of the viral genome, HPV depends on the host DNA replication
machinery to synthesize its DNA. While readily available in undifferentiated cells to stably maintain
viral episomes, epithelial differentiation normally results in an exit from the cell cycle, limiting
the availability of replication machinery in post-mitotic cells [13]. This provides a conundrum for
HPV since differentiation is required to activate the productive phase of the life cycle, yet HPV
also depends on cellular factors for replication. To support productive replication, HPV employs
numerous mechanisms to subvert key regulatory pathways that regulate host cell replication, in turn
maintaining differentiating cells active in the cell cycle. As such, HPV is able to reactivate cellular
genes and signaling pathways necessary to support late gene expression and amplification of viral
DNA. The majority of our insights into productive HPV replication have emerged from studying the
alpha HPV types, primarily the high-risk types HPV16, HPV18 and HPV31. This review will focus on
the mechanisms by which alpha HPVs renders post-mitotic, differentiating cells permissive for DNA
synthesis during the productive phase of the viral life cycle.
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3. HPV Genome Organization

The HPV genome exists as a covalently closed circle (episome) of approximately 8 kb [8]. HPV
genomes are histone-associated in the virion as well as in infected cells, exhibiting a nucleosomal pattern
similar to that of cellular DNA [14,15]. HPV genomes contain six to eight open reading frames (ORF)
that are expressed as polycistronic transcripts that are then alternatively spliced to yield individual gene
products [16,17] (Figure 2). High-risk HPV genomes contain two main promoters that are active at
different stages in the viral life cycle [18–20]. In undifferentiated epithelial cells, viral gene expression
is regulated by the early promoter, which is located adjacent to the E6 ORF in the upstream regulatory
region (URR) and is referred to as p97 for HPV16 and HPV31, and p105 for HPV18. The early promoter
directs expression of E1 and E2, which is necessary for viral replication. E1 is an ATP-dependent
helicase that facilitates unwinding of the viral DNA and also recruits cellular factors to the viral origin of
replication, located in the URR [21]. E2 is a sequence-specific DNA binding protein that has multiple
binding sites in the URR. E2 binds and recruits E1 to a specific E1 binding site in the viral origin. E2
also regulates viral gene expression from the early promoter. In addition, E2 contributes to episomal
maintenance in undifferentiated cells by tethering viral genomes to host mitotic chromosomes [22].
E6 and E7, which are the oncoproteins for the high-risk HPV types, are also expressed from the early
promoter. E6 and E7 contribute to viral replication through their ability to modulate cell cycle control,
cell survival, cellular differentiation, immune evasion, as well as DNA damage responses [23–27]. E1ˆE4
is encoded by a spliced RNA that fuses the first five amino acids of the E1 ORF with E4 [28]. While E1ˆE4
and E5 are expressed at low levels from the early promoter in undifferentiated cells, the high-risk E4 and
E5 proteins seem to be primarily involved in facilitating efficient productive replication in differentiating
cells [29–33]. Some HPV types express a fusion of E8 and the C-terminal half of the E2 ORF (E8ˆE2),
which initiates from a promoter in the E1 ORF and functions to limit viral replication and transcription
in undifferentiated and differentiated cells [34]. The late promoter is located in the E7 ORF (p742 HPV31,
p811 HPV18, p670 HPV16) and is activated upon epithelial differentiation [35–37]. The late promoter
is not regulated by E2 and drives high levels of expression of E1 and E2, as well as E1ˆE4 and E5 to
facilitate productive viral replication. In addition, the late promoter directs expression of the L1 and L2
capsid genes to allow for encapsidation of viral genomes in the uppermost layers of the epithelium.
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Figure 2. Linear depiction of the HPV31 genome. The open reading frames (ORF) are indicated by
the color blocks. The early promoter is located upstream of the E6 ORF (p97) and the late promoter
is located in the E7 ORF (p742). E8ˆE2 is expressed from a promoter located in the E1 ORF (pE8).
The early polyadenylation site is located at the 3’ end of the E5 ORF (pAE) and the late polyadenylation
site (pAL) is located in the URR (Upstream Regulatory Region). The origin of replication, as well as E1
and E2 binding sites are also located in the URR.

4. Regulation of Viral Gene Expression upon Keratinocyte Differentiation

Efficient amplification of HPV genomes upon differentiation requires activation of the late promoter
to provide increased levels of E1, E2, E1ˆE4 and E5 [10]. The early promoter remains active upon
differentiation, directing expression of E6 and E7, which is also necessary for late viral events. The tight
link between differentiation and late gene expression suggests that differentiation-specific factors
are required for late promoter activation. Chromatin rearrangements and histone modifications are
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detected at the late promoter upon differentiation, though how this is regulated remains unclear [38,39].
A variety of transcription factors have been shown to bind to the late promoter in the context of
complete, episomal genomes, both in undifferentiated and differentiated cells, including c-Myb, C/EBPα,
C/EBPβ, NFAT (Nuclear Factor of Activated T-cells), YY1 (Yin Yang 1), NF1 (Nuclear Factor 1), Oct-1
(Octamer-binding transcription factor 1), c-Jun, and Sp1 (Specificity Protein 1) [38,40]. However, only
the LIP (Liver-enriched Inhibitory Protein) and LAP (Liver-enriched Activator Protein) isoforms of
C/EBPα have been shown to regulate late promoter activity [41]. More recent studies have shown that
transcription elongation regulates late promoter activity through the recruitment of elongation mediators
(e.g., CDK8, BRD4) to viral genomes upon differentiation [42]. Late gene expression is also regulated by
alternative splicing and changes in polyadenylation site usage [16]. Upon differentiation, read-through
of the early polyadenylation site (pAE) located at the end of the E5 ORF allows late transcripts to be
polyadenylated at the late polyadenylation (pAL) site located in the URR, facilitating expression of L1
and L2. Transcriptional read-through may be influenced by E2 expression, which increases in the mid to
upper epithelial layers of the epithelium and has been shown to repress polyadenylation at the early
site [43–45]. Polyadenylation is co-transcriptionally regulated with splicing, and certain splicing factors
have been shown to influence polyadenylation site usage for HPV16 [46,47]. Splicing of HPV transcripts
is positively regulated by Serine Arginine splicing factors (SRSF) (e.g., SRSF1, SRSF2, SRSF3), which
increase upon differentiation and are regulated transcriptionally by E2 [46,48]. SRSF9 has also been
shown to increase the efficiency of late RNA splicing [49]. Studies by the Parish lab recently demonstrated
that CTCF insulator proteins regulate viral transcript splicing upon differentiation through binding to the
HPV18 E2 ORF [50]. Mutation of the E2 CTCF binding site in the context of the HPV18 genome results in
increased levels of E6 and E7 and increased proliferative capacity in suprabasal cells [50]. The E2 CTCF
binding site is conserved across high-risk types, suggesting that HPV has evolved CTCF recruitment to
viral genomes to control the levels of E6 and E7 upon differentiation, possibly to facilitate eventual exit
from the cell cycle to allow for virion assembly and release.

5. Maintenance of Proliferative Potential in Differentiating Cells

5.1. Disruption of Rb/E2F Complexes

As normal, uninfected cells leave the basal layer, they lose proliferative potential and begin a
terminal differentiation program [13]. However, a fundamentally important aspect of the HPV life
cycle is to maintain cell cycle competence in differentiating epithelial cells to provide cellular factors
for productive replication. E7 plays a critical role in this process though the binding and targeted
degradation of the tumor suppressor pRb, as well as the related pocket proteins p107 and p130 [51]
(Figure 3). Rb family members regulate the G1 to S-phase transition by controlling the activity of
E2F transcription factors [52]. E7 binds to Rb family members through a conserved LXCXE domain
located in the extreme C-terminus that disrupts the interaction between Rb and E2F transcription
factors [53,54]. Disruption of the Rb/E2F interaction results in constitutive activation of E2F-resposive
genes, allowing E7 to push differentiating cells back into S-phase, disrupting suprabasal quiescence
and reactivating cellular DNA synthesis [55–58]. As a result, suprabasal cells exhibit markers of
differentiation, as well as markers of cell cycle re-entry, including PCNA, cyclin A and cyclin E [55,59].
Low-risk E7 proteins also bind pRb, p107 and p130, but with much lower affinity, and only target p130
for degradation [53,60,61]. The loss of E7 expression in the context of HPV16 infection prevents the
induction of host cell replication machinery and productive viral replication in suprabasal epithelial
cells of organotypic raft cultures, which recapitulate the three-dimensional architecture of the stratified
epithelium [62,63]. These studies highlight the importance of E7 in differentiation-dependent viral
events. In addition to Rb family members, the interaction between E7 and type 1 histone deacetylases
(HDAC1-3) is also important in maintaining E2F activation upon differentiation and facilitating viral
replication [64–66]. HPV31 E7 specifically increases the levels of E2F2 by preventing HDAC binding to
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the e2f2 promoter [65]. The increase in E2F2 is necessary for productive viral replication, though the
downstream targets of E2F2 have not yet been identified.Viruses 2017, 9, 261 5 of 21 
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regulate entry into S-phase by negatively regulating E2F transcription factors. Disruption of the
pRb/E2F interaction by E7 allows for constitutive activation of E2F-responsive genes, allowing for
S-phase re-entry by post-mitotic cells. Unscheduled S-phase entry induced by E7 results in increased
p53 that is targeted for degradation by E6 to avoid apoptosis or cell cycle arrest in G1, as well as to
block p53’s negative effects on productive replication. E5 contributes to productive viral replication
by maintaining cell cycle competency upon differentiation through interaction with BAP31, as well
as through activation of epidermal growth factor receptor (EGFR), mitogen activated protein kinase
(p38MAPK) and extracellular signal-regulated kinase (ERK)1/2. E4 may increase the efficiency of viral
genome amplification by sustaining a G2-arrested environment upon differentiation, and through
activation of MAPK signaling (p38, ERK1/2, pJNK). T bars indicate inhibition. Arrows indicate
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5.2. Uncoupling of Differentiation From Proliferation

Normal epithelial differentiation results in cell cycle arrest that is carried out by increased
expression of the cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1, which inhibits the activity
of cyclin-dependent kinase 2 (Cdk2) [67]. Cdk2 facilitates G1 to S-phase entry and progression through
interaction with cyclin E and cyclin A, respectively [68]. To circumvent this potential block, E7
targets cellular molecules that link differentiation with cell cycle exit (Figure 3). E7 does not affect
the differentiation-dependent increase in p21, but rather binds to p21, at least in part through its Rb
binding domain, in turn delaying differentiation and blocking the inhibitory effects on Cdk2 activity
to establish a proliferative environment [57,69]. Low-risk E7 proteins do not bind as efficiently to p21
and are therefore not as successful at mitigating the inhibitory effects of p21 [57]. High-risk E7 proteins
also maintain Cdk2 activity through direct interaction with cyclin E and cyclin A, as well as through
maintaining high levels of the Cdc25a phosphatase, which removes inhibitory phosphorylation from
Cdk2 [70–72]. Cdk2 activity may also contribute to productive viral replication by regulating the
cellular localization of the E1 viral helicase. Cdk2-dependent phosphorylation of E1 prevents its
nuclear export, leading to accumulation of E1 in the nucleus, which may allow for rapid amplification
of viral genomes upon differentiation [73,74]. Proliferative potential in differentiating cells is also
maintained by the E5 protein. E5 is expressed at high levels in suprabasal cells and contributes to
efficient productive replication of HPV16 and HPV31 [33,75]. Loss of E5 expression in the context of
the HPV31 genome results in decreased cyclin A and cyclin B levels upon methylcellulose-induced
differentiation and reduces colony formation following differentiation [33]. Colony formation requires
E5’s ability to interact with B cell associated protein 31 (BAP31), an ER chaperone and regulator of
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apoptosis [76]. However, the mechanism by which this interaction maintains proliferative competence
in differentiating cells is currently unclear. E5 also modulates several growth pathways that may
contribute to viral genome amplification, including signaling through the epidermal growth factor
receptor (EGFR), as well as activation of p38MAPK and ERK1/2 [77].

5.3. E6 Abrogation of p53 and Targeting of PDZ (PSD95/DLG1/ZO-1) Domain-Containing Proteins

To facilitate re-entry into the cell cycle and viral genome amplification in suprabasal cells,
the activities of E7 coordinate with those of E6 [26] (Figure 3). One of the key functions of E6 is the
inactivation of p53. For high-risk types, E6 promotes p53 ubiquitylation and proteasome-dependent
degradation through interaction with the E6AP ubiquitin ligase [78–80]. E6-mediated p53 degradation
is thought to protect cells from apoptosis or growth arrest due to E7-mediated cell cycle re-entry in the
suprabasal layers. However, recent studies indicate that p53 negatively regulates viral genome
amplification. E6 mutants in the context of the HPV18 genome that are unable to destabilize
p53 result in fewer suprabasal cells supporting viral genome amplification in organotypic raft
cultures [81]. The mechanism by which p53 negatively regulates productive viral genome amplification
is unclear, but may be through interaction with the E2 origin binding protein [82,83]. E6 proteins also
contribute to replication competence through the targeting of specific cellular proteins containing
PDZ (PSD95/DLG1/ZO-1) domains [84]. E6 interacts with PDZ proteins through a C-terminal
PDZ domain binding motif (PBM) that is found only in high-risk E6 proteins, suggesting this motif
serves as a signature for oncogenic potential [85,86]. Most of the PDZ proteins that interact with
E6 are targeted for proteasome-dependent degradation, or have an altered cellular localization [84].
PDZ proteins shown to associate with E6 are involved in the regulation of cell growth and polarity,
as well as signal transduction pathways involved in cell proliferation, apoptosis, migration and
intracellular trafficking [84]. The E6 PBM has been shown to play an essential role in viral genome
amplification. Human foreskin keratinocytes transfected with HPV18 genomes containing a mutation
in the E6 PBM exhibit a loss of productive viral replication and late gene expression in organotypic
raft cultures, correlating with a decrease in the number of S-phase competent cells in the suprabasal
layer [87]. A role for the E6 PBM in productive replication has also been observed for the high-risk
types HPV31 and HPV16 [88,89]. More recent studies demonstrated that the E6 PBM protects the
mitotic integrity of keratinocytes containing HPV18 episomes, with loss of the PBM domain leading
to mitotic abnormalities that prevents the expansion of suprabasal cells to support vegetative viral
replication [90]. What specific PDZ proteins are targeted by E6 to preserve mitotic integrity and to
promote viral replication have yet to be defined.

5.4. Regulation of Differentiation-Induced microRNA Expression

While the HPV genome does not encode microRNAs, E6 and E7 of high-risk types have been
shown to modulate the expression of cellular microRNAs to facilitate viral replication in differentiating
cells [91] (Figure 3). microRNA-203 (mir203) is normally induced concomitantly with epithelial
differentiation and restricts the proliferative potential of differentiating cells by repressing the
expression of the p53 homolog p63 [92]. p63 is required for maintaining proliferative potential
and acts as a switch between proliferation and differentiation [93]. Studies from the Laimins lab
demonstrated that p63 is required for productive replication of HPV31 [94]. Expression of HPV31
E6 and E7 prevents upregulation of mir203 upon differentiation, which is necessary to maintain
p63 in differentiating cells and presumably provide a proliferative environment for productive viral
replication [95]. In support of this, knockdown of p63 expression in differentiating HPV31 positive
keratinocytes using shRNAs results in decreased levels of cell cycle proteins, including cyclins A, B,
and E, as well as Cdc25c, Cdk1 and Cdk2 [94]. mir145 is also normally induced upon differentiation
and has been shown to negatively regulate the productive phase of the HPV31 life cycle [96]. mir145
regulates the levels of the transcription factor KLF4 (Kruppel-like factor 4), which is a target gene of p63
that plays a role in proliferation, differentiation, and maintenance of stem cells [97,98]. In the stratified
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epithelium, KLF4 also regulates expression of late epidermal differentiation markers and contributes
to the formation of the cornified layer. KLF4 is present at high levels upon differentiation in HPV31
positive cells and is necessary for the productive phase of the viral life cycle [99]. HPV31 regulates
KLF4 levels transcriptionally by p63, but also post-transcriptionally by E7-mediated suppression of
differentiation-induced mir145 expression [96,99]. KLF4 levels are also regulated post-translationally
by E6’s ability to prevent inhibitory phosphorylation and sumoylation of KFL4 [99]. KLF4 directly
activates late viral gene expression, and thus productive viral replication, by binding to the HPV31
URR in a complex with BLIMP1. Furthermore, KLF4 expression is necessary to maintain cyclin A and
cyclin B in suprabasal cells [99]. KLF4 therefore has multiple functions in promoting the productive
phase of the viral life cycle. In addition to KLF4, p63 also regulates expression of the DNA repair
factors Rad51 and BRCA2, as well as activation of the checkpoint kinase Chk2 in HPV31 positive
keratinocytes [94]. As described in more detail below, Chk2 kinase activity and Rad51 have been shown
to be required for productive replication of HPV31 [100,101]. These studies suggest that upon cell
cycle re-entry, HPV’s ability to modulate differentiation-induced microRNAs results in maintenance
of p63 levels, prolonging proliferative potential and ensuring the expression of a subset of cellular
genes necessary for productive viral replication as well as late gene expression. In addition, p63 may
contribute to activation of the DNA damage response that is necessary for viral DNA synthesis in
differentiating cells.

6. Establishment of a G2-Arrested Environment

To provide a replication-competent environment upon differentiation, high-risk and low-risk E7
proteins push post-mitotic cells back into the cell cycle, rather than maintaining cells active in S-phase
upon differentiation [102,103]. E7-induced cell cycle re-entry has traditionally been thought to result in
an S-phase environment that provides HPV access to replication machinery that supports productive
viral replication. However, more recent studies indicate that productive viral replication occurs
post-cellular DNA synthesis in cells that are subsequently arrested in G2 [104–106]. Using organotypic
raft cultures of HPV18 positive keratinocytes, Wang et al., demonstrated that cells undergoing viral
genome amplification exhibit markers of G2/M arrest, including high levels of cytoplasmic cyclin B1
and inactive cyclin-dependent kinase 1 (Cdk1) [105]. Cdk1 normally forms a complex with cyclin B1 in
the nucleus to stimulate entry into mitosis. In addition, these cells also contain the inactive form of the
Cdc25C phosphatase, which functions to remove inhibitory phosphorylation from Cdk1 to allow entry
into mitosis [107]. Overall, these studies indicate that HPV requires G2 arrest upon differentiation to
support the productive phase of the viral life cycle.

The mechanism by which HPV induces G2 arrest upon differentiation is currently unclear. Arrest
in G2 typically occurs in response to DNA damage or incomplete replication, which activates the ATM
(Ataxia-Telangiectasia Mutated) and ATR (ATM and Rad3-related) DNA damage kinases [108]. ATM
and ATR phosphorylate the checkpoint kinases Chk2 and Chk1, leading to their activation and the
phosphorylation/inhibition of Cdc25C, preventing activation of the Cdk1/cyclin B1 complex [109].
As discussed below, high-risk HPV positive cells exhibit constitutive activation of ATM and ATR,
with activation of both of these pathways necessary for productive viral replication [100,110,111].
Inhibition of Chk2 kinase activity in differentiating HPV31 positive cells results in decreased inhibitory
phosphorylation of Cdc25C and Cdk1, offering support that activation of the ATM/ATR pathways
contributes to the G2 arrest observed upon differentiation [100]. E7 expression alone is sufficient to
induce ATM and ATR activation, as well as high levels of cytoplasmic cyclin B and Cdk1 in suprabasal
cells of HPV18 organotypic raft cultures, suggesting that E7 is involved in facilitating cell cycle arrest
upon differentiation [100,104,110]. However, several studies have shown that the overexpression of
the E4 protein of multiple HPV types induces G2 arrest [112–114]. This is thought to occur through
E4s ability to interact with cyclin B/Cdk1 complexes and to promote inhibitory phosphorylation of
Cdk1 through the Wee1 kinase [114,115]. E1ˆE4 is the most abundantly expressed viral gene upon
differentiation, occurring concomitantly with viral genome amplification due to activation of the late
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promoter [28]. In addition, HPV16 E4 protein stability is increased upon phosphorylation by ERK1/2,
leading to high levels of E4 protein in differentiating cells [116]. E1ˆE4 expression has been shown to
be necessary for efficient productive replication of HPV16, HPV18 and HPV31, but not for low-risk
HPV11 [30–32,106]. Studies using normal immortalized keratinocytes containing HPV16 E4 mutants
that no longer induce G2 arrest exhibit decreased viral genome amplification and L1 gene expression
upon differentiation in methylcellulose, as well as in organotypic raft cultures [29]. These studies
indicate that the G2 arrest function of E4 contributes to providing a replication-competent environment.
The accumulation of E4 in G2 arrested cells may foster productive replication by enhancing the
accumulation of E1 in the nucleus, possibly through activation of MAPK pathways that activate E1’s
nuclear localization sequence [29,117,118]. E4 has been proposed to induce G2 arrest to counteract
E7-induced proliferation in order to establish an environment that allows for rapid amplification of
viral genomes. It is possible that E7 initiates G2 arrest following cell cycle re-entry through activation of
ATM and ATR, but increased E4 protein levels sustain G2 arrest, providing an environment conducive
to productive viral replication. Productive replication in a G2 arrested environment is postulated
to allow HPV to avoid competition with host DNA synthesis and appropriate necessary cellular
factors for amplification of its genomes. E2 may contribute to this process through interaction with
the cellular replication protein ORC2 (origin recognition complex), which promotes assembly of
pre-replication (pre-RC) complexes on mammalian origins. Overexpression of HPV31 or HPV16
E2 decreases ORC2 occupancy at mammalian origins [119], raising the possibility that increased
levels of E2 upon differentiation may serve to restrict pre-RC assembly at cellular origins that could
compete with HPV for access to host replication machinery. This is important considering that
increasing evidence supports a role for homologous recombination (HR) DNA repair pathways in
the amplification of HPV genomes (discussed below) [25,120]. HR activity is restricted to the S- and
G2-phases of the cell cycle [121]. By productively replicating post-cellular DNA synthesis in a G2
arrested environment, HPV has unfettered access to DNA repair factors, as well as other cellular
factors, that are necessary for viral DNA synthesis.

7. Use of DNA Damage Response Pathways for Productive Replication

Numerous studies over the past several years have provided evidence to support a role for the
DNA damage response (DDR) in productive replication of high-risk alpha HPV types [25]. The DDR
is a complex series of signaling events that act to coordinate the cell cycle with DNA repair. There are
three main kinases activated in response to DNA damage; ATM, ATR and DNA-PK (DNA-dependent
Protein Kinase), all of which belong to the PIK-like kinase (Phosphatidyl inositol 3’ kinase) family of
serine/threonine kinases [122]. ATM and DNA-PK respond primarily to double-strand DNA breaks
(DSBs) and promote repair through high fidelity homologous recombination (HR), or error prone
non-homologous end joining (NHEJ), respectively [121] (Figure 4). In contrast, ATR facilitates repair
of single-strand DNA that is generated in response to replication stress, or during the processing of
DSBs [123] (Figure 4). However, due to the complexity of DNA repair, there is considerable cross-talk
between these pathways to maintain genomic integrity. HPV requires activation of the ATM and
ATR response pathways for productive viral replication, however whether the DNA-PK pathway also
contributes to viral replication is not yet known. Activation of the DDR provides HPV access to the
necessary repair factors that play a direct role in viral DNA synthesis. In addition, increasing evidence
suggests that HPV utilizes these pathways to establish a G2 arrested environment that is amenable to
recombination-directed amplification of viral genomes.
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Figure 4. Schematic of the Ataxia-Telangiectasia Mutated (ATM), DNA-dependent Protein Kinase
(DNA-PK), and ATM and Rad3-related (ATR) DNA damage response pathways. ATM and DNA-PK
are activated in response to double strand DNA breaks (DSBs). ATM facilitates DNA repair through
high-fidelity homologous recombination (HR), however, DNA-PK promotes repair through error-prone
non-homologous end joining (NHEJ). DNA-PK is activated by the DNA damage sensor complex of
Ku70/Ku80, while ATM is activated by the DNA damage sensor complex MRN (Mre11, Rad50, Nbs1)
and the TIP60 acetyltransferase. ATM phosphorylates numerous downstream effectors, including
H2A.X (gH2AX), Chk2, p38, p53, SMC1 and Breast Cancer Gene 1 (BRCA1) to induce cell cycle arrest
and facilitate DNA repair, or to promote apoptosis in the case of severe DNA damage. ATR is activated
by single-stranded DNA (ssDNA) generated by replication stress or the resection of DSBs. ssDNA is
protected by the tripartite complex RPA, which promotes ATR activation through recruitment of ATRIP,
a critical ATR regulator. The Rad17/RFC complex also binds to RPA-coated ssDNA and loads the 9-1-1
complex (Rad9-Hus1-Rad1). 9-1-1 recruits TOPBP1, which is necessary for ATR activation. Claspin
mediates the activation of Chk1 by ATR, leading to the replication stress response. T bars indicates
inhibition. Arrows indicate activation.

7.1. ATM Signaling and Productive Viral Replication

In response to DSBs, ATM is conically activated by the MRN (Mre11, Rad50, Nbs1) complex, which
serves as a sensor of DNA damage, and by acetylation via the TIP60 acetyltransferase [122,124–126]
(Figure 4). ATM then phosphorylates numerous downstream targets, including the histone variant
H2A.X (histone 2A variant X), which initiates repair factor recruitment to sites of DNA damage
in a highly ordered fashion [127]. ATM elicits its effects on cell cycle arrest and DNA repair
through the activation of numerous kinases, including Chk2 and p38MAPK [122,128] (Figure 4).
Chk2 phosphorylates many downstream effectors, including repair factors such as BRCA1 (Breast
Cancer Gene 1), p53, and the Cdc25c family of phosphatases to mediate G2/M arrest [129].
p38MAPK (Mitogen Activated Protein Kinase) signaling is independent of Chk2 and induces the DDR
through phosphorylation of MK2 (MAPK-activated protein kinase 2), which in turn phosphorylates
downstream substrates to induce G2/M arrest [128]. The ATM effector SMC1 constitutes a third arm
of the DDR, which along with Nbs1 induces cell cycle arrest and DNA repair [130,131] (Figure 4).
A seminal study by the Laimins lab demonstrated that ATM is constitutively active in high-risk
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HPV31 positive cells [100], and is characterized by the phosphorylation of multiple downstream
targets, including H2A.X, Chk2, Nbs1, BRCA1, SMC1, p38MAPK and MK2 [100,132,133] (Figure 5).
Subsequent studies demonstrated similar findings for HPV16 and HPV18 [104,134]. Inactivation of the
MRN complex in HPV31 positive cells does not abrogate ATM activation [135], suggesting that HPV
utilizes a non-canonical mechanism to induce the ATM DDR necessary for productive viral replication.
Intriguingly, activation of the ATM pathway is specifically required for productive replication of HPV31
upon differentiation, with inhibition of ATM activity having no effect on episomal maintenance in
undifferentiated cells [100]. Similar results were observed for the ATM effector Chk2 [100]. In addition
to inactivation of Cdc25c, Chk2 activity is also necessary in differentiating HPV31 positive keratinocytes
for activation of caspase-3/7, which is required for cleavage of the E1 viral helicase and viral genome
amplification [100,136]. Interestingly, in contrast to Chk2, activation of the p38/MK2 axis of the
ATM DDR is induced only upon differentiation [132]. The p38/MK2 complex is also necessary for
productive replication of HPV31, though the downstream targets of this complex that drive viral DNA
synthesis have not been defined [132].
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Figure 5. Modulation of the ATM and ATR DNA damage response pathways to promote productive
viral replication. HPV-induced activation of ATM requires the STAT5 immune regulator, as well
as TIP60, but not the MRN complex. Downstream effectors of ATM required for productive viral
replication include the MRN complex, p38/MK2, Chk2, as well as factors involved in homologous
recombination repair (Rad51, BRCA1, SMC1). HPV may utilize ATM activity to promote G2 arrest
upon differentiation through activities of Chk2, as well as to direct repair to HR on viral genomes
through epigenetic modifications and the recruitment of homologous recombination (HR) repair factors.
ATR activation in HPV positive cells likely occurs through E7-induced replication stress and requires a
STAT5-directed increase in TOPBP1. ATR/Chk1 activation leads to increased levels of E2F1, which
drives expression of RRM2, resulting in increased dNTP pools to facilitate productive viral replication.

Multiple ATM signaling components are recruited to productively replicating viral genomes,
including ATM, γH2A.X, Chk2, 53BP1, MRN, Rad51 and BRCA1, suggesting a direct role for DNA
repair mechanisms in viral DNA synthesis [135,137–139]. Indeed, along with ATM, several of these
factors, including the MRN complex, Rad51 and BRCA1, are necessary for DNA repair through
homologous recombination (HR), and importantly, are also required for productive replication of
HPV31 [101,122,135]. HR is a relatively error-free process, and HPV may preferentially use this
method of repair to maintain the integrity of viral DNA during amplification. Structures consistent
with recombination have been observed during productive replication of HPV31 and HPV16 that
are not detected during maintenance replication in undifferentiated cells [140]. These observations
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suggest that amplification of viral genomes upon differentiation occurs in a distinct manner that may
require ATM-driven HR. Initiation of HR requires resection of DSBs, which requires ATM activity, as
well as BRCA1 and the MRN resection complex [121]. Resection is required for loading the Rad51
recombinase onto DNA, which then facilitates strand invasion into homologous sequences [122]. Rad51
binding to HPV31 DNA increases upon differentiation, and inhibition of Rad51’s DNA binding ability
blocks productive viral replication, suggesting that viral DNA resection is necessary for amplification
of viral genomes [101]. In support of this, Anacker et al. demonstrated that the MRN complex
is required for Rad51 localization to HPV31 replication foci, and that Mre11’s nuclease activity is
necessary for productive viral replication [135]. Recent studies have shown that SMC1 is also required
for productive replication of HPV31 [133]. SMC1 is a member of the sister chromatid cohesion
complex that is important for chromosome segregation during mitosis [141]. The role of SMC1 in
productive viral replication is not clear, but SMC1 is recruited to the viral genome in a complex
with CTCF insulator proteins [133]. SMC1 is postulated to promote HR by maintaining the close
proximity of sister chromatids at DSBs [131], and may serve a similar role on HPV genomes to facilitate
recombination-dependent replication.

In the context of the complete HPV31 genome, ATM activation occurs in a manner dependent on
E7’s Rb binding domain [142]. Expression of HPV18 E7 alone in organotypic raft cultures results in
activation of ATM, Chk2 and Chk1 in the suprabasal layers, offering support that E7 contributes to
productive viral replication through eliciting ATM activation in differentiating cells [104]. HPV31 E7
regulates the activation of ATM through STAT5, an immune regulator that is required for productive
viral replication [143] (Figure 5). How STAT5 leads to ATM activation is currently unclear, but
may involve STAT5-dependent activation of TIP60 [144]. In addition to ATM activation, HPV31 E7
contributes to productive viral replication by increasing the protein half-life of several DNA repair
factors that are required for productive replication (e.g., ATM, Chk2, Chk1, Mre11, Rad50, Nbs1, Rad51
and BRCA1), ensuring high levels for efficient viral DNA synthesis [142]. Expression of the E1 viral
helicase alone from high-risk and low-risk HPV types is sufficient to induce ATM activation, which
may occur through the induction of DSBs due to E1’s ability to non-specifically bind and unwind
cellular DNA [134,145,146]. In the presence of E2, E1 is recruited to the viral origin of replication,
along with multiple components of the ATM and ATR pathway [134,145,147]. How ATM activity is
regulated by E7 versus E1 during the viral life cycle remains to be determined. In addition, whether
activation of the ATM DDR occurs in the context of low-risk HPV infection, and if this response is
required for productive replication is currently unknown. In contrast to the Alpha high-risk HPV
types, beta HPV E6 and E7 proteins reduce expression of ATM and ATR, as well as the HR factors
Rad51 and BRCA2, in turn delaying repair foci formation in response to UV exposure [148]. Whether
inactivation of the DDR is necessary for the life cycle of beta HPVs is not yet known due to the lack of
experimental systems to study replication.

The recruitment of DNA repair factors to sites of DNA damage requires alterations in chromatin
structure orchestrated through ATP-dependent remodeling complexes and post-translational
modifications of histones (e.g., acetylation, ubiquitylation, phosphorylation, methylation) [149,150].
ATM-induced phosphorylation of H2A.X (γH2A.X) is one of the key effectors in modulating chromatin
dynamics in response to DSBs [127]. γH2A.X initiates the assembly of repair factors at DNA lesions in
a highly regulated manner, including HR factors (MRN, Brca1 and Rad51) [151]. γH2A.X is bound
to HPV31 DNA and binding increases during productive viral replication, suggesting that γH2A.X
may serve to assemble HR repair factors at viral replication sites [138,152]. The DDR-associated
histone deacetylase SIRT1 and the acetyltransferase TIP60 have also been linked to productive viral
replication. SIRT1 channels repair to HR by recruiting Nbs1 and Rad51 to damaged DNA in an ATM-
and γH2AX-dependent manner [153]. Interestingly, SIRT1 binds to HPV31 DNA and is necessary
for productive viral replication, which may be mediated through the recruitment of Nbs1 and Rad51
to viral replication foci [139]. TIP60 is upregulated in HPV31 positive keratinocytes and is also
necessary for productive viral replication [144]. While this presumably is due to TIP60’s role in ATM
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activation, TIP60 can also influence repair to the HR pathway through the acetylation of histone H4
and attenuation of 53BP1 binding, which promotes repair through NHEJ [154]. SIRT1 and TIP60
may modify viral chromatin to ensure the recruitment of HR factors to productively replicating
viral genomes. How the HPV life cycle may be epigenetically regulated through ATM activity is an
interesting area of investigation.

7.2. ATR Signaling and Productive Viral Replication

Replication stress results in formation of single strand DNA (ssDNA) at stalled replication forks
that activates the ATR kinase [155]. ATR and its downstream target Chk1 protect stalled replication
forks and prevent excessive origin firing, maintaining genome integrity. High-risk HPV positive
cells exhibit constitutive activation of the ATR pathway, indicating that replication stress is a chronic
problem that HPV has to contend with [100,110,111]. Unscheduled cell cycle entry induced by high-risk
HPV E6 and E7 proteins results in replication stress due to a disconnect between activation of cellular
DNA synthesis and the availability of supplies required for replication [156,157]. This is thought to
occur through E7’s ability to target Rb for degradation. In support of this, mutation of E7’s Rb binding
domain in the context of the HPV31 genome prevents ATR signaling [142]. ATR activation requires
recruitment to RPA-coated ssDNA by its regulator ATRIP [158] (Figure 4). ssDNA-RPA also recruits the
RFC/Rad17 complex, which facilitates loading of the 9-1-1 complex at stalled replication forks [159].
The 9-1-1 complex then recruits TOPBP1 to activate ATR’s kinase activity [160]. Intriguingly, HPV31
E7 ensures that infected cells can sufficiently respond to replication stress through ATR activation
by increasing the levels of TOPBP1 in a STAT5-dependent manner [110] (Figure 5). Although E1 of
high-risk and low-risk types can also independently activate ATR, it is unclear if this results from
non-specific binding and unwinding of cellular DNA, or if increased E1 activity on viral DNA during
productive viral replication results in in replication stress [134,145].

Inhibition of ATR, as well as its downstream target Chk1, blocks productive replication of
HPV31, and also decreases HPV31 and HPV16 copy number in undifferentiated cells [110,111,161].
In response to replication stress, ATR phosphorylates RPA on Ser33 [162]. pRPA Ser33 localizes
to HPV31 replication foci, suggesting that viral genomes are subject to replication stress during
productive replication [138]. Activation of the ATR/Chk1 pathway may be important in repairing
stalled forks that occur during amplification of viral genomes. Upon replication stress, activation
of the ATR/Chk1 pathway is instrumental in maintaining E2F signaling, ensuring the expression of
cellular genes that facilitate DNA repair and cell survival [163]. This is particularly important in cancer
cells, which typically exhibit high levels of replication stress [164–166]. Recent studies from our lab
demonstrated that HPV31 utilizes the ATR/Chk1/E2F1 arm of the DDR to increase levels of RRM2,
the small subunit of the ribonucleotide reductase complex, in an E7-dependent manner [111] (Figure 5).
RRM2, along with the large subunit RRM1, is necessary for the conversion of ribonucleotides to
deoxyribonucleotides, providing dNTPs for replication, DNA repair and survival [167]. Knockdown
of RRM2 reduced dNTP pools in differentiating HPV31 positive cells and blocked productive
replication [111]. These studies indicate E7 induced cell-cycle re-entry upon differentiation results in
replication stress that activates the ATR/Chk1 pathway to maintain E2F signaling. Importantly, these
studies demonstrate that HPV exploits the ATR DNA damage response to ensure an adequate supply
of dNTPs for productive replication, providing a replication competent environment in cells that are
no longer dividing. Understanding the full extent of the ATR pathway throughout the viral life cycle is
an important area of future investigation.

7.3. Consequences of Utilizing the DNA Damage Response for Replication

Studies have shown that HPV replication foci tend to form near common fragile sites, which
are regions of the cellular genome that are prone to replication stress and recruit DNA repair factors
to maintain genomic stability [168,169]. HPV may preferentially replicate adjacent to fragile sites to
readily have access to DNA repair factors to facilitate recombination-directed replication. Interestingly,
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in cancers associated with oncogenic HPV types, viral DNA is often found integrated into host DNA
at common fragile sites [170–173]. Integration is a dead-end for virus production and almost always
results in increased expression of the E6 and E7 oncogenes [174]. Deregulated E6/E7 expression
leads to a proliferative advantage and the clonal outgrowth of cells containing integrated viral DNA.
While replicating near areas of cellular replication stress may be beneficial to viral persistence and
productive viral replication, the close association of HPV replication foci with areas of the cellular
DNA damage may increase the chance of accidental integration of the viral genome, and may explain
the tendency for HPV to integrate into common fragile sites of host DNA [175]. Furthermore, recent
studies from the Galloway lab demonstrated that high-risk E6 and E7 proteins attenuate the repair
of cellular DSBs through the HR pathway. While this likely ensures HR factors are available for viral
replication, the presence of persistent, unrepaired DNA breaks increases the opportunity for viral
genome integration [176]. These integration events, in turn, may contribute to HPV oncogenesis
through E6/E7-mediated genomic instability.

8. Conclusions

In order to provide a replication-competent environment, HPVs co-opt particular host cell
pathways and interactions that regulate epithelial differentiation and cellular proliferation, as well
facilitate repair of damaged DNA. Temporal regulation of viral gene expression is necessary to restrict
high levels of viral gene expression, replication and virion production to the uppermost layers of the
epithelium, protecting HPV-infected cells from detection by the immune response. This is achieved
through differential usage of promoters and polyadenylation sites, as well as alternative splicing.
In addition, E6 and E7 play critical roles in modulating innate immune responses to facilitate viral
persistence and promote viral replication [27]. Cooperation between the activities of E6, E7, E1, E2,
E4 and E5 upon differentiation allows HPV to establish an environment supportive of productive
replication in non-dividing cells. Our understanding of how HPVs regulate the productive phase
of the viral life cycle has increased dramatically over the past several years, particularly regarding
how high-risk HPVs activate and utilize DNA repair pathways to amplify viral genomes. However,
much remains to be learned regarding how alpha HPVs manipulate cellular pathways to facilitate
viral replication, and in turn, how hijacking these pathways may affect the integrity of the cellular
genome. Further understanding of the mechanisms by which HPV establishes a replication-competent
environment throughout the viral life cycle is important to identify novel cellular targets that could be
exploited therapeutically for the treatment of HPV-associated diseases.
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