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2 

Abstract 29 

 30 

Single-cell transcriptomics is valuable for uncovering individual cell properties, particularly in 31 

highly heterogeneous systems. However, this technique often results in the analysis of many well-32 

characterized cells, increasing costs and diluting rare cell populations. To address this, we 33 

developed PURE-seq (PIP-seq for Rare-cell Enrichment and Sequencing) for scalable sequencing 34 

of rare cells. PURE-seq allows direct cell loading from FACS into PIP-seq reactions, minimizing 35 

handling and reducing cell loss. PURE-seq reliably captures rare cells, with 60 minutes of sorting 36 

capturing tens of cells at a rarity of 1 in 1,000,000. Using PURE-seq, we investigated murine long-37 

term hematopoietic stem cells and their transcriptomes in the context of hematopoietic aging, 38 

identifying Egr1 as a potential master regulator of hematopoiesis in the aging context. PURE-seq 39 

offers an accessible and reliable method for isolating and sequencing cells that are currently too 40 

rare to capture successfully with existing methods. 41 

 42 
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Introduction 44 

 45 

Single-cell transcriptomics is powerful for elucidating the properties of individual cells and can 46 

discover phenotypes without relying on predetermined genes or markers. This makes it useful in 47 

highly heterogeneous systems with unknown cell properties1–4. However, its unbiased nature often 48 

leads to the analysis of abundant, well-characterized cellular states at the expense of rare cell 49 

populations and increased cost5,6. An enrichment method that selectively captures rare cell 50 

populations while removing unwanted cells can increase the coverage of rare cells, enabling deeper 51 

analysis at the same cost. 52 

 53 

Several methods exist for enriching target cells before single-cell sequencing, typically using 54 

antibody-based capture approaches to label and isolate cells of interest. Techniques such as 55 

fluorescence-activated cell sorting (FACS), magnetic-activated cell sorting (MACS), and cell 56 

levitation isolate cells based on expression of specific surface markers7–9. However, current single-57 

cell methods do not directly integrate with the output of a flow cytometer, necessitating a transfer 58 

step that can result in cell loss or degradation, compromising data quality. This is especially 59 

problematic for extremely rare cell applications where the number of captured cells may be too 60 

low for reliable transfer. Other alternatives, such as direct cell sorting into well plates or using 61 

nanowell array chips, involve labor-intensive workflows and have limited throughput 62 

capabilities10,11. An ideal approach would allow the flow cytometer to directly load cells into the 63 

high-throughput single-cell RNA-sequencing (scRNA-seq) apparatus, minimizing handling, 64 

ensuring the highest data quality, and capturing rare cell populations; however, this is not possible 65 

with existing methods. 66 

 67 

In this paper, we introduce PURE-seq (PIP-seq for Rare-cell Enrichment and Sequencing), a 68 

method for sequencing rare cells. PURE-seq is based on our development, Pre-templated Instant 69 

Partition sequencing (PIP-seq) 12, which allows scalable scRNA-seq without microfluidics using 70 

a fully encapsulated Eppendorf tube. The compact nature of the PIP-seq reservoir and its 71 

compatibility with standard Eppendorf tubes, commonly used in flow cytometry, enable direct cell 72 

loading from the flow cytometer into the PURE-seq reaction. This eliminates additional handling, 73 

reducing cell loss and degradation. The tube is vortexed immediately after cell loading, 74 
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encapsulating, and lysing the cells in droplets within one minute for the PIP-seq single-cell 75 

barcoding workflow12. This simplicity and minimal handling allow reliable capture of extremely 76 

rare cells; 60 minutes of sorting can capture tens of cells at a rarity of 1 in 1,000,000. The rarity of 77 

cells captured scales with sorting duration, allowing even rarer cells to be sequenced with more 78 

sorting time. 79 

 80 

Using PURE-seq, we analyzed murine long-term hematopoietic stem cells (LT-HSCs), a rare and 81 

heterogeneous bone marrow (BM) population difficult to recover in sufficient numbers for high-82 

quality scRNA-seq with current methods13,14. PURE-seq enabled us to characterize their 83 

transcriptomes in low-input samples. Previous studies hinted at the role of EGR1 in human LT-84 

HSCs15,16, but its exact function in mice is unclear. These studies demonstrate higher EGR1 85 

expression in aged human hematopoietic stem and progenitor cells (HSPCs), suggesting EGR1 86 

may regulate quiescence, proliferation, and localization. Attenuated expression of EGR1 might 87 

decrease senescence and activate aged HSPCs, offering a potential target for rejuvenation 88 

strategies17. PURE-seq allowed us to recover sufficient cell numbers to identify Egr1 as a potential 89 

master regulator gene in the aging of murine LT-HSCs. Here, we show that PURE-seq provides a 90 

simple workflow to sort and sequence rare cell populations, which is arduous with existing 91 

methods, and reliably recapitulates data generated by standard 10x Genomics. 92 

 93 
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Results 95 

 96 

PURE-seq: Direct FACS sorting of target cells into PIP-seq single-cell RNAseq 97 

reactions 98 

 99 

The PURE-seq workflow utilizes readily available commercial platforms, FACS and PIP-seq, to 100 

achieve scalable, reliable, and accessible sequencing of extremely rare cells. In PURE-seq, cells 101 

are sorted directly into single-cell barcoding reaction tubes. Subsequent cell encapsulation follows 102 

the standard PIP-seq protocol12, which involves adding encapsulation oil, vortexing for one 103 

minute, lysing cells, and capturing mRNA (Figure 1). To optimize cell viability and capture 104 

efficiency, we fine-tuned cell sort stream alignment, sorting speed, and total sorting duration 105 

(Methods). 106 

 107 

 108 

 109 

Figure 1. Workflow of PURE-seq with enriched and sorted rare cells from a 
heterogeneous population. PURE-seq utilizes a commercial FACS system to sort 

fluorescently labeled target cells directly into PIP-seq reaction tubes containing barcoded 

templates in heat-activated lysis reagents. The subsequent single-cell encapsulation in 

droplets follows the standard PIP-seq protocol12, which involves adding oil, vortexing, heat-

activated lysis, and capturing mRNA on the barcoded templates. After mRNA capture, reverse 

transcription, and whole-transcriptome amplification are conducted in bulk to prepare barcoded 

cDNA for Illumina sequencing. 
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Fluorescence-activated cell sorters have multiple sorting precision modes. In “single-cell” mode, 110 

sorting specificity is prioritized, and ambiguous results due to staining, cell clumping, or 111 

coincidences in the detector are discarded. In “yield” mode, ambiguous events are recovered to 112 

ensure maximum retrieval of rare cells, even at the cost of capturing some off-target cells. With 113 

PURE-seq, we can prioritize capturing rare cells over the purity of the sorted population, 114 

leveraging the high single-cell sequencing capacity downstream. For example, PIP-seq reactions 115 

can be scaled to accommodate inputs of 2,000, 20,000, and over 100,000 cells12. This high capacity 116 

is especially useful for sequencing extremely rare cell populations, allowing us to maximize the 117 

capture of rare cells during the flow cytometry step. While the final single-cell sequenced 118 

population may contain off-target cells, the overall enrichment from pre-sort to post-sort is 119 

significant. 120 

 121 

To assess the efficacy of PURE-seq, we conducted a human-mouse species-mixing experiment, 122 

introducing human HEK 293T cells into mouse NIH 3T3 cells at a dilution of 1 in 1,000. The 123 

human (HEK 293T) cells served as the representative target cells within a background population. 124 

We labeled the human and mouse cells with different Calcein dyes (Methods) and processed the 125 

sample using the BD FACS Aria system. We instructed the instrument to sort the first 2,500 human 126 

cells into the PIP-seq reaction. In parallel, we used PIP-seq to sequence the unsorted population. 127 

For the unsorted population, we recovered no human HEK 293T cells since the rarity was 1 in 128 

1,000, and sequencing just 2,500 cells resulted in no random capture of human cells. By contrast, 129 

in the sorted reaction, we recovered 584 human (HEK 293T) cells and 112 off-target mouse (NIH 130 

3T3) cells, illustrating significant enrichment for the target population (Figure 2A). 131 

 132 

To confirm successful scRNA-seq, we generated barnyard plots, plotting the number of mouse 133 

reads for each cell versus the number of human reads it contains. The two populations aligned 134 

along the axes, illustrating that most captured cells had either pure mouse or human transcriptomes. 135 

We observed some mixed transcriptomes along the diagonal, consistent with co-encapsulation of 136 

mouse and human cells during the PIP-seq barcoding step, as is typical in single-cell reactions 137 

relying on limiting dilution. These results demonstrate that PURE-seq allows reliable single-cell 138 

sequencing of the target cell population for the spiked population at the 1:1,000 rarity level. 139 

 140 
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A major strength of flow cytometry is its capacity for high-throughput cell sorting, allowing the 141 

screening of vast populations to identify rare cellular states. In this experiment, we sought to 142 

determine the maximum rarity compatible with PURE-seq. Therefore, we tuned sorting parameters 143 

to maximize the total number of cells that could be sorted while minimizing the impact on the 144 

cells. We set a maximum sorting duration of 60 minutes and speed of 8 kHz to prevent perturbation 145 

of gene expression due to long waiting times and high shear forces in the sorter, respectively, 146 

allowing 28.8 million cells to be sorted per run. At peak efficiency, this setup can, therefore, 147 

recover cells with a rarity of approximately 1 in 1 million, delivering tens of target cells to the PIP-148 

seq reaction. Thus, the sequencing reaction must be exceptionally efficient to reliably barcode such 149 

a tiny number of inputs; typical cell inputs for commercial single-cell instruments exceed 1,000 150 

cells per reaction. Since the maximum input volume for the PIP-seq T2 kit is 5 μL, we also 151 

restricted the maximum number of sorted cells to 2,500 based on the droplet volume of the BD 152 

FACS Aria system (1.81 nL/drop). If more sorted cells are desired, multiple PIP-seq T2 tubes can 153 

be used, or larger PIP-seq kits, such as the T20 (20,000 cells) and T100 (100,000 cells)12, can be 154 

utilized instead.  155 

 156 

With the abovementioned parameters, we assessed the limits of enrichment possible with PURE-157 

seq by conducting sorting experiments at different target cell rarity (Figure 2B, Supplementary 158 

Figure 1). We confirmed that for target cell rarity ranging from 10-3 to 10-6, between 564 and 6 159 

target cells, respectively, could be captured and sequenced with 75% or greater purity (Figure 160 

2C). This purity level can be increased to 98% by switching from “yield” sorting precision mode 161 

to “single-cell” mode, although this reduces the number of recovered cells by ~33% 162 

(Supplementary Figure 2). 163 

 164 

 165 

 166 
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 167 

 168 

PURE-seq significantly increases the capture of LT-HSCs compared to the pre-169 

sort control 170 

 171 

LT-HSCs are a rare population in the mouse BM and lie at the top of the hematopoietic hierarchy18. 172 

Profiling LT-HSCs in scRNA-seq studies has been especially challenging due to their rarity and 173 

heterogeneity, which makes it difficult to capture enough true LT-HSCs for detailed analysis13,14. 174 

To demonstrate the utility of PURE-seq for the analysis of primary samples, we used it to 175 

investigate murine LT-HSCs sorted from Lineage−Sca-1+c-Kit+ (LSK) cells based on the 176 

expression of SLAM markers, which enrich for HSCs (CD150+CD48− LSK cells)19. Specifically, 177 

to demonstrate how PURE-seq can increase the capture of LT-HSCs compared to a pre-sort control 178 

and provide a high-quality dataset to gain biological insights, we studied LT-HSCs throughout 179 

murine aging. We harvested whole BM cells from young (2-3 months old), middle-aged (12-14 180 

Figure 2. PURE-seq efficiently captures and sequences rare cells isolated by FACS. A) 
Barnyard plots of mixed human-mouse population (Human:Mouse = 1:1000) sequenced 

before (left) and after sorting (right). Inserts are histograms of read distribution for sequenced 

human or mouse cells. Cells are colored by cell type (blue, mouse reads; red, human reads; 

green, mixed reads). B) Number of target cells captured as a function of target cell fraction. 

The dashed lines mark the theoretical limit of the captured cells. A maximum of 2,500 cells are 

sorted into each T2 PIP-seq reaction. Contour lines are the theoretical numbers of target cells 

that can be sorted within 60 minutes with different sorting rates (8 kHz, 4 kHz, and 2 kHz). Blue 

dots are the actual number of cells sequenced for the mixed human-mouse population with 

target cell fractions of 10-3, 10-4, 10-5, and 10-6. C) Number of target and off-target (mis-sort) 

cells sequenced for each rarity group.   

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 14, 2024. ; https://doi.org/10.1101/2024.08.12.607664doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.12.607664
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

9 

months old), and old (18-20 months old) C57BL/6 mice. We removed lineage-positive cells to 181 

enrich for hematopoietic stem/progenitor cells (HSPCs) before starting the PURE-seq workflow, 182 

which encompassed LT-HSC sorting from BM pools (n=2-3 mice/pool) followed by the PIP-seq 183 

pipeline and Illumina sequencing (Figure 3A). After processing and SCT-transforming the 184 

samples with Seurat v4, our analysis revealed that 19.37% expressed both Sca-1 and c-Kit and that 185 

7.27% could be considered LT-HSCs by including the expression of Slamf1, which encodes for 186 

the phenotypic cell surface marker CD15020 (Figure 3B).  187 

 188 

We observed that LT-HSCs did not express CD48, consistent with our FACS gating strategy, 189 

which excluded CD48+ cells (Supplementary Figure 3A). Our analysis also revealed that the 190 

percentage of LT-HSCs increased with age (Supplementary Figures 3A, B), which aligns with 191 

previous studies demonstrating an increase in their percentage within the aged BM22,23. This was 192 

further confirmed by the generation of Uniform Manifold Approximation and Projection (UMAP) 193 

plots that showed a higher number of hematopoietic cells expressing Kit, Sca-1, and Slamf1 genes 194 

in the middle-aged and old samples compared to their young counterparts (Figure 3C). Kit+, Sca-195 

1+, Slamf1+ cells clustered in the head region of the UMAP plot, co-localizing with the expression 196 

of key LT-HSC genes such as myeloproliferative leukemia virus oncogene (Mpl), endoglin (Eng), 197 

MDS1 (Mecom), Meis homeobox 1 (Meis1), and homeobox genes (Hoxb4 and Hoxb5) (Figure 198 

3D).  199 

 200 

As a control, we sequenced pre-sort samples using the PIP-seq pipeline and found that only 0.78% 201 

of the cells co-expressed Kit, Sca-1, and Slamf1, indicating that with PURE-seq, we were able to 202 

increase the percentage of LT-HSCs by 9.3-fold. Regarding the pre-sort control, we also detected 203 

that even though the samples were enriched for HSPCs, there were still differentiated immune 204 

cells and non-hematopoietic BM cell types, such as endothelial cells and fibroblasts 205 

(Supplementary Figure 3C), which highlights the inefficiency of cell enrichment methods, such 206 

as MACS for lineage-positive hematopoietic cell depletion (as we used in our experiment). In 207 

terms of the post-sort samples, 6,725 cells that passed the Seurat quality control were captured, 208 

with an average of 841 cells per sample after sorting 2,500 cells with the single-cell mode 209 

(Supplementary Figure 3D). This demonstrates that 33.64% of the sorted cells were of high 210 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 14, 2024. ; https://doi.org/10.1101/2024.08.12.607664doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.12.607664
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

10 

quality, a percentage that can be increased using the yield mode, as shown in our sorting precision 211 

modes experiment (Figure 2, Supplementary Figure 2). 212 

 213 

After integrating all the samples, we identified 12 clusters based on transcriptomic differences 214 

(Supplementary Figure 3D). Next, we used a publicly available dataset from Héuralt et al.21 to 215 

compare their signatures with ours (Supplementary Table 1). Similarly, they analyzed LT-HSCs 216 

from pooled FACS-sorted LT-HSC samples of old and young mice after the removal of lineage-217 

positive cells, using 10x Genomics instead. They characterized their cell clusters based on 218 

differential gene expression analysis in combination with gene set enrichment analysis and gene 219 

signatures related to hematopoiesis. Based on their gene markers, we were able to identify 9 out 220 

of their 15 cell types, mostly coinciding with non-primed clusters, thus classified because of their 221 

lack of expression of lineage-restricted genes (i.e., interferon response (ifn), non-primed (np)2, 222 

growth factor signaling (tgf), np4, replicative (rep), and dividing (div)). These non-primed clusters 223 

were in the head of the UMAP plot, except for an unknown cluster that did not match any of their 224 

signatures, possibly due to the lack of the middle-aged group or other experimental variations in 225 

their dataset. We also detected three lineage-primed clusters that were enriched for cells with 226 

neutrophil (pNeu) and mastocyte (pMast) or erythroid (pEr) commitment gene markers, but these 227 

were located either at the very end of the tail (pMast and pNeu) or clustered completely separately 228 

from the bulk of cells (pEr) (Figure 3E).  229 

 230 

Our dataset was largely comparable to datasets generated with 10X Genomics Chromium, with a 231 

predominance of non-primed hematopoietic cell clusters21. Furthermore, the good quality metrics 232 

across our 12 identified clusters (Supplementary Figure 3F), the clear split by biological 233 

condition (i.e., age group) with concomitant detection of differences in cell numbers across clusters 234 

in our integrated dataset (Supplementary Figure 3G), indicated the suitability of PURE-seq as a 235 

reliable alternative pipeline to isolate a rare cell population and analyze their single-cell 236 

transcriptomes to study their heterogeneity in complex biological phenomena such as 237 

hematopoietic aging.  238 

 239 

  240 
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 241 

 242 

Figure 3. PURE-Seq isolates murine long-term repopulating hematopoietic stem cells 
and enables single-cell sequencing via PIP-seq and analysis throughout aging. A) 
Schematic of the PURE-seq pipeline for sorting murine LT-HSCs from young, middle-aged, 
and old mice after depleting lineage-positive cells for scRNA-seq library preparation using 
PIP-seq and Illumina sequencing. B) Comparison of hematopoietic cells (CD45+) expressing 
c-Kit only; c-Kit and Sca-1; or c-Kit, Sca-1, and Slamf1, simultaneously in the integrated 
UMAP plot from the dataset (top) and breakdown bar graphs of the total percentages of 
positive and negative cells (bottom) C) UMAP plots showing differences in the numbers of c-
kit only; c-Kit and Sca-1-double positive; or c-Kit, Sca-1, and Slamf1-triple positive cells 
across murine aging. D) UMAP plots from the integrated dataset showing cells expressing 
key LT-HSC signature genes. E) UMAP displaying identified cell populations in the integrated 
dataset annotated according to Hérault et al. 21 
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Subsetting LT-HSCs from the bulk sample allows for analysis of age-related 243 

cell cycle and transcriptomic differences   244 

 245 

Next, we evaluated the purity of LT-HSCs in our data using the scGate package24  (Supplementary 246 

Table 2). We confirmed that LT-HSCs were indeed dispersed throughout the UMAP plot, with 247 

the highest concentration in the head and middle regions of the tail (Figure 4A). This aligned with 248 

previous findings using Seurat (Figures 3B, C). Notably, the distinct cluster that stood apart did 249 

not contain any LT-HSCs. Additionally, the end of the tail of the central projection had minimal 250 

LT-HSC numbers, which was consistent with the Héuralt et al. integration that revealed erythroid, 251 

neutrophil, and mastocyte commitment gene expression in these clusters21, suggesting that they 252 

likely consisted of committed progenitors or were possibly contaminated with differentiated cells. 253 

 254 

To further validate our dataset, we set out to determine whether age-related cell cycle differences 255 

could be detected across the UMAP plot, as such changes are expected with hematopoietic aging. 256 

Using the Seurat pipeline, we found that most of the LT-HSC signature overlapped with the G1 257 

phase classification and that the number of cells at the G1 phase appeared to increase with aging 258 

(Figure 4B). To further examine these differences in LT-HSCs, we extracted the pure LT-HSC 259 

population for re-embedding and re-clustering. We identified three distinct clusters 260 

(Supplementary Figure 4A) where nearly 100% of the cells were labeled LT-HSCs (Figure 4C, 261 

Supplementary Figure 4B). After successfully running a second post-clustering quality control 262 

check (Supplementary Figure 4C), we observed that G1 phase cells dominated the top clusters 263 

(clusters #0 and #1 in Supplementary Figure 4A), while cells at G2/M and S phases appeared to 264 

preferentially locate within the bottom cluster (cluster #2 in Supplementary Figure 4A) (Figure 265 

4D). As we observed in the overall integrated sample before extracting the LT-HSCs subset, the 266 

proportion of LT-HSCs at the G1 phase increased at the expense of the G2/M and S phases, 267 

showing a more significant trend throughout aging compared to that of the larger dataset (Figure 268 

4E). We then analyzed the gene expression signatures provided by Héuralt et al.21, focusing on the 269 

LT-HSC subset. We observed that these corresponded to non-primed gene expression, specifically 270 

tgf, np1, and rep (Figure 4F). The rep signature, characterized by DNA repair and replication 271 

genes, had the highest number of cells at the G2/M and S phases, coinciding with cluster #2 272 

(Supplementary Figure 4A). These findings support the notion that, despite an increase in their 273 
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numbers, LT-HSCs have a gradual loss of self-renewal with aging, which has been extensively 274 

reported25. 275 

 276 

Although refining the dataset was possible by extracting and re-clustering the LT-HSC 277 

transcriptomes, the use of the overall integrated sample showed enough LT-HSC purity to conduct 278 

a representative analysis, as shown by the scGate LT-HSC label (Figure 4A), and the expression 279 

of relevant LT-HSC genes (Figure 3D), as well as markers of undifferentiated HSPCs (e.g., Procr) 280 

and regeneration/myelosuppression following injury (e.g., Notch2), in combination with the 281 

nonexistent or low expression of lineage-specific genes, such as the lymphoid-associated 282 

interleukin 7 receptor (Il7r) and CD79A antigen (Cd79a), which drive differentiation towards T/B 283 

lymphoid cell lineages (Supplementary Figure 4). Additionally, both the overall integrated 284 

dataset and the LT-HSC subset allowed for the detection of age-related cell number differences 285 

across all the Seurat clusters (Supplementary Figures 4E, F). The cross-comparison with the 286 

Héuralt et al. dataset 21 demonstrates that the PURE-seq pipeline can obtain similar results while 287 

analyzing over half the number of cells (6,725 versus 15,000 cells) while allowing for the inclusion 288 

of an extra condition (the middle-aged group); this ability is especially valuable in sample scarcity 289 

scenarios where cell numbers are limiting. 290 

 291 
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 292 
 293 

 294 

  295 

Figure 4. scGATE marker-based purification, cell cycle analysis, and re-clustering of 
LT-HSCs. A) UMAP plot indicating the purity of LT-HSCs using scGate. B) Analysis of cell 
cycle phases in the integrated UMAP plot. C) UMAP plot of re-clustered LT-HSCs as per the 
scGate label. D) Analysis of cell cycle phases in the re-clustered (purified) LT-HSC 
population. E) Stacked bar graphs showing the ratios of all cells (left) or LT-HSCs (right) in 
different phases of the cell cycle. F) UMAP plot of LT-HSCs labeled by cell types as 
annotated by Hérault et al. 21 
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Identification of EGR1 as a transcription factor determining LT-HSC gene 296 

upregulation during aging 297 

 298 
Aging causes genetic and epigenetic changes that lead to a decline in HSPC function and self-299 

renewal26. Recent studies have identified genes that may regulate hematopoietic aging, revealing 300 

differences in gene expression and aging biomarkers, as well as an inclination towards myeloid-301 

biased hematopoiesis as early as middle-age in mice27,28. In this context, single-cell transcriptomics 302 

has been useful in identifying crucial genes that could be targeted in potential hematopoietic 303 

rejuvenation strategies. To explore whether we could identify a relevant gene determining LT-304 

HSC gene upregulation in aging from our dataset, we performed differential gene expression 305 

analysis and generated a bubble plot with top-downregulated or upregulated genes during LT-HSC 306 

aging (Figure 5A). Although most differences laid in the expression of genes involved in 307 

fundamental cellular processes, including DNA synthesis (e.g., Rrm2b), autophagy (e.g., Vmp1), 308 

and transcription (e.g., Cnot6), we observed that there was an overall elevated expression of genes 309 

regulating the immune system and inflammatory responses with aging, as previously shown27,29. 310 

These genes included jun B proto-oncogene (Junb), suppressor of cytokine signaling 3 (Socs3), 311 

metallothionein (Mt1), immediate early response 2 (Ier2), Krüppel-like transcription factor 4 312 

(Klf4), death-associated protein kinase 1 (Dapk1) and genes encoding for members of the S100 313 

protein family (e.g., S100a6, S100a9). We also found that metabolic genes showed noteworthy 314 

differences, including the upregulation of genes implicated in lipid metabolism (e.g., Slc22a27), 315 

glycogenesis (e.g., Phkg1), and growth factor signaling, such as the early growth receptor 2 (Egr2) 316 

and 3 (Egr2), and the expression of Egr1, Insulin growth factor 1 receptor (Igf1r) and transforming 317 

growth factor, beta receptor I (Tgfbr1); interestingly, with the latter three peaking in middle age 318 

(Figure 5A). 319 

 320 

Next, we performed ShinyGO Pathway Analysis30 to identify significantly enriched cellular 321 

pathways in aged LT-HSCs in an unbiased manner. We utilized the complete list of upregulated 322 

genes in old LT-HSCs compared to their middle-aged and young counterparts, respectively. The 323 

gene ontology category "ribosome" was the most significantly enriched gene set, which was an 324 

expected finding given the known altered upregulation in ribosomal gene transcription with 325 

hematopoietic aging, from which others have inferred that old HSPCs may be aberrantly activated 326 
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through ribosomal biogenesis despite cycling less than younger cells32. The rest of the enriched 327 

pathways were mainly metabolism-related or linked to the pathogenesis of age-related diseases, 328 

such as cardiovascular or degenerative disorders (Figure 5B). Using a web-based transcription 329 

factor (TF) enrichment analysis tool, ChEA331, we identified EGR1 as the core member of the 330 

most probable TF network responsible for the shift in the gene transcription profile of old LT-331 

HSCs (Figure 5C).  332 

 333 

UMAP analysis revealed that although the expression of Egr1 was not restricted to middle-aged 334 

and old LT-HSCs, its expression level notably increased in middle age, as observed in the bubble 335 

plot (Figure 5A). Furthermore, Egr1 was widely expressed within the single LT-HSC cluster seen 336 

in older mice. These UMAP plots also showed that while the young and middle-aged groups had 337 

the same three clusters, the old LT-HSCs (Figure 5D) were absent in the bottom cluster (cluster 338 

rep in Figure 4F, which had an enriched expression of genes involved in DNA repair and 339 

replication). This might be a consequence of the age-related DNA repair defects and subsequent 340 

downregulation of genes involved in such pathways or merely an observation derived from a loss 341 

of heterogeneity in old LT-HSCs driven by age-related clonal hematopoiesis. Indeed, the 342 

expression level of Egr1 was found to be statistically significant when comparing young versus 343 

middle-aged or young versus old LT-HSCs (Figure 5E). These results suggest that the 344 

upregulation of Egr1 in middle age might be responsible for a subsequent gene program 345 

upregulation promoting murine LT-HSC aging, with widespread Egr1 constitutive expression in 346 

old age to maintain it. 347 

 348 

Overall, these data demonstrate that the PURE-seq pipeline can enrich and sequence rare cell 349 

populations, such as murine LT-HSCs, to generate high-quality single-cell transcriptomes and, in 350 

so doing, give valuable insights into complex biological processes, as it is hematopoietic aging. 351 

Compared with existing pipelines, PURE-seq offers a user-friendly solution requiring significantly 352 

fewer cells while delivering comparable quality data, which is suitable for biological analyses of 353 

rare cell populations.  354 

 355 
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 356 

  357 

Figure 5. Identifying Egr1 as a potential master regulator gene in the gene expression 
signature of aged murine long-term repopulating hematopoietic stem cells. A) Bubble 
plot of the top downregulated/upregulated gene signature of old LT-HSCs compared to their 
young and middle-aged counterparts. The color of the spheres indicates the average gene 
expression, and their size represents the percentage of cells expressing each gene. B) The 
ShinyGO Pathway Analysis30 illustrates the top enriched pathways in aged LT-HSCs 
compared to their young and middle-aged counterparts. The circle size represents the 
number of differentially expressed genes classified into one specific pathway category. C) 
Transcription factor network derived from the top upregulated genes in aged LT-HSCs based 
on the ChEA3 analysis 31. D) UMAP plots showing Egr1-expressing cells in young, middle-
aged, and old LT-HSC samples. E) Violin plots showing Egr1 expression in young, middle-
aged, and old LT-HSC samples; p-values from two-tailed unpaired Student’s t-test, indicating 
a p-value less than 0.0001 (****) or no significance (ns). 
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Discussion 358 

 359 

PURE-seq enables the recovery and sequencing of rare cells from complex cellular populations by 360 

integrating two commercially available platforms: FACS and PIP-seq. PIP-seq allows cell 361 

barcoding within standard Eppendorf tubes—commonly used vessels for cell recovery in FACS 362 

protocols. This direct integration eliminates additional cell transfer steps, significantly reducing 363 

cell loss and enabling the reliable capture and sequencing of extremely rare cells. 364 

 365 

Our study demonstrates that PURE-seq can enrich and analyze murine LT-HSCs comparably to 366 

current methods, such as 10X Genomics, even when using only half of the input cells. This 367 

approach is cost-effective, compatible with readily available commercial systems, and opens doors 368 

for proteomic analysis, including technologies like CyTOF33 and Abseq34, as well as multiomics 369 

through CITE-seq35. PURE-seq has the potential to significantly contribute to genomic and 370 

proteomic investigations, particularly those focusing on extremely rare cell populations that can 371 

be enriched using flow cytometry. Furthermore, PIP-seq can be combined with antibody-based 372 

cell hashing12. Although we did not perform hashing in this study, it can be used to further increase 373 

the number of cells and conditions processed in the PIP-seq pipeline. In this study, we applied 374 

PURE-seq to study hematopoietic aging in murine LT-HSCs. Our results show that LT-HSC 375 

heterogeneity is similar in young and middle age but decreases in old mice. We also found that old 376 

LT-HSCs exhibit reduced cycling and remain primarily in the G1 phase at the expense of the G2/M 377 

and S phases, as previously shown by Hérault et al.21 Furthermore, our results suggest that EGR1 378 

may be a key TF regulating LT-HSC gene expression during aging, thereby controlling the 379 

upregulation of an age-related gene program. Interestingly, Egr1 expression increases in middle 380 

age, potentially indicating its role as an early master regulator of LT-HSC aging, further 381 

reinforcing the notion that hematopoietic aging starts in middle age27. 382 

 383 

While prior studies have shed some light on LT-HSCs36,37, the role of Egr1 in murine LT-HSC 384 

aging has not yet been fully elucidated. Recent studies involving scRNA-seq and bulk RNA 385 

sequencing have indicated increased EGR1 expression in aged human HSPCs15,16. EGR1 may 386 

regulate HSPC quiescence, proliferation, and localization, making it crucial in determining their 387 

function and fate. It has been suggested that reducing EGR1 expression may decrease senescence 388 
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and re-activate aged HSPCs, potentially improving their function and offering a target for 389 

hematopoietic rejuvenation strategies17. Using PURE-seq, we have identified that Egr1 may 390 

indeed be a master regulator gene of LT-HSC aging in mice, aligning with emerging research in 391 

the field and providing a basis for subsequent genomic, epigenomic, and mechanistic studies. 392 

 393 

PURE-seq offers significant potential for studying circulating tumor cells (CTCs), which are 394 

valuable for research and diagnostics but challenging to capture due to their rarity38–41. While 395 

positive enrichment using markers like EpCAM, HER2, and MUC1 is common40,41, PURE-seq's 396 

throughput enables negative enrichment, allowing it to capture CTCs that may not express these 397 

markers. This capability can help discover novel or unexpected CTC types that current methods 398 

might miss. With PURE-seq, sufficient CTCs can be captured for meaningful analysis. Using the 399 

yield sorting precision mode, we can leverage high-throughput single-cell sequencing downstream 400 

of FACS isolation to recover single CTC transcriptomes, even when mixed with non-CTCs. 401 

Although this approach may increase false positives, scalable single-cell sequencing can still 402 

identify the relevant CTCs, offering a less biased and useful method for diagnostics and monitoring 403 

measurable residual disease at low levels. 404 

 405 

  406 
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Methods: 407 

 408 

PURE-seq workflow 409 

 410 

PURE-seq combines Fluorescence-activated cell sorting (FACS) and Particle-templated instant 411 

partition sequencing (PIP-seq) in an integrated workflow. For the mouse-human mixing 412 

experiments described herein, the BD FACS Aria system was used for sorting, and “Sweetspot” 413 

was turned on to ensure a stable stream during the sorting. The cooling unit was set to 4°C to keep 414 

the collection unit with PIP-seq reaction tube cold throughout the sort. A 0.5 mL tube adapter 415 

(Cole-Parmer, EW-17414-73) was inserted into the Aria 1.5 mL collection tube holder to hold the 416 

PIP-seq T2 tube. Then, we fine-tuned cell sort stream alignment by using an empty 0.5 mL 417 

Eppendorf tube to make sure the test sort droplet was located at the center of the lid when the lid 418 

was closed and at the center of the tube bottom when the lid was open. For quality control of each 419 

sorting session, we quantified the sorting recovery rate by sorting 100 Calcein labeled cells into a 420 

0.5 mL Eppendorf tube pre-loaded with 10 µL media and counted the number of cells collected 421 

under the microscope. The recovery rate is calculated as # Target cells counted under the 422 

microscope / # Target cells reported to have been sorted by the instrument. To optimize cell 423 

viability and capture efficiency, we capped the total sorting duration to 60 minutes and the total 424 

sorted volume to 5 µL (2,500 drops with 85 µM nozzle). Based on BD FACS Aria’s instrument 425 

specifications, we limited the flow rate to no more than 8 kHz to minimize shear stress during 426 

sheath flow focusing (i.e., 8,000 events per second with 85 µm nozzle). Once the sorting was 427 

complete, the PIP-seq T2 tube was unloaded to proceed to the standard PIP-seq protocol from Cell 428 

Capture and Lysis after the cell loading step to the preparation of the scRNA-seq library. 429 

 430 

Mouse-human mixing experiment 431 

 432 

Human HEK 293T and mouse NIH 3T3 cells (ATCC) were cultured in Dulbecco’s modified 433 

Eagle’s medium (DMEM, Thermo Fisher, 11995073) supplemented with 10% fetal bovine serum 434 

(FBS; Gibco, 10082147) and 1× Antibiotic-Antimycotic (Gibco, 15240062) at 37°C and 5% CO2. 435 

Cells were treated with 0.05% Trypsin-EDTA with Phenol red (Gibco, 25200114) for 3 min, 436 

quenched with growth medium, and centrifuged for 3 min at 300g. The supernatant was removed, 437 
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and the cells were resuspended in 1X DPBS without calcium or magnesium. Fresh-frozen human 438 

peripheral blood mononuclear cells (PBMCs) were obtained from STEMCELL Technologies. 439 

DMEM with 10% FBS was warmed up to 37°C, and the frozen PBMCs were thawed by adding 440 

1 mL of warm media on top of the frozen cells and immediately transferring the media to a 15-mL 441 

conical. This process was repeated until all PBMCs were thawed and transferred. Cells were 442 

centrifuged for 3 min at 300g and resuspended in 1X DPBS. For the 10-3, 10-4, and 10-5 target cell 443 

fraction samples, human HEK 293T cells were the target population mixed with mouse NIH 3T3 444 

cells background population. For the 10-6 target cell fraction sample, mouse NIH 3T3 cells were 445 

the target population mixed with the human PBMCs background population. The target population 446 

was treated with 1 μg/mL Calcein Red-Orange (Invitrogen, C34851), and the background 447 

population was treated with 1 μg/mL Calcein Green (Invitrogen, C34852) for 15 min at 37°C, 448 

followed by washing and dilution to the final concentration in 1× DPBS with 0.1% BSA. The 449 

viability and cell concentration were evaluated by an automated cell counter (Bio-Rad, TC20) after 450 

adding Trypan Blue (Gibco, 15250061). The mixed cell suspension was filtered through a 40 µm 451 

cell strainer (Flowmi, BAH136800040) and processed through the PURE-seq workflow described 452 

above to enrich for Calcein Red-Orange labeled cells. For this experiment, we selected the “yield” 453 

sorting mode to ensure as many rare cells were sorted, set the flow rate to 8 kHz, and restricted the 454 

sorting duration to 60 minutes or if the total sorted volume of 5 µL (2,500 drops with 85 µm nozzle) 455 

was reached. In the sequenced libraries, cell transcriptomes were aligned to human or mouse 456 

genome to quantify for PURE-seq sensitivity and specificity. 457 

 458 

Sorting precision modes experiment 459 

 460 

Calcein Red-Orange labeled human HEK 293T cells and Calcein Green labeled mouse NIH 3T3 461 

cells were mixed at a ratio of 1:1000. The mixed sample volume was controlled at 1mL. Each 462 

sample was processed through the PURE-seq workflow described above using “yield” or “single-463 

cell” sorting precision mode until depletion of sample. 464 

 465 

Experimental animals  466 

 467 
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The study with primary mice was performed in accordance with institutional guidelines established 468 

by Memorial Sloan Kettering Cancer Center under the Institutional Animal Care and Use 469 

Committee-approved animal protocol (#07-10-016) and the Guide for the Care and Use of 470 

Laboratory Animals (National Academy of Sciences 1996). Mice were maintained under specific 471 

pathogen-free conditions in a controlled environment that maintained a 12-hour light-dark cycle, 472 

and food and water were provided ad libitum. The following mice were used: young (2-3 months 473 

old), middle-aged (12-14 months old), and old (18-20 months old) female C57BL/6 mice. Young 474 

mice were purchased from the Jackson Laboratories and either used when young or aged in-house 475 

until middle age. Old mice were obtained from the National Institute of Aging (NIA) and 476 

acclimatized for at least 2 weeks at our facility before use. Mice were healthy, had intact immune 477 

systems, and had not undergone any prior procedures before euthanasia. For each cohort, 4-6 mice 478 

were used to make 2-3 pooled age-matched bone marrow (BM) samples per group prior to sorting. 479 

 480 

Mouse bone marrow harvesting and sample processing for sorting 481 

 482 

Mice were humanely euthanized using CO2. BM cells from their limb bones were isolated and 483 

resuspended in FACS buffer (PBS + 2% FBS) by centrifugation at 8,000 × g for 1 minute. After 484 

removing red blood cells (RBC) with a commercial lysis buffer (BioLegend, 420302), diluted to 485 

1X with distilled water, single-cell suspensions were depleted of hematopoietic cells committed to 486 

a specific lineage using a Lineage Cell Depletion Kit (EasySep, StemCell Technologies, Inc., 487 

19856A), according to the manufacturer’s instructions. To label LT-HSC cells, the following 488 

fluorophore-conjugated antibodies were used at the indicated dilutions: CD117 (c-Kit) BV785 489 

(clone 2B8, BioLegend; 1:200 dilution), Ly-6A/E (Sca-1) PE/Cy7 (clone D7, BioLegend; 1:1000 490 

dilution), CD48 PerCP/Cy5.5 (clone HM48-1, BioLegend; 1:100 dilution) and CD150 (SLAM) 491 

APC (clone TC15-12F12.2, BioLegend; 1:50 dilution). After adding the rat serum and isolation 492 

cocktail of the Lineage Cell Depletion Kit, the LT-HSC-labeling antibodies were also added for a 493 

30-minute-long incubation in the dark at 4°C. Following the removal of lineage-positive cells, 494 

samples were spun down in FACS buffer and subsequently resuspended in 200-300 μL of FACS 495 

buffer containing DAPI at a final concentration of 1 μg/mL. Cells from 2/3 age-matched mice were 496 

combined to generate each pool sample, with a total of 2 replicates for the young condition and 3 497 

replicates for the middle-aged and old conditions, respectively (total n=10 mice). Before sorting, 498 
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we also performed the Rmax method to calculate the maximum recovery of the sample sort and a 499 

sorting test with horseradish peroxidase (HRP) using a 0.5 mL collection tube containing a drop 500 

of a 3,3',5,5'-tetramethylbenzidine (TMB), which turned blue if the HRP fell directly into the tube 501 

center. Leveraging this HRP-TMB reaction, we ensured that the instrument alignment was correct 502 

so that the sample was sorted straight into the PIP-seq T2 reaction. All the mouse primary samples 503 

were sorted using a Spectrally Enabled (SE) five-laser BD FACSymphony™ S6, following the 504 

protocol described in the "Pure-seq workflow" section and using the “single-cell” sorting precision 505 

mode to maximize the purity level.  506 

 507 

scRNA-seq library preparation and sequencing 508 

Single cells were processed for scRNA-seq using the PIP-seq T2 3’ Single Cell RNA kit (v3.0) 509 

according to the manufacturer's protocol (Fluent Biosciences, FB0001026). cDNA and final 510 

library DNA quality were confirmed using a 2100 Bioanalyzer Instrument (Agilent Technologies). 511 

Libraries were pooled at equimolar ratios and sequenced on an Illumina NovaSeq 6000 S4 512 

platform at PE100 (200 cycles), targeting >50,000 reads per cell. Library demultiplexing, read 513 

alignment, identification of empty droplets, and UMI quantification were performed with 514 

PIPseeker 1.0.0 (Fluent BioSciences) with default parameters. 515 

 516 

scRNA-seq data analysis in mice 517 

Filtered feature matrices were imported into Seurat, and all downstream analyses were performed 518 

using Seurat v4.3.042. For quality control, data were filtered to remove outliers in gene count, UMI 519 

count, mitochondrial genes, and ribosomal genes. The 8 samples (young 1-2, middle-aged 1-3, and 520 

old 1-3) were normalized by SCTranform and then integrated by Seurat integration using default 521 

parameters (SelectIntegrationFeatures and FindIntegrationAnchors), succeeded by normalization 522 

and scaling steps42. The combined post-sort dataset contained 6,725 cells (Figure), while the pre-523 

sort sample had 40,137 cells. On the complete data, a PCA was estimated, and clustering was 524 

performed on 20 principal component dimensions (selected by visual analysis of an Elbowplot) 525 

with a resolution of 0.9. A uniform manifold approximation and projection (UMAP) embedding 526 

was calculated using the selected 20 principal components as input. Cell cycle was not regressed. 527 
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As LT-HSCs were of interest in this study, hematopoietic cells co-expressing the developmental 528 

markers c-Kit, Ly6a, and Slamf1 were extracted, re-embedded, and re-clustered, followed by a 529 

second post-clustering quality control step for further in-depth analysis. From the identified 530 

clusters, differential gene expression analysis was conducted using the Seurat function 531 

FindAllMarkers to identify genes that were significantly up/downregulated in specific cell clusters 532 

compared to others. 533 

After Seurat integration and clustering, different cell types were annotated using the ScType 534 

automated cell type classification43 with custom markers from the previously published dataset 535 

generated by Héuralt et al.21, where they identified a total of 15 subtypes of LT-HSCs, including 536 

6 primed types (pMast, pNeu, pEr, pL2, pL1, pMk) and 9 non-primed types (div, rep, diff, np4, 537 

np3, ifn, np2, np1, tgf). We input the gene markers of these 15 subtypes as a custom marker set to 538 

score the cluster markers in our dataset using the ScType R package. Low ScType score clusters 539 

(i.e., less than a quarter of the number of cells in a cluster) were considered low-confident and thus 540 

designated as “unknown” cell types.  541 

The purity of LT-HSCs in the data was evaluated using the scGate R package24. We manually 542 

defined a gating model based on the LT-HSC features (Ptprc (CD45)+, c-Kit+, Ly6a+, Slamf1+). 543 

The model annotated cells as either “pure” or “impure” based on each cell gene expression. No 544 

mouse sample was excluded from these scRNA-seq analyses. 545 

Data availability 546 

 547 

Sequencing data were deposited into the NCBI Gene Expression Omnibus under GSE273803. 548 

 549 

Code availability 550 

 551 

The open-source software, tools, and packages used for data analysis in this study, as well as the 552 

version of each program, were R (v3.6.1), PIPseeker (v1.0.0), Seurat R package (v4.3.0), scGate 553 

R package (v1.6), ScType R package (v1.0), SingleR R package (v1.0). No custom software, 554 

tools, or packages were used.  555 
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Supplementary Figures: 688 

 689 

 690 
 691 

 692 

Figure S1. Barnyard plots of 10-3, 10-4, 10-5 and 10-6 target cell fractions after sorting. In 
each table, cell numbers for the corresponding dilution experiment sample are shown (N 
Target cell and N Background cell) and the number of sorted cells reported by FACS 
software is noted (N Sorted cell). In each barnyard plot, cells are colored by cell type (blue, 
mouse reads; red, human reads; green, mixed reads). A-C) Human HEK 293T cells and 
mouse NIH 3T3 cells were stained with Calcein Red-Orange and Calcein Green, 
respectively. Calcein Red-Orange-positive HEK 293T cells were sorted into PIPseq tubes. D) 
Mouse NIH 3T3 cells and human PBMCs were stained with Calcein Red-Orange and Calcein 
Green, respectively. Calcein Red-Orange-positive NIH 3T3 cells were sorted out as target 
cells. 
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 693 
 694 

Figure S2. Recovery rate comparison of single-cell and yield sorting precision modes 
of FACS. In each barnyard plot, cells are colored by cell type (blue, mouse reads; red, 
human reads; green, mixed reads). Target cell fraction was 10-3 and the sample volume was 
controlled at 1mL. Compared with single-cell mode, yield mode sorted out 2-fold the number 
of total cells, and sequenced 1.5-fold the number of target rare cells from identical spike-in 
samples. The purities of single-cell and yield modes were 98% and 84%, respectively. 
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695 

Figure S3. Sorting of murine long-term repopulating hematopoietic stem cell and 
quality control analysis A) Representative FACS plots using the gating strategy to sort LT-
HSCs using old cells as an example. B) Representative FACS plots for young (top) and 
middle-aged (bottom) LT-HSCs. C) UMAP plots of pre-sort samples, indicating LT-HSCs as 
labeled by scGate (left) and unbiased clustering by cell type using the SingleR package44 
(right). D) Integrated UMAP plot of samples from young (n=2), middle-aged (n=3), and old 
(n=3) mice (top) and the number of sorted cells per sample (n=2,500) and the number of 
cells recovered after passing quality control standards using the Seurat v4 pipeline, totaling 
6,725 cells. E) Larger view of the integrated UMAP plot of samples from young (n=2), 
middle-aged (n=3), and old (n=3) samples, with each age group combining 4-6 mice. Colors 
indicate the age of the source mice (top) and the clustering of the 6,725 cells using the 
Seurat v4 pipeline (bottom). F) The number of unique genes (nFeature RNA), transcripts 
(nCount RNA as a logarithmic value), percent mitochondrial reads (percent.mt), and percent 
ribosomal reads (percent. Ribosomal) as a function of the cluster. G) Seurat clustering of 
young, middle-aged, and old samples. H) Bar graph illustrating the cell count for each age 
group within each Seurat cluster. 
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 696 

  697 

Figure S4. Re-clustering of murine long-term repopulating hematopoietic stem cells, 
their distribution within Seurat clusters, and quality control post-re-clustering. A) 
Before (left) and after (right) Seurat re-clustering of purified LT-HSCs according to scGate. B) 
Percentages of LT-HSCs defined by scGate within the Seurat clusters following re-clustering. 
C) The number of unique genes (nFeature RNA), transcripts (nCount RNA as a logarithmic 
value), percent mitochondrial reads (percent.mt), and percent ribosomal reads (percent. 
Ribosomal) as a function of the cluster after LT-HSC re-clustering. D) UMAP plots colored by 
expression of selected markers, including undifferentiated HSPC markers (Procr, Notch2) 
and markers of lineage bias/commitment (Il7r, Cd79a). E-F) Bar graphs illustrating the cell 
ratios (left) or counts (right) for each age group within each Seurat cluster subsequent to the 
re-clustering of LT-HSC. 
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Supplementary Tables: 698 
 699 

Supplementary Table 1. A) Cluster marker gene list for integrated dataset after PURE-seq 700 

enrichment of LT-HSCs from young (n=2), middle-aged (n=3), and old (n=3) mice samples. B) 701 

Marker genes for cluster cell-type identification from the Hérault et al. dataset. 702 

Supplementary Table 2. LT-HSCs identification using scGate analysis for A) pre-sort HSC 703 

control samples, B) PURE-seq enriched LT-HSCs, and C) PURE-seq enriched LT-HSCs after 704 

reclustering. 705 
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