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Utilizing cohort-level and individual
networks to predict best response in
patients with metastatic triple negative
breast cancer

Check for updates

Daniel Bottomly 1, Christina Zheng1, Allison L. Creason 1,2, Zahi I. Mitri 3,4, Gordon B. Mills 1,5 &
Shannon K. McWeeney1,6

Given the highly aggressive and heterogeneous nature of metastatic triple-negative breast cancer,
molecular subtypes have been evaluated for their utility in patient stratification and therapeutic
selection. Leveragingboth our unique longitudinalmultimodal analysis of serial tumor biopsies, aswell
as existing public reference cohorts, we refined clinically relevant molecular subtypes through de-
novonetwork-basedapproaches.Aplasma/B-cell related co-expressionmodule emergedasa robust
predictor of clinical response. Refinements of this module were significantly associated with
pathological complete response and survival in the CALGB and METABRIC cohorts, as well as
dramatically improving the call rate in aCLIA setting.Weexploredpatient-specificnetworks tomonitor
individual adaptive responses to therapy, allowing for dynamic adjustments in treatment strategies.
Our work supports the shift from traditional molecular subtyping towards a more integrated view that
includes the tumor microenvironment and immune landscape in a network-based context.

Triple negative breast cancer (TNBC), characterized by a lack of
expression of estrogen (ER) and progesterone (PR) receptors and a lack
of human epidermal growth factor receptor 2 (HER2) amplification, is
the most aggressive breast cancer subtype with the least favorable
outcomes. TNBC is also characterized by high tumor heterogeneity,
which has made the development of therapies that provide a durable
response challenging. The development of a TNBC molecular classifi-
cation system for patient stratification has been an area of focus over the
last two decades1–5.

Our phase II clinical trial (NCT03801369; Adaptive multi-drug treat-
ment of evolving cancers (AMTEC)) is evaluating the efficacy of the com-
bination of the Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi)
olaparib and the programmed death-ligand 1 (PD-L1) inhibitor durvalu-
mab for the treatment of BRCAwtmetastatic TNBC (mTNBC) patientswith
a longitudinal analysis of serial tumor samples in real-time to identify
adaptivemechanisms of resistance as they emerge in response to treatment.
This longitudinal characterization includes comprehensive multimodal

analysis of serial liquid and tumor biopsies utilizing the Oregon Health &
Science University Knight Cancer Institute precision oncology platform,
SerialMeasurements of Molecular and Architectural Responses to Therapy
(SMMART).

Initial analysis of the AMTEC data6 indicated that one of the most
informative predictors of response was the molecular subtypes Basal-Like
Immune Activated (BLIA), Luminal Androgen Receptor (LAR) or Basal-
Like Immunosuppressed (BLIS), termed the Burstein subtypes4. The Bur-
stein expression subtypes were originally identified in TNBC tumors, with
those with the BLIS or LAR subtypes having poor prognosis while BLIA
tumors had improved outcomes4. InAMTEC,we used collapsed versions of
these subtypes, which were seen to correspond to poor survival outcomes
(BLIS/LAR) vs better survival outcomes (Non-BLIS/LAR). Although they
were highly predictive in our cohort, one challenge with the Burstein sub-
types in the clinical setting (i.e., CLIA laboratory) was the classification of a
subset of patient samples correlated withmultiple subtypes. Currently, they
are given a “NoCall” or “Indeterminant (IND)” in the CLIA setting by our
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diagnostic laboratory and not reported (12/26 (46.2%) patient samples) for
clinical use.

We wanted to determine if the BLIA/BLIS/LAR subtypes could be
further refined and reduce the number of “No Call” determinations. In
order to explore the prognostic immune signatures displayed by our
multi-modal dataset, we examined the utility of de-novo coexpression
network-based approaches given that progression would likely reflect
underlying perturbations of complex intracellular networks. Recog-
nizing the limited sample size in the AMTEC trial for network inference,
we leveraged The Cancer Genome Atlas (TCGA) Breast Cancer
samples7 to create a reference (pre-treatment) cohort. We evaluated the
network-based signatures as predictors of best clinical response. In
addition, we wanted to assess the utility of patient specific networks to
allow us to identify individual network rewiring (due to adaptive
responses to perturbation such as treatment) which could be utilized for
monitoring disease outcome and therapy selection in our precision
oncology tumor boards.

Results
Development of a reference cohort and reference networks
We leveraged 152 Basal-classified Cancer Genome Atlas (TCGA) Project
Breast Cancer samples7 to provide a pre-therapy reference cohort for
assessment of the degree of therapeutic changes in clinical trial patient
samples. Given that these therapy-related expression perturbations often
lead to the rewiring or alteration of relevant gene networks, we performed
weighted gene co-expression network analysis (WGCNA8) to provide the
pre-treatment reference networks and identified five topologically sig-
nificant gene expression modules (also known as subnetworks) across the
basal TCGA samples (See Fig. 1 for a diagram of the design and Supple-
mentary Data S1 for gene module membership) and Methods for
description of topological significance.

Clinical trial cohort
We leveraged 13 patients with metastatic triple negative breast cancer
(mTNBC) from the phase II clinical trial (NCT03801369; Adaptive multi-
drug treatment of evolving cancers (AMTEC))6,9,10 each having paired pre-
treatment (Bx1) and on-treatment (combination of olaparib and durvalu-
mab; Bx2) samples (denoted as the “AMTEC cohort”). Additionally, we
formed a separate group of 10 patient samples (5 Bx1 and 5 Bx2, 3 of which
were paired) termed the “Validation cohort”. For this study, the main
outcome was based on the best response achieved by a given patient as part
of the trial. These outcomes were defined as either progressive disease (PD),
stable disease (SD), or partial response (PR). For classification, we further

binnedpatients into thosewho achieved a best response of SDorPR, termed
responders, vs those who did not (PD), termed non-responders.

Module characterization
Three of the five modules (subnetworks) were significantly enriched for
MSigDBHallmarks11 gene signatures (FDR < 0.05; Fig. 2a), therefore, for the
purposes of this manuscript, those are the ones that were focused on. As the
modules by definition are highly correlated gene sets, we computed the first
two principal component (PC) scores for our three modules of interest and
predicted the corresponding values for our AMTEC cohort to ensure
compatibility. Both biopsies from AMTEC patients completely overlapped
within the range of PC1 and PC2 values of TCGA (Supplementary Fig. S1).
For both TCGA and AMTEC patients, we used the PC1 score as the
representative value for each module, termed the “eigengene”12 or “module
eigengene”.

Module 1 (Mod1 or Turquoise) was most significantly enriched for
epithelial-to-mesenchymal transition (EMT).Module 2 (Mod2orBlue)was
enriched for allograft rejection, complement, inflammatory response,
interferon alpha and gamma response, as well as TNFA and IL6-JAK-
STAT3 signaling.While Module 3 (Mod3 or Brown) was only enriched for
Xenobiotic metabolism. Correlating the modules with Reverse Phase Pro-
tein Array (RPPA) antibodies in TCGA showed that bothMod2 (Blue) and
Mod3 (Brown) were associated with immune response while Mod1 (Tur-
quoise) was characterized by genes influencing EMT processes such as
Vinculin13,14 andPDGFR-B15,16 aswell as cell adhesion such asMYOSIN1A17

and FAK18 (Fig. 2b).Modules 1-3were likewise significantly associated with
the “Burstein” BLIA and BLIS subtypes4 with Mod2 (Blue) and Mod3
(Brown) increased in BLIA relative to BLIS while Mod1 (Turquoise) was
increased inBLIS (Fig. 2c). Interestingly, theMod2 (Blue) eigengeneby itself
couldpredict BLIA/BLIS status inTCGAwith93.6%accuracy (MCC: 0.873,
F1: 0.938) while Mod3 (Brown) was less predictive at 77.3% (MCC: 0.545,
F1: 0.783) using single-feature logistic regression models. Overall, this
indicated that althoughModules 2 and 3were related,Mod2 (Blue) serves as
an immunomodulatory feature. The correlation of a gene’s expression
profile with its assigned module eigengene (termed kME) can serve as a
measure of membership in that module12. In practice, this means that high
kME values indicate that the gene’s expression pattern closely mirrors its
corresponding module eigengene. Given the uninformative of the MSigDB
Hallmarks, we further assessed Mod3 (Brown) by annotating the most
influential genes in the signature as indicated by their correlation with the
module eigengene. As can be seen in Fig. 2d, theMod3 (Brown) expression
pattern reflects genes associated with B and Plasma cells, such as MZB1,
CD79A, and MS4A1 (CD20), a standard B-cell marker. Significant Pear-
son’s correlations in both Bx1 (P-value = 0.023) and Bx2 (P-value < 0.001)
were seen between the Mod3 (Brown) eigengenes and GSVA scores of a
previously reportedB-cell gene set19 (Fig. 2e). Thiswas further confirmed by
our multiplex immunohistochemistry (mIHC) data as the Mod3 (Brown)
eigengene highly correlates with CD20+ cell density in AMTEC Bx1
samples (Fig. 2f). In total, this led to us to attributingMod2 (Blue) andMod3
(Brown) to distinct immune processes/cell types while Mod1 (Turquoise)
likely represented EMT/cell adhesion processes.

Shepard et al.20 examined RNA sequencing from pre-treatment TNBC
tumor biopsies as part of theCALGB40603 clinical trial. After analyzing the
B and T cell repertoire, they found that low diversity (in terms of the
Evenness measure20—see below) of immunoglobulin G (IgG) was asso-
ciated with both pathologic complete response and event-free survival20. To
explore this further, we additionally analyzed the B and T cell repertoires in
the AMTEC samples. In agreement with our characterization of Mod3
(Brown), the eigengene was significantly correlated (all P-values < 0.001)
with the abundance of all three immunoglobulin chains (IGH, IGK, and
IGL; Supplementary Fig. S2a). We also assessed diversity measures for the
IgG class for AMTEC. Depending on the measure, patients whose best
response was PD tended to have low abundance and trended towards lower
or no difference in diversity as compared to responders (SD/PR) (Supple-
mentary Fig. S2b).

Basal BRCA TCGA Reference AMTEC Validation

WGCNA

ssGSEA Scores

Gene Expression

Module 1 (turquoise)
Module 5 (green)

Eigengenes

Fig. 1 | Overall workflow for co-expression module formation. A Basal-classified
BRCATCGA reference cohort was selected (n = 152) and used to formWGCNA co-
expression subnetworks (modules) labeled in terms of numbers 1–5 and colors.
These subnetworks enabled the scoring of the AMTEC cohort in terms of expression
summaries (eigengenes; PC1) and single-sample gene set enrichment. The subnet-
works vary in size:Mod1 (turquoise) has 469 genes, Mod2 (blue) has 323, andMod3
(brown) has 190 genes while Mod4 (yellow) andMod5 (green) have only 48 and 42,
respectively.
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TheEvennessmeasure20,which is definedas the entropynormalizedby
the log of the number clonotypes, showed no difference between response
groups (Supplementary Fig. S2c). Adjusting for the large difference in read
counts for the IGH chain between samples by down-sampling, we observed
that non-responders (PD)hadmarginally less (P-value = 0.048)Evenness in
Bx1 samples compared to responders (SD/PR) (Supplementary Fig. S2d).

Evaluation of potential confounders
Next, we explored the relationship between biopsy tissue site and tumor
purity (two key potential confounders) with clinical response across our
three modules. Tumor purity was not seen to be predictive of response to
therapy using logistic regression in either Bx1 (P-value = 0.210) or Bx2 (P-
value = 0.811) (Supplementary Fig. S3a). However, in Bx1, there were

a

UV_RESPONSE_UP
IL2_STAT5_SIGNALING

COAGULATION
ANGIOGENESIS

TNFA_SIGNALING_VIA_NFKB
XENOBIOTIC_METABOLISM

MYOGENESIS
COMPLEMENT

IL6_JAK_STAT3_SIGNALING
UV_RESPONSE_DN

INFLAMMATORY_RESPONSE
INTERFERON_ALPHA_RESPONSE

ALLOGRAFT_REJECTION
EPITHELIAL_MESENCHYMAL_TRANSITION

INTERFERON_GAMMA_RESPONSE

M
od

1 
(tu

rq
uo

ise
)

   
   

   
   

 4
69

 g
en

es

M
od

2 
(b

lue
)

   
  3

23
 g

en
es

M
od

3 
(b

ro
wn)

   
   

  1
90

 g
en

es

Number of Genes 20 40 60

BH3_
Bala

nc
e

Oth
er

Im
m

un
e_

Che
ck

po
int

M
ult

ipl
e

Im
m

un
e

Apo
pt

os
is

Mod2 (blue)
Mod3 (brown)
Mod1 (turquoise)

C
IA

P
2

H
M

H
A

1
N

R
3C

1
A

X
L

H
LA

D
Q

A
1

V
A

V
1

P
I3

K
P

85
LY

N
P

R
E

X
1

AT
G

3
S

O
D

2
S

Y
K

ID
O

C
D

38
G

R
A

N
Z

Y
M

E
B

FA
K

P
Y

39
7

M
Y

O
S

IN
IIA

P
D

G
F

R
B

V
IN

C
U

LI
N

PA
R

P
D

L1
LC

K
C

D
45

Z
A

P
70

C
D

4
C

le
av

ed
−

C
A

S
P

7 
(D

19
8)

Pearsons Cor.
−1 −0.5 0 0.5 1

b

*** *** ***
Mod2 (blue) Mod3 (brown) Mod1 (turquoise)

BLIA BLIS BLIA BLIS BLIA BLIS

−20

0

20

M
od

ul
e 

E
ig

en
ge

ne

c

*

***

B
x1

B
x2

−10 0 10 20

−0.50

−0.25

0.00

0.25

0.50

−0.50

−0.25

0.00

0.25

0.50

Mod3 (brown)

B
 c

el
ls

 (
G

S
V

A
 S

co
re

)

*

N.S.

B
x1

B
x2

−10 0 10 20

0

1

2

0

1

2

Mod3 (Brown)

m
IH

C
C

D
20

lo
g1

0�
ce

lls
m

m
2 �

e fd

CD79A

IGHA1

IGHA2 IGHG1

IGHG2

IGHG3

IGHG4

IGHM
IGKC

JCHAIN

MS4A1

MZB1

SLAMF7

TNFRSF17

Mod3 (brown)

0.50 0.75 1.00
kME

Cell Type a a aB cell Plasma cell NA

https://doi.org/10.1038/s41698-025-00959-w Article

npj Precision Oncology |           (2025) 9:179 3

www.nature.com/npjprecisiononcology


suggestive linear correlations with Mod1 (Turquoise; P-value = 0.044) and
Mod3 (Brown; P-value = 0.013), but not in Bx2 (Supplementary Fig. S3b).
From this analysis we observed that lymph node biopsies tended to have
higher Mod3 (Brown) eigengene values in Bx1 but not in Bx2. Although
most (5/8) samples from patients who achieved a response were derived
from lymph node biopsies, it was not seen to be predictive of clinical
response (logistic regression; P-value = 0.155). Similarly, the module
eigengenes were not significantly different by Welch’s T-test between
patient samples derived from lymph node vs those derived from other
tissues (Supplementary Fig. S3c). Therefore, based on this data, purity and
tissue seemed to have limited impact on clinical outcomes and co-
expression modules.

Predicting AMTEC patient response using Mod3 (Brown)
First, we examined the pattern of the eigengenes (PC1 scores) for the three
modules in AMTEC with respect to the corresponding Burstein CLIA calls
and clinical response (Supplementary Fig. S4). From this comparison, both
Mod2 (blue) andMod3 (brown) had lowvalues for PDpatients andpatients
with Burstein BLIS CLIA calls in both biopsies. For most patient samples,
Mod2 and 3 were overall increased for SD or PR patients in Bx2. On the
other hand,Mod1 (turquoise) had amixture of high and low scoring patient
samples in Bx1 though they were consistently increased in PD patients
for Bx2.

Next, we compared the ability of the three expression module sig-
natures to separate PD from SD or PR patients using only their module
eigengenes in Bx1. Mod1 (turquoise) and Mod2 (blue) both showed poor
accuracy (61.5%, MCC: N/A, F1: N/A), Mod3 (Brown), however, was of
particular interest because it achieved 92.3% accuracy (MCC: 0.854, F1:
0.909) in themainAMTECcohort (Fig. 3a, SupplementaryFig. S1). ForBx2,
forMod1 (turquoise) again had poor performance in themain cohort while
both Mod2 (blue) and Mod3 (brown) had increased accuracy (84.6%
(MCC: 0.732, F1: 0.833) and 100% (MCC: 1.0, F1: 1.0), respectively; Sup-
plementary Fig. S1). Based on its promising performance for both biopsies
in the AMTEC cohort as compared to Mod1 and Mod2, and well as the
desire to use this for longitudinalmonitoring, we focused onMod3 (brown)
and termed the classifier based on its eigengene mTNBC3e.

However, one challenge with using eigengene-based classifiers is the
relative difficulty of externally validating co-expression subnetwork results
due to differences in assay platforms and annotation. To increase applic-
ability, gene sets like theMSigDBHallmarks11 are derived from consistently
expressed gene sets. Therefore, one approach to validating expression
modules would be to transform them into distinct and consistently
expressed gene sets and use a rank-based method such as single-sample
GSEA21 (or alternatively GSVA22) to score each sample with respect to each
module. In thismanner, we leveraged the kME to choose two smaller sets of
genes which could be used inmore robust rank-based approaches (Fig. 3b).
Thefirst of these gene-setswas formedby keeping the thirty-four geneswith
a kME greater than 0.9, whichwe referred to asmTNBC3s while the second
gene-set used only the top 3 genes (MZB1, IGKC, and CD79A) by kME
(termed mTNBC3s_top3). We scored samples using single-sample GSEA
and learned the optimal score to separate non-responders (PD) from
responders (SD/PR) (see Methods). We found that resulting classifiers
based on either of the two gene-sets had the same or better performance as

using the mTNBC3e (Fig. 3c). The accuracy for mTNBC3s was 100%
(MCC: 1.0, F1: 1.0) and for mTNBC3s_top3 was 92.3% (MCC: 0.854,
F1: 0.909).

Finally, in addition tousing the eigengene as themodule representative,
often the gene with the highest kME can be considered a module hub gene
while maintaining similar predictive performance23. In this case, using the
centered and scaled expression of only the MZB1 gene maintains similar
accuracy (92.3%, MCC: 0.843, F1: 0.889) as mTNBC3e (Fig. 3c).

Given the strong B cell context of Mod 3 (Brown), we assessed the
overlap with other similar published signatures. B-cells have been proposed
tobe a strongpredictor of response to either chemotherapyor anti-PD-L1+
chemotherapy24. Sub-clustering of the Zhang et al.24 single-cell data led to
the formationof fourmainB-cell type signatures (pB,Bfoc,BN, andBmem).
Of these, 3/4 genes in the pB gene-set overlapped with genes in Mod3
(Brown). Using the scoring methodology described in Zhang et al.24, we
observed moderate performance in the AMTEC cohort (Accuracy: 84.6%,
MCC: 0.732, F1: 0.833) but lower than our mTNBC3s series classifiers
(Fig. 3c).

A key question was if the network-based signatures could “rescue” the
patient samples with Burstein indeterminate subtypes (CLIA “No Calls”),
allowing these patients to be classified to aid in therapeutic clinical trial
decision aids. Utilizing the mTNBC3s predictor to assign predicted pro-
gressive disease calls (pPD) as BLIS and predicted responders (pSD/PR) as
BLIA for the indeterminate samples resulted in a subtype/classification
approachwith high accuracy for either biopsy (Bx1Accuracy: 92.3%,MCC:
0.843, F1: 0.889; Bx2 Accuracy: 100%, MCC: 1.0, F1: 1.0) and allowed us to
provide calls for the remaining 46.2% of the ATMEC samples that were
classified as “No Calls” (Fig. 3c).

Validation of B-cell related classifiers
Four of the five classifiers trained on the AMTEC data, including the
Zhang’s pB signature, were able to predict patient response in our hold-out
validation cohort with high accuracy (100% for Bx1, MCC: 1.0, F1: 1.0),
MZB1 was the exception (Accuracy: 80%,MCC: 0.612, F1: 0.857). Three of
the five achieved 80% accuracy (mTNBC3s and mTNBC3s_top3 MCC:
0.612, F1: 0.667; Zhang’s pBMCC: 0.667, F1: 0.8) for Bx2. Again, MZB1 as
well as mTNBC3e only achieved 60% accuracy (MCC: N/A; F1: N/A) on
Bx2. Due to the performance in the pre-treatment biopsy of AMTEC, we
believe that these classifiers are potentially prognostic and do not appear to
predict response to the AMTEC therapy. To further explore the general-
izability of these classifiers as potential prognostic markers, we performed
validation in two external breast cancer datasets. TheCALGB 40603 dataset
consisted of 389 locally advanced TNBCpatients who received neoadjuvant
chemotherapy with pre-treatment RNASeq samples20. Using a 277 patient
subset that were classified as having Basal subtypes, we found that classifi-
cations based onMZB1, mTNBC3s andmTNBC3s_top3 were significantly
associated with pathological complete response (pCR) in the breast (logistic
regression;OR: 2.097, 95%CI: 1.274–3.479,P-val: 0.004;OR: 2.315, 95%CI:
1.217–4.526, P-val: 0.012; OR: 1.918, 95% CI: 1.109–3.353, P-val: 0.021;
respectively; SupplementaryData S2a). ThemTNBC3s classifierwas further
able to significantly differentiate patients based on event-free survival
(single-predictor CoxPH; HR: 0.577, 95% CI: 0.346–0.961, P-val: 0.035)
(Fig. 4a; Supplementary Data S2a). We noted that the mTNBC3s_top3 was

Fig. 2 | Co-expression modules formed from Basal classified TCGA reflect EMT
and Immune processes. a Modules (X-axis) with an unadjusted enrichment p-
value < 0.05 with respect to any MSigDB Hallmark (Y-axis) are shown. Dots are
sized according to the number of overlapping genes between the module and
Hallmark. Colors indicate significant enrichment (FDR < 0.05). b The correlation
between module eigengenes (rows) and RPPA antibodies (columns) is displayed
and clustered within pathway requiring at least one entry to have a Pearson’s
correlation > 0.4. c The module eigengenes are significantly different (Welch’s T-
test; all P-values < 0.001; n = 110) between the called Burstein BLIA and BLIS
subtypes in Basal-classified TCGA. Mod3 (Brown) is an immune-related module

associated with a B/plasma-cell signature. d Several B/plasma-cell markers spe-
cific are amongst the most influential genes as indicated by their correlation with
the module eigengene (kME). eA significant Pearson’s correlation is seen for both
Bx1 (r = 0.622; P-value = 0.023; n = 13) and Bx2 (r = 0.933; P-value < 0.001;
n = 13) when Mod3 (brown) is compared to a GSVA-scored list of markers for B
cells in AMTEC. f The Mod3 (brown) eigengene is significantly correlated with
CD20+ cell density from mIHC for Bx1 patient biopsies in AMTEC (Pearson’s
correlation; r = 0.757; P-value = 0.049; n = 7). The symbols ‘*’, ‘**’ and ‘***’
indicates unadjusted P-values < 0.05, 0.01, and 0.001, respectively. ‘N.S.’ indicates
not meeting significance criteria (P-value < 0.05).
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inference tree categorization of low vs high for the pre-treatment biopsy (Bx1).
bThe correlation to the module eigengene (kME) provides an unbiased way to rank
genes based on their similarity to the expression pattern of the module eigengene.
Genes with high kME are likely to be effective for clinically relevant rank-based

scoring. Shown is a heatmap of gene expression from the TCGA cohort of all 190
genes in Mod3 (Brown) compared to the eigengene (PC1) values (top), ranked by
their kME (right side). The gene sets used for rank-based testing are indicated on the
left, as well as the gene with the highest kME, MZB1, in bold. c Classifications/
predictions for eachmethod (rows) are shown along with the resulting accuracy as a
percentage and CLIA No Call rate (NC) if applicable. Accuracy is relative to pre-
dicting patient response (PD vs SDPR). The best clinical response is shown at the
bottom with the first two letters of the sample tissue overlayed. All of the methods
had higher accuracy than that achieved by considering the lymph node as a pre-
dictor (71.5%).
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not significant based on the AMTEC data cutoff for high vs low (single-
predictor CoxPH; HR: 0.705, 95% CI: 0.445–1.117, P-val: 0.136; Supple-
mentary Data S2a). However, single-predictor Cox Proportional Hazards
models for both mTNBC3s and mTNBCs_Top3 were significant (HR:
0.311, 95% CI: 0.120–0.804, P-val: 0.016; HR: 0.439, 95% CI: 0.206–0.936,
P-val: 0.033; respectively)without binning the actual scores; highlighting the
potential for further refinement of the cutoff value (Supplementary
Data S2a).

Although mTNBC3s couldn’t be tested in Basal-classified
METABRIC25 patients as only 5/34 genes were present in the processed
microarray data, mTNBC3s_top3 was able to differentiate a subset of 20
patients having poor overall survival (P-value = 0.001; logRank; Fig. 4b;
Supplementary Data S2b). In addition, it remained significant after
adjusting for clinical covariates in the Cox proportional hazards model
discussed previously25 (Cox PH Likelihood ratio test; P-value = 0.009;
Supplementary Data S2c). These results indicated that the network-based
mTNBC3 andmTNBC3_top3 classifiers, although originally derived in the
context of metastatic TNBC, are potentially prognostic and generalizable
beyond their original context.

Patient-specific network measures predict best response
To realize the full utility of network medicine and provide informative
readouts for precision oncology tumor boards, patient-specific networks are
key to assess individual baseline and response to treatment. In order to
explore individual changes inwiring,we adapted the LIONESS approach26,27

to further decompose each of the 3 co-expression modules of interest into
their estimated patient sample-specific subnetworks based on interpolation
from the reference cohort. This resulted in 78 total subnetworks. For each
subnetwork we computed a set of gene-specific summary measures
including Connectivity, the Maximum Adjacency Ratio (MAR), and the
Clustering Coefficient28 (Fig. 5a). Adjacency and Connectivity are funda-
mental network measures with Adjacency defined as the strength of the
connection/association between two genes ranging between 0-1, whereas
Connectivity is defined as the per-gene sum of the Adjacencies to all the
other genes (i.e., sum of its connection strengths with all other genes in the
network). We also computed overall measures including Density, Cen-
tralization and Heterogeneity, metrics that could quantify potential re-
wiring at the module level28 (Fig. 5a). However, in AMTEC, these measures

were not predictive of response so only the gene-specific network features
(Connectivity, MAR, and Clustering Coefficient) were considered further.

Given the strength of the observed expression differences in Mod3
(Brown), we were interested in determining if these gene-specific network
measures provided additional information beyond simply reflecting
overall differences in expression. We first carried out a differential
expression analysis between responders (SD/PR) and non-responder
patients (PD) separately for each biopsy. Next, we carried out a similar
analysis for each of the three gene-level network features. We visualized
the T-statistics from these results using ‘sector’ plots23. In these plots,
sectors 2 and 5 indicate differences due only to sub-network differences,
while sectors 1,3,4, and 6 indicate genes which may have both an
expression and network component (Supplementary Fig. S5a). Focusing
on the latter sectors for Connectivity we found that the IFI27 gene from
Mod2 (Blue) was one of the top genes (not in Mod3 (Brown)) for Bx1
(Fig. 5b). Examining the average Adjacencymatrices for Mod2 (Blue), we
see that there is a clear decrease in connection strength for the responders
(SD/PR) relative to non-responders (PD) for IFI27 (Fig. 5c). Note that no
genes had significantly different expression in Bx1, but 77 were found in
Bx2 (FDR < 0.05; Supplementary Data S3a). Similarly, no genes had sig-
nificantly different network features for either biopsy (Supplementary
Data S3b). Interestingly, for IFI27, a combination of expression and
connectivity provided separation of responders from non-responders in
both AMTEC and the Validation cohort (Fig. 5d).

Temporal differences in gene-level network measures predict
best response
Given the paired biopsy nature of the study, we were interested in assessing
the informativeness of the temporal differences in expression and network
features. We performed differential expression and network-wiring testing
to determine whether the average differences between Bx2 and Bx1 were
different between responders (SD/PR) andnon-responders (PD). Again, we
used sector plots to visualize the relationship between expression and the
network features (Supplementary Fig. S5b). The KRT23 gene relative to the
EMT-related Mod1 (turquoise) was one of the top genes in sector 2 for the
Maximum Adjacency Ratio (MAR) network measure (Fig. 6a). A small
increase in MAR was seen in Bx2 samples that could differentiate respon-
ders (SD/PR) from non-responders (PD) (Fig. 6b). Independent of
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Fig. 4 | Validation of prognostic B-cell biomarkers. aUsing the high/low threshold
learned from the AMTEC cohort, mTNBC3s was able to significantly differentiate
(P-value = 0.035; univariate CoxPH; n = 276) the CALGB patients based on event-
free survival (EFS).Unfortunately, only 5 of the 34 genes inmTNBC3swere available

in theMETABRICmicroarray expression dataset so it could not be screened directly.
b However, the high/low threshold from mTNBC3s_top3 was further able to
identify a 20 patient cohort with significantly lower overall survival (P-value = 0.001;
logRank; n = 199) in Basal-classified samples from METABRIC.
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expression, KRT23MARwas able to achieve separation of responders (SD/
PR) fromnon-responders (PD) patients in bothAMTECand the validation
cohort (Fig. 6c), warranting further examinationof patient specific temporal
network measures in other studies. Note that no genes had significantly
different expression or network features (FDR < 0.05; Supplementary Data
S4a,b) indicating the potential utility of this approach for identifying

patient-specific temporal changes as they would not have been identified
through traditional approaches.

Discussion
Based on initial analysis of the AMTEC cohort, which indicated that one of
the most informative predictors of response in TNBC was the expression-
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based Burstein molecular subtypes, we further expanded on these data
through network-based analyses. In the CLIA environment, when the calls
were definitively BLIA or BLIS, they were highly predictive. However, there
were a number of samples that did not have a strong signal that identified a
sample as either BLIA or BLIS and were thus considered “Indeterminant
(IND)” andassigneda “NoCall” label.Ournetwork-based analysiswas used
to identify approaches to improve the clinical utility of the Burstein mole-
cular subtypes.

Three out of the five co-expression modules learned from Basal-
classified TCGABRCApatient reference cohort were significantly enriched

for a MSigDB Hallmarks. Based on this annotation as well as orthogonal
multi-modal support of these modules (RPPA and mIHC), we attributed
Mod1 (Turquoise) to EMT/cell adhesion, Mod2 (Blue) represented
immunomodulatory and Mod3 (Brown) reflected plasma/B-cell processes.

Immune repertoire profiling of the AMTEC cohort RNASeq data
further reinforced the idea that the eigengene from Mod 3 (Brown) tracks
the pattern of relative expression of B-cell-related genes, especially immu-
noglobulin genes.Harris et al.29 found that tumor-infiltratingB lymphocyte-
enriched tumors showed preferential clonal expansion of IgG isotypes and
were associated with improved clinical outcome29. Similarly, Shephard et al.

Fig. 5 | Patient-specific subnetwork rewiring predicts response. a The WGCNA
co-expression modules were decomposed into patient-specific weighted (sub)net-
works using LIONESS. Each subnetwork was scored using overall metrics such as
Network Centralization, as well as gene-specific metrics such as Connectivity.
b Comparing average differences in Connectivity between responders and non-
responder patients (Y-axis) to average differences in expression (X-axis), we see that
the majority of differences can be attributed solely to expression changes. Dots are
colored by module. We highlighted genes where differences could be attributed
solely to changes inConnectivity (Sectors 2 and 5) aswell as thosewhere potentially a
combination of expression and Connectivity differences could bemore predictive of

response (Sectors 1, 4, 3, and 6). IFI27 in Sector 1 was an example of a gene that had
both a patient-specific expression and a Connectivity component related to
response, but would not have been detected in traditional DE comparisons.
c Comparing the average gene connections (termed Adjacencies) with respect to all
323 genes in Mod2 (blue) there is a marked decrease in Adjacencies between non-
responder patients (PD) and responder patients (SD andPR) for Bx1. For each plot, a
blown-up version of IFI27 is shown on the right. dAs the Connectivity is the sum of
Adjacencies for a given gene, comparing Connectivity and expression for IFI27
shows that a combination of high connectivity and low expression separates non-
responder patients from those who did achieve a response.
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corresponding expression delta. bComparing KRT23MAR values between Bx2 and
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patients. c This small increase in MAR between Bx2 relative to Bx1 (dashed line) is
sufficient to separate PD from SD or PR patients independent of expression.
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2022 saw reductions of IgG diversity, defined as low Evenness, in TNBC
patients achieving a clinical response. They concluded that this potentially
indicated clonal expansion and Ig class switching associated with a directed
immune response20. However, we saw no significant difference in the
Evenness measure between patients with and without a clinical response.
This is likely due to several factors. For instance, our cohort size was small
and might not be able to detect a subtle effect. Our study focused on
metastatic as opposed to primary TNBC.Additionally, patients who did not
achieve a response tended to have low abundance of the immunoglobulin
chains. This, in turn, would lead to poor sampling of available clonotypes,
potentially contributing to observed low diversity in the un-normalized
measures such as Shannon’s entropy, which disappears after normalizing to
form the evenness measure. This can only be corrected to a certain point
using down-sampling, since down-sampling results in further information
loss. Finally, therewere differences in protocols, such as the use of a different
alignment and post-processing pipeline. Importantly, we discarded samples
that had too little data to be informative. Considering samples with low
representation as having high evenness had the potential to artificially create
differences in evenness, especially in our clinical trial dataset.

The Mod2 (blue) module demonstrated superior ability in distin-
guishing between BLIA and BLIS samples within the TCGA dataset, out-
performing both Mod3 (brown) and Mod1 (turquoise). Despite its
effectiveness in TCGA, predictive models derived from Mod2’s eigengene
showed less temporal consistency compared to Mod3 in AMTEC. Mod2
demonstrated predictive capability only in the second biopsy (Bx2), while
Mod3 had high predictive performance in both biopsy timepoints. Mod1
was not considered further as it exhibited low predictive value across both
biopsy timepoints.

Predictive models formed from the plasma/B-cell related Mod3
(Brown) co-expression module mTNBC3e, as well as more clinically
accessible mTNBC3s versions, achieved excellent classification accuracy
with separating responders (high values) from non-responders (low
values) in AMTEC and our holdout Validation cohort. When applied to
the CALGB 40603 clinical cohort and METABRIC, the mTNBC3s
classifiers were significantly associated with pathological complete
response and event free survival in CALGB and identified a subset of 20
patient sampleswith poor response inMETABRIC, highlighting that this
signature had prognostic activity andwas not directly related to response
to a specific therapy. However, it remains possible that there could be an
additional component of predictive value for specific therapies. A single-
cell RNASeq experiment of tumors from TNBC patients treated with
paclitaxel or paclitaxel in combination with atezolizumab found that
B-cells were themost predictive immune cell type for patients achieving a
response24. However, they found that follicular B-cells (Bfoc) were the
most important B-cell subset for their cohort. Interestingly, of the four
B-cell subsets evaluated in the AMTEC samples, plasma B-cells (pB), not
Bfoc, were the strongest predictor of response. We were able to inde-
pendently derive biologically similar small gene-sets from bulk RNA
sequencing using co-expression-based network methodology, high-
lighting the potential value of generating and re-analyzing existing large
datasets with network-based approaches.

The plasma and B-cell related mTNBC3s signature was derived from
an adjuvant study (TCGA) and independently validated in neoadjuvant
(CALGB) studies as well as in ourAMTECmetastatic cohort. In addition, it
was independently validated in METABRIC. This suggests a potentially
generalized utility related to prognosis and the potential that the gene sig-
nature may identify metastatic potential as well as aggressiveness of meta-
static tumors that determine the overall outcomes in TNBC.

Despite theAMTECcohort comprising patients withmetastatic breast
cancer—a population historically associated with poor survival outcomes—
the development of prognostic or predictive biomarkers retains critical
clinical relevance. Such markers could enhance therapeutic decision-
making by identifying subgroups likely to derive sustained benefit from
stratified treatment approaches. As noted in a recent evaluation of bio-
markers for immune checkpoint inhibitors (ICIs) in advanced melanoma,

robust prognostic risk stratification can guide more precise utilization of
ICIs to reduce over-treatment30. Furthermore, prognostic biomarkers may
serve dual purposes within the broader framework of Awareness of Disease
Status (ADS) facilitating earlier transitions to palliative care when appro-
priate, allowing patients and providers to align care plans with clinical
trajectories and personal priorities31.

In addition to serving as a stand-alone predictor, the plasma and B-cell
relatedmTNBC3s signature also augmented the Burstein BLIA-BLIS CLIA
calls, resolving indeterminate (No call) samples. This immediately extends
the utility and applicability of this approach.

It is important to note that there are limitations to this study.Thefirst is
the small sample size of the primary clinical cohort, a known challenge in
precision oncology trials focused on in-depth longitudinal characterization.
This is ameliorated to some degree by the use of large public datasets and
orthogonal data to help validate our findings. Another potential limitation
was the use of non-metastatic patients from TCGA to build the initial
network. While this could impact generalizability to the metastatic patient
population, we instead found that the TCGA-based eigengene and geneset
signatures are predictive in our metastatic cohort. This highlights the
potential preservation of prognostic gene expression profiles between pri-
mary and metastatic disease, which has been previously observed32. This
preservation is not entirely unexpected, as long-termpatient outcomes often
depend on the development and aggressiveness of metastases, given that
primary disease is typically well-controlled with current therapeutic
approaches.

In addition to the evaluation of our WGCNA co-expression module
eigengene-based predictors, we also formed patient-specific subnetworks
based on the module genes. We showed that features derived from these
patient-specific subnetworks could potentially be used as prognostic or
predictive biomarkers, both in conjunction with gene-expression or with-
out. However, given sample size constraints, the clinical utility of these
signatures and this approach in general is yet to be determined. Our
network-based approach provided many benefits over traditional differ-
ential expression. For example, neither the standard paired T-test between
biopsies, the test of paired differences, nor Bx1-only samples between
patient response groups provided a significant result after FDR adjustment.
Only the comparison of Bx2 samples between response groups provided
significant differential expression. These 77 DE genes included bothMZB1
and IGKC but not CD79A, which make up mTNCBC3s_top3. However,
IGKCwas ranked51/77, andMZB1was ranked58/77 basedon fold change.
These genes would not have been associated together using standard dif-
ferential expression analysis, highlighting again the strength of network-
based predictors. In addition, we highlighted the informativeness of patient-
specific network perturbations, which also would be missed (e.g., IFI27 and
KRT23 were non-significant in the traditional DE comparisons as well). By
leveraging the highly correlated subnetworks fromWGCNA,weweremore
easily able to identify the most prominent biological themes. We were then
able to use multiple orthogonal approaches to identify both expression and
co-expression subnetwork patterns potentially associated with patient
prognosis and response.

Methods
Reference and clinical cohort
To allow assessment of the degree of therapeutic changes in on-therapy
clinical trial samples, we utilized 152 Basal-classified Breast Cancer samples
fromTheCancerGenomeAtlas (TCGA) Project7 as our “reference cohort”.
For TCGA, Institutional review boards at each tissue source site reviewed
protocols and consent documentation and approved submission of cases to
TCGA7. For our clinical cohort, all patients gave informed consent to par-
ticipate in this study, which had the approval and guidance of the Institu-
tional Review Board at Oregon Health and Science University (OHSU IRB
#18504).All human subjects researchwas performed in accordancewith the
Declaration of Helsinki.

For the clinical trial cohort comparator, 13 patients with metastatic
triple negative breast cancer (mTNBC) from the phase II clinical trial
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(NCT03801369; Adaptive multi-drug treatment of evolving cancers
(AMTEC))6,9,10 each having paired pre-treatment (Bx1) and on-treatment
(Bx2) samples, were used (denoted as the “AMTEC cohort”). Additionally,
we held out a second group of 10 patient samples (5 Bx1 and 5 Bx2, 3 of
which were paired), denoted as the “Validation cohort”. For this study, our
main outcomewas based on the best response achieved by a given patient as
part of the trial. These outcomes were defined as either progressive disease
(PD), stable disease (SD), or partial response (PR). For classification, we
further binned patients into those who achieved a “best response” (SD/PR)
vs those who did not (PD). For external independent validation, we used
RNA-Seq from 277 Basal classified patients from CALGB 40603 clinical
trial20 (re-processed as below), as well as microarray expression data for 199
Basal classified patients from METABRIC25.

RNA sequencing data processing
Kallisto (an RNA-seq quantification algorithm33) processed abundance
values (Transcripts PerMillion, known as TPM)were retrieved for TCGA34

and limited to the Basal subtype samples. Fourteen samples were removed
due to having relatively low expression, leaving 152 samples.

For the AMTEC samples, preparation of RNA and transcriptome
sequencing was performed at the Knight Diagnostics Laboratories. Total
nucleic acid was extracted frommacro-dissected, tumor-rich areas from
FFPE sections, purified, and used for next generation sequencing (NGS).
Libraries were prepared using the TruSeq RNA Access library prepara-
tion kit and sequenced on the Illumina NextSeq500. Approximately 100
million reads were generated per sample. For both the AMTEC and
CALGB cohort samples, gene expression was quantified relative to
Gencode v2435 transcripts using Kallisto (v0.43)33. The AMTEC patient
cohort was limited to 13 Bx1 and Bx2 pairs excluding CLIA-classified
LAR samples.

Weighted Gene Coexpression Network Analysis (WGCNA)
Coexpression network modules for the TCGA data were formed using
WGCNA (v1.71)36 using the top 2000 most variable genes after log2
transformation. A range of parameters were assessed for WGCNA using
stability assessment of module assignments using 50 iterations of 63.2%
subsampling and assessment of module quality37. Topological significance
was based on the Z-scores of the density-based measures relative to 100
random gene sets. We required a median Z-score of 2 or greater. The final
WGCNA parameters were a signed hybrid network with power of 5 using
bicor correlation, deepSplit =2, detectCutHeight = 0.995,minimummodule
size of 30, and pamStage=TRUE. For comparison with AMTEC and the
validation cohort, the abundance valueswere batch corrected usingComBat
from the SVA package (v3.44.0)38 using TCGA as the reference batch.
Principal component scores were computed for the TCGA cohort after
centering and scaling. AMTEC cohort PC scores values were ‘predicted’
using the means, standard deviations, and eigenvectors from the TCGA
cohort. Gene set enrichment for the MSigDB Hallmarks was performed
using clusterProfiler (v4.4.4)39. Benjamini-Yekutieli40 false discovery rate
(FDR) adjustment was used. Single-sample GSEA was limited to the
WGCNA gene universe using GSVA (v1.44.5). The ssGSEA normalization
was not performed.

Immune cell type scoring
The immune cell type analysis followed a prior approach41 for calculating
immune cell scores. Briefly, Gene SetVariationAnalysis (GSVA)22 (v1.44.5)
was performed on the log2 TPM values from the AMTEC cohort relative to
16 immune cell gene sets19 using a Gaussian kernel cumulative density
function (kcdf = ”Gaussian”). The GSVA enrichment statistic was calcu-
lated as the magnitude difference between the highest and lowest random
walk deviations (mx.diff=TRUE).

Immune Repetroire profiling
We used TRUST4 (v1.0.8)42 to assemble BCR and TCR repertoires from
AMTEC bulk RNASeq data. As part of the TRUST4 post-processing, we

definedBCR clonotypes by clusteringCDR3 sequences aftermatching on
length, and assigned V and J genes with a cutoff of 0.8. TCR clonotypes
were based on the CDR3 sequence only. To define the IGH and IGHG
classes, we used the distinct clonotypes defined for each of the isotypes.
For each class, we computed several diversity measures metrics to assess
the variety anddistribution of different types or entities within the group)
including Shannons’ Entropy, Evenness (normalized Shannon’s
Entropy, which is a measure of how evenly distributed the entities are),
D50, Gini-Shannon as well as the Gini Coefficient. Diversity measures
were examined both in the original values as well as after downsampling
reads to 8500 for Bx1 and 400 for Bx2, levels that ensured at least three PD
patients would remain after excluding samples lower than the corre-
sponding thresholds. Downsampling was repeated five times, with the
median used for comparison between groups. Missing values were
removed prior to testing.

Patient-specific networks
Weused the Linear Interpolation to ObtainNetwork Estimates for Single
Samples (LIONESS) method (v1.10.0)43 to generate patient-specific sub-
networks for each AMTEC patient sample and gene coexpression mod-
ule. As LIONESS interpolates networks based on gene correlation values
for a single cohort, we combined each AMTEC patient sample with the
TCGA cohort in turn to compute the sample’s network. We converted
each subnetwork to a standard adjacencynetwork by removingnegatively
weighted edges and scaling the remainder to be between 0 and 1. The
WGCNA function ‘fundamentalNetworkConcepts‘was used to compute
the overall and gene-specific network features. Differential network fea-
ture analysis was performed using limma (v3.52.4)44 after log2
transformation.

Classification
Either logistic regression or the Conditional Inference Tree (ctree)45

methodology was used for the best response classification as indicated in
the text. We used the ctree implementation from the ‘partykit‘ R package
(1.2-16). Single variable models required ‘minbucket‘ and ‘minsplit‘ to be 3,
limiting depth to 1. The Zhang et al.24 genesets were scored by averaging the
expression values across the genes, with the high vs low categorization
performed using the median of those scores as described in their
manuscript24. We computed accuracy and the F1 measure using the caret
(6.0-94)46 R package and Mathews correlation coefficient (MCC) using
yardstick (1.2.0)47.

Burstein (BLIA/BLIS/LAR) subtype calling
The Burstein subtypes were computed for TCGAusing the refined list of 77
genes48. Spearman’s correlation was computed between the gene expression
values and each centroid. Patient sampleswere assigned to the centroidwith
the highest correlation.Callswere considered indeterminate if the difference
between the top two centroids was less than 0.1.

Differential expression analysis
For the AMTEC cohort, counts were formed from scaled TPM abundance
using the tximport (v1.24.0) package. The limma-trend pipeline (limma
v3.52.4 and edgeR v3.38.4) was used for model fitting49, including TMM
normalization50.

Reverse phase protein array
The TCGA Processed RPPA data was downloaded from The Cancer Pro-
teome Atlas (TCPA). Data had been already been standardized and nor-
malized by TCPA as described previously51.

Multiplex immunohistochemistry
For the AMTEC cohort, multiplex immunohistochemistry (mIHC) was
performed as previously described52. Cell phenotypes were assigned with
hierarchically gating and quantified to cell densities (cells/mm2). Cell phe-
notype densities were log10 transformed.
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Statistics and reproducibility
All analyses were carried out using R v4.3.1. Visualizations were generated
using ggplot2 v3.5.053 or ComplexHeatmap v2.16.054. All P-values are
reported unadjusted unless otherwise specified.

Data availability
All data is available through the HTAN Data Portal as part of the HTAN
OHSU Atlas (https://data.humantumoratlas.org/). Mapping to HTAN
patient identifiers is provided in Supplementary Data S5. Raw sequencing
data have been deposited in dbGAP (Project phs002371.v1.p1). RPPA data
was from TCPA55. METABRIC data was downloaded from CBioPortal56.
CALGB RNASeq data were retrieved from SRA through dbGaP
(phs001863.v1.p1). The mIHC data is provided in Supplementary Data S6.

Code availability
The code (and corresponding parameters) to reproducemanuscript results
is freely available in our GitHub repository under a GPL-3.0 license at:
https://github.com/biodev/amtec_manuscript.
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