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Abstract: In this study, we consider an online monitoring procedure to detect a parameter change for
integer-valued generalized autoregressive heteroscedastic (INGARCH) models whose conditional
density of present observations over past information follows one parameter exponential family
distributions. For this purpose, we use the cumulative sum (CUSUM) of score functions deduced
from the objective functions, constructed for the minimum power divergence estimator (MDPDE)
that includes the maximum likelihood estimator (MLE), to diminish the influence of outliers. It is
well-known that compared to the MLE, the MDPDE is robust against outliers with little loss of
efficiency. This robustness property is properly inherited by the proposed monitoring procedure.
A simulation study and real data analysis are conducted to affirm the validity of our method.
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1. Introduction

In this paper we consider the cumulative sum (CUSUM) monitoring procedure for detecting a
parameter change in integer-valued generalized autoregressive heteroscedastic (INGARCH) models.
Integer-valued time series is a core area in time series analysis that includes diverse disciplines in social,
physical, engineering, and medical sciences. Both integer-valued autoregressive (INAR) time series
models and the integer-valued generalized autoregressive conditional heteroscedastic (INGARCH)
models have been widely studied in the literature and applied to various practical problems. Refer
to McKenzie [1], Al-Osh and Alzaid [2], Ferland, Latour and Oraichi [3], Fokianos, Rahbek and
Tjøstheim [4], and Weiß [5] for a general review. Poisson, negative binomial (NB), and one-parameter
exponential family distributions have been widely used as underlying distributions, as seen in Davis
and Wu [6], Zhu [7], Zhu [8], Jazi, Jones and Lai [9], Christou and Fokianos [10], Davis and Liu [11],
Lee, Lee and Chen [12], and Chen, Khamthong and Lee [13].

Since Page [14], the CUSUM test has been a conventional tool to detect a structural change
in underlying models. For a history and background, we refer to Csörgő and Horváth [15],
Chen and Gupta [16], Lee, Ha, Na and Na [17], and the papers cited therein. Several authors have
studied the change point test for INGARCH models, including Fokianos and Fried [18], Fokianos and
Fried [19], Franke, Kirch and Kamgaing [20], Fokianos, Gombay and Hussein [21], Hudecová [22],
Hudecová, HuŠková and Meintanis [23], Kang and Lee [24], Lee, Lee and Chen [12], Lee, Lee and
Tjøstheim [25], and Lee and Lee [26]. This CUSUM scheme has been applied not only to retrospective
change point tests but also to on-line monitoring and statistical process control (SPC) problems, designed to
monitoring abnormal phenomena in manufacturing processes and health care surveillance. The CUSUM
control chart has been popular due to its considerable competency in early detection of anomalies.
Refer to Weiß [27], Rakitzis, Maravelakis and Castagliola [28], Kim and Lee [29], and the papers cited
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therein. Meanwhile, Gombay and Serban [30] used the CUSUM approach based on the score vectors
for independent observations, and later extended it to autoregressive processes, wherein the Type I
probability error is measured for obtaining control limits instead of the conventional average run length
(ARL). Their CUSUM monitoring process is based on the asymptotic property of the partial sum process
generated from score vectors. Later, Huh, Kim and Lee [31] adopted their method for analyzing Poisson
INGARCH models, and compared its performance with the likelihood ratio (LR)-based control chart,
originally considered by Weiss and Testik [32].

In this work, taking the approach of Gombay and Serban [30] and Huh, Kim and Lee [31],
we designate a robust monitoring process based on the minimum distance power divergence estimator
(MDPDE) proposed by Basu, Harris, Hjort and Jones [33]. We do this because the MDPDE is
well-known to be suitable for robust inference in various models, having a trade-off between efficiency
and robustness controlled through the tuning parameters with little loss in asymptotic efficiency
relative to the maximum likelihood estimator (MLE) (Riani, Atkinson, Corbellini and Perrotta [34]).
The MDPDE method has been successfully applied to various time series models, and in particular
INGARCH models (Kim and Lee [35], Kim and Lee [36]). Recently, Lee and Lee [26] and Kim and Lee
[37] considered the CUSUM tests based on score vectors for the MLE and MDPDE in exponential family
distribution INGARCH models. See also Kang and Song [38]. Using their results within the framework
of Gombay and Serban [30] and Huh, Kim and Lee [31], we design an MDPDE-based monitoring
process to detect a model parameter change in INGARCH models. Monte Carlo simulations are
conducted to assess the performance of the proposed monitoring procedure. A focus is made on
comparing the MDPDE-based CUSUM test with the MLE-based CUSUM test for Poisson INGARCH
models to demonstrate the superiority of the former over the latter in the presence of outliers. A real
data analysis of the return times of extreme events of Goldman Sachs Group (GS) stock prices is also
provided to illustrate the validity of the proposed test.

The rest of the paper is organized as follows. Section 2 reviews the MDPDE for INGARCH models
and Section 3 constructs the monitoring procedure for these models and investigates its asymptotic
properties. Section 4 presents a simulation study and Section 5 provides a real data analysis. Section 6
concludes the paper. The proof of the main theorem is provided in Appendix A.

2. MDPDE for INGARCH Model: An Overview

In this section, we briefly review the MDPDE for INGARCH models in [36]. Let Y1, Y2, . . . be the
observations generated from integer-valued time series models with the conditional distribution of the
one-parameter exponential family:

Yt|Ft−1 ∼ p(y|ηt), Xt := E(Yt|Ft−1) = fθ(Xt−1, Yt−1), (1)

where Ft−1 is a σ-field generated by Yt−1, Yt−2, . . ., and fθ(x, y) is a non-negative bivariate function,
depending on the parameter θ ∈ Θ ⊂ Rd, and satisfies infθ∈Θ fθ(x, y) ≥ c∗ for some c∗ > 0 for all x, y,
and p(·|·) is a probability mass function given by

p(y|η) = exp{ηy− A(η)}h(y), y = 0, 1, . . . ,

where η is the natural parameter, A(η) and h(y) are known functions, and both A and B = A
′

are
strictly increasing. In particular, B(ηt) = Xt and B′(ηt) is the conditional variance of Yt. In what
follows, symbols Xt(θ) and ηt(θ) = B−1(Xt(θ)) are also utilized to stand for Xt and ηt, respectively.

Davis and Liu [11] demonstrated that the strict stationarity and ergodicity of {Xt}, and the
expression of Xt(θ) = f θ

∞(Yt−1, Yt−2, . . .) are allowed for some nonnegative measurable function f θ
∞

defined on N∞
0 under the contraction condition: for all x, x′ ≥ 0 and y, y′ ∈ N0,

sup
θ∈Θ
| fθ(x, y)− fθ(x′, y′)| ≤ λ1|x− x′|+ λ2|y− y′|
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with constants λ1, λ2 ≥ 0 satisfying λ1 + λ2 < 1.
Meanwhile, Basu, Harris, Hjort and Jones [33] considered the minimum distance power

divergence estimator (MDPDE) for model parameters using the density power divergence dα between
two density functions g and h, defined by:

dα(g, h) :=

{ ∫
{g1+α(y)− (1 + 1

α )h(y)gα(y) + 1
α h1+α(y)}dy, α > 0,∫

h(y)(log h(y)− log g(y))dy, α = 0.

Kim and Lee [36] studied the MDPDE for one parameter exponential family distribution INGARCH
models. Given Y1, . . . , Yn generated from (1), the MDPDE is defined by

θ̂α,n = argmin
θ∈Θ

L̃α,n(θ) = argmin
θ∈Θ

1
n

n

∑
t=1

l̃α,t(θ), (2)

where

l̃α,t(θ) =

{
∑∞

y=0 p1+α(y|η̃t(θ))−
(

1 + 1
α

)
pα(Yt|η̃t(θ)), α > 0,

− log p(Yt|η̃t(θ)), α = 0,
(3)

and η̃t(θ) = B−1(X̃t(θ)) is updated recursively through the equations: X̃t(θ) = fθ(X̃t−1(θ), Yt−1), t ≥
2 with an initial value X̃1(θ) := X̃1.

Below, θ0 denotes the true value of θ and is assumed to be an interior point in the compact
parameter space Θ ⊂ Rd. Moreover, it is assumed that E

(
supθ∈Θ X1(θ)

)4
< ∞, EY4

1 < ∞, Xt(θ) =

Xt(θ0) a.s. implies θ = θ0, and νT ∂Xt(θ0)
∂θ = 0 a.s. implies ν = 0. Furthermore, θ 7→ Xt(θ) is twice

continuously differentiable with respect to θ and satisfies

E

(
sup
θ∈Θ

∥∥∥∥∂Xt(θ)

∂θ

∥∥∥∥
)4

< ∞ and E

(
sup
θ∈Θ

∥∥∥∥∂2Xt(θ)

∂θ∂θT

∥∥∥∥
)2

< ∞.

Assuming
inf
θ∈Θ

inf
0≤δ≤1

B′((1− δ)ηt(θ) + δη̃t(θ)) ≥ c

for some c > 0, Kim and Lee [36] verified that the MDPDE is strongly consistent. Additionally,
they showed that provided

sup
θ∈Θ

sup
0≤δ≤1

{ ∣∣∣∣ B′′((1− δ)ηt(θ) + δη̃t(θ))

B′((1− δ)ηt(θ) + δη̃t(θ))5/2

∣∣∣∣ ≤ K for some K > 0,

and

sup
θ∈Θ

∥∥∥∥∥∂X̃t(θ)

∂θ
− ∂Xt(θ)

∂θ

∥∥∥∥∥+
∥∥∥∥∥∂2X̃t(θ)

∂θ∂θT −
∂2Xt(θ)

∂θ∂θT

∥∥∥∥∥ ≤ Vρt a.s.,

where V and ρ ∈ (0, 1) denote a generic integrable random variable and a constant, respectively,
the symbol ‖ · ‖ denotes the L2-norm for matrices and vectors, and expectation E(·) is taken under θ0,
the MDPDE is asymptotically normal with asymptotic variance J−1

α Kα J−1
α where

Jα = −E
(

∂2lα,t(θ0)

∂θ∂θT

)
, Kα = E

(
∂lα,t(θ0)

∂θ

∂lα,t(θ0)

∂θT

)
, (4)

and lα,t(θ) is the same as l̃α,t(θ) with η̃t(θ) in (3) replaced by ηt(θ).
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Moreover, additionally assuming

sup
θ∈Θ

sup
0≤δ≤1

∣∣∣∣∣B(3)((1− δ)ηt(θ) + δη̃t(θ))

B′((1− δ)ηt(θ) + δη̃t(θ))4

∣∣∣∣∣ ≤ M for some M > 0,

Kim and Lee [37] showed that the CUSUM test statistics designed for detecting a change in θ have the
limiting null distribution of the sup of a Brownian bridge. In practice, α ∈ (0, 1] is often harnessed
and an optimal α can be selected through the method of Warwick [39] and Warwick and Jones [40];
see Remark 1 of Kim and Lee [36].

In the literature, the following linear INGARCH model has been frequently used:

Yt|Ft−1 ∼ p(y|ηt), Xt = ω + aXt−1 + bYt−1,

where Xt = B(ηt) = E(Yt|Ft−1) and θ = (ω, a, b)T satisfy ω > 0 and a + b < 1. Here, we assume
that θ0 is an interior of a compact neighborhood Θ = {θ = (ω, a, b)T ∈ R3

+ : 0 < ω1 ≤ ω ≤ ω2, ε ≤
a + b ≤ 1− ε} for some 0 < ω1 < ω2, ε > 0. Moreover, the Poisson INGARCH(1,1) model with
Yt|Ft−1 ∼ Poisson(Xt) and the NB-INGARCH(1,1) model with Yt|Ft−1 ∼ NB(r, pt), Xt =

r(1−pt)
pt

,
where NB(r, p) denotes a negative binomial (NB) distribution with parameters r ∈ N and p ∈ (0, 1),
satisfy the aforementioned regularity conditions. Those conditions should be checked analytically
when one aims to use a specific distribution as the conditional distribution of the INGARCH model.
In this case, a goodness of fit test could be conducted to check the adequacy of the assumed underlying
distribution (Fokianos and Neumann [41]).

3. MDPDE-Based Monitoring Process

In this section, we consider a monitoring process detecting a significant change in the underlying
models based on sequentially observed time series Y1, . . . , Yn following Model (1), given a training
sample Y

′
1, . . . , Y

′
m from Model (1), where m = m(n) is a sequence of positive integers that diverges to

∞ as n tends to ∞. For this task, we set up the following hypotheses:

H0 : θ does not change over t = 1, . . . , n vs. H1 : not H0.

We first consider the case that θ0 is known a priori from a past experience. Then we consider the

monitoring process using the process Ŵk,0 = K̂−1/2
α ∑k

t=1
∂l̃α,t(θ0)

∂θ , k = 1, . . . , n, constructed as

T̂min
n,0 := max

1≤k≤n
T̂min

n,0 (k) = max
1≤k≤n

1√
n

∣∣∣∣∣∣∣∣min
j≤k

Ŵj,0 − Ŵk,0

∣∣∣∣∣∣∣∣
max

, (5)

T̂max
n,0 := max

1≤k≤n
T̂max

n,0 (k) = max
1≤k≤n

1√
n

∣∣∣∣∣∣∣∣max
j≤k

Ŵj,0 − Ŵk,0

∣∣∣∣∣∣∣∣
max

,

T̂cusum
n,0 := max

1≤k≤n
T̂
′
n,0(k) = max

1≤k≤n
max

1≤i<j≤k

1√
n

∣∣∣∣∣∣∣∣( i
j

)
Ŵj,0 − Ŵi,0

∣∣∣∣∣∣∣∣ ,

where ∂l̃α,t
∂θ is the score vector as in (3) based on Y1, . . . , Yn and

K̂α =
1
m

m

∑
t=1

∂l̃
′
α,t(θ0)

∂θT

∂l̃
′
α,t(θ0)

∂θT , (6)

where
∂l̃
′
α,t

∂θ is the score vector based on the training sample. Here, the notation max1≤i≤k zi with
zi = (zi,1, . . . , zi,d)

T ∈ Rd is defined to be the vector with the jth entry equal to max1≤i≤k zj,i for
j = 1, . . . , d, and ||z||max = max1≤i≤k |zi| for z = (z1, . . . , zd)

T ∈ Rd. Similar versions of T̂max
n,0 and

T̂cusum
n,0 based on MLE have been considered by Gombay and Serban [30] and Huh, Kim and Lee
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[31] for the AR and Poisson INGARCH models, while T̂min
n,0 is newly considered here. An anomaly is

signaled at k when T̂min
n,0 (k), T̂max

n,0 (k), or T̂cusum
n,0 (k) get out of a control limit for some k = 1, . . . , n, and

the control limit can be determined using the convergence result in Theorem 1 addressed below.
Next, we consider the situation that θ0 is unknown and must be estimated in the construction

of the monitoring process in (5). We employ a monitoring process constructed based on Ŵk =

K̂−1/2
α,m ∑k

t=1
∂l̃α,t(θ̂α,m)

∂θ , where θ̂α,m is the MDPDE of θ0 obtained from the training sample and

K̂α,m =
1
m

m

∑
t=1

∂l̃
′
α,t(θ̂α,m)

∂θ

∂l̃
′
α,t(θ̂α,m)

∂θT ,

which is obtained by substituting θ0 in Kα in (6) with θ̂α,m, namely,

T̂min
n := max

1≤k≤n
T̂min

n (k) = max
1≤k≤n

1√
n

∣∣∣∣∣∣∣∣min
j≤k

Ŵj − Ŵk

∣∣∣∣∣∣∣∣
max

, (7)

T̂max
n := max

1≤k≤n
T̂max

n (k) = max
1≤k≤n

1√
n

∣∣∣∣∣∣∣∣max
j≤k

Ŵj − Ŵk

∣∣∣∣∣∣∣∣
max

,

T̂cusum
n := max

1≤k≤n
T̂cusum

n (k) = max
1≤k≤n

max
1≤i<j≤k

1√
n

∣∣∣∣∣∣∣∣( i
j

)
Ŵj,0 − Ŵi,0

∣∣∣∣∣∣∣∣ .

An anomaly is detected at k when T̂min
n (k), T̂max

n (k), or T̂cusum
n (k) get out of the control limit for

some k = 1, . . . , n. The control limit can be determined theoretically using the asymptotic result in
Theorem 1 addressed below. For this task, we investigate the asymptotic behavior of the monitoring
processes T̂min

n , T̂max
n , and T̂cusum

n defined below.
Let Wk = K−1/2

α ∑k
t=1

∂lα,t(θ0)
∂θ , where Kα and ∂lα,t

∂θ are the ones in (4), and

Tmin
n = max

1≤k≤n

1√
n

∣∣∣∣∣∣∣∣min
j≤k

Wj −Wk

∣∣∣∣∣∣∣∣
max

,

Tmax
n = max

1≤k≤n

1√
n

∣∣∣∣∣∣∣∣max
j≤k

Wj −Wk

∣∣∣∣∣∣∣∣
max

,

Tcusum
n = max

1≤k≤n
max

1≤i<j≤k

1√
n

∣∣∣∣∣∣∣∣( i
j

)
Wj −Wi

∣∣∣∣∣∣∣∣ .

Using Donsker’s invariance principle for martingale differences (Billingsley [42]) and the fact
that sup0≤s≤t B(s)− B(t) = |B(t)| in distribution for any standard Brownian motion B, we obtain

Tmax
n

d→ T := sup
0≤s≤1

||Bd(s)||max, (8)

where Bd and denote a d-dimensional standard Brownian motion, so that

Tmin
n

d→ T = sup
0≤s≤1

||Bd(s)||max

as Tmin
n behaves asymptotically similarly to Tmax

n . Meanwhile, we can see that

Tcusum
n

d→ T
′
= sup

0<s≤s′≤1

∣∣∣∣∣∣ s
s′
B◦d(s

′
)−B◦d(s)

∣∣∣∣∣∣, (9)

where B◦d is a d-dimensional Brownian bridge.
Using the above facts, we are led to attain the following theorem, whose proof is provided in the

Appendix A.
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Theorem 1. Assume that (A.1)–(A.11) hold. Then, under H0, as n → ∞, T̂min
n,0 and T̂max

n,0 converge to T
in distribution, and the same holds for T̂min

n and T̂max
n if m/n → ∞. Moreover, T̂cusum

n,0 converges to T
′

in
distribution as n→ ∞, and so does T̂cusum

n if m/n→ λ ∈ (0, ∞).

The result in Theorem 1 can be used to determine a control limit for the monitoring process.
Given significance level 0 < α < 1, we take c and c

′
satisfying P(T ≥ c) = P(T

′ ≥ c
′
) = α.

In particular, P(T ≥ c) = 1 − (P(sup0≤s≤1 |B(s)| ≤ c))d, so that c can be obtained from the fact
that P(sup0≤s≤1 |B(s)| ≥ c) = 1− (1− α)1/d. The performance of the proposed CUSUM monitoring
methods is evaluated in our simulation study, focusing on T̂cusum

n , T̂min
n,0 , and T̂min

n . (We do not report the
result for T̂max

n,0 and T̂max
n , as these do not perform well compared to the others in most cases). Therein,

a parametric bootstrap is adopted in obtaining control limits to reduce the parameter estimation effect,
which can be more problematic when m is not so large compared to n, and the MDPDE from the
training sample is used to generate the bootstrap sample.

4. Simulation Results

In this section, we compare the performance of the CUSUM monitoring processes T̂cusum
n , T̂min

n,0 ,
and T̂min

n in three different experimental environments for the Poisson INGARCH(1,1) model as follows:

Yt | Ft−1 ∼ Poisson (Xt) , Xt = ω + aXt−1 + bYt−1.

For the comparison, we compute the empirical sizes and powers at the nominal level of 0.05 for
m = n = 500, 1000 with 1000 implications. For the critical value of T̂min

n,0 , we use 2.633, which is
the 0.95th quantile of sup0≤s≤1 ‖B3(s)‖max. However, for T̂cusum

n and T̂min
n , we use the critical values

obtained from a parametric bootstrap method, as the MDPDE θ̂α,m might cause some size distortions.
In implementation, the warp-bootstrap method is utilized to save computing times (Giacomini, Politis,
and White [43]).

-Part 1. We compare the performance of MLE- and MDPDE-based monitoring processes (α =

0, 0.1, 0.2, 0.3) by calculating the size and power for the four different cases of changing parameter from
(ω0, a0, b0) to (ω1, a1, b1) when the parameter change is assumed to occur at [n/2].

Case 1: ω1 = (1 + δ)ω0, a1 = (1 + δ)a0, b1 = (1 + δ)b0; that is, all parameters change;
Case 2: ω1 = (1 + δ)ω0, a1 = a0, b1 = b0; that is, only ω changes;
Case 3: ω1 = ω0, a1 = (1 + δ)a0, b1 = b0; that is, only a changes;
Case 4: ω1 = ω0, a1 = a0, b1 = (1 + δ)b0; that is, only b changes.
-Part 2. We examine the size and power for the same settings as in Part 1 when the change occurs

at [n/4].
-Part 3. We compare the performance of MLE- and MDPDE-based monitoring processes (α =

0, 0.1, 0.2, 0.3) for the same settings as in Part 1 when outliers exist in the time series, wherein the
parameter change is assumed to occur at [n/2]. In this case time series samples are generated from
(1− pt)Yt + ptZt where Yt is the INGARCH process with the parameters as in Part 1, pt are iid Bernoulli
random variables with success probability p, and Zt are iid Poisson variables wit intensity λ > 0. Here,
{Yt}, {pt} and {Zt} are all independent.

Figure 1 shows how the parameter change affects the pattern of the Poisson INGARCH(1,1) time
series (Case 3) with θ0 = (2, 0.3, 0.3), τ = 500, and δ = 0 for the left panel and δ = 0.5 for the right
panel. As EYt =

ω
1−a−b , we can see that parameter change causes a mean shift. Tables 1–3 list the size

and powers for Part 1 (τ therein stands for the location of the change point) and show no severe size
distortions and reasonably good powers for δ ≥ 0.5. In particular, T̂cusum

n and T̂min
n,0 largely outperform

T̂min
n in terms of power. However, as seen in Tables 4–8, the power of T̂min

n in Part 2 appears to increase
up to that of T̂min

n,0 . In both Part 1 and Part 2, different α do not affect the size much, but a larger α tends
to diminish the power. This appeals to our intuition, as the MLE is more efficient in the presence of
no outliers.
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Table 1. Empirical sizes and powers in Case 1 for the Poisson INGARCH(1,1) model when no outliers
exist with θ0 = (2, 0.1, 0.2).

α n τ δ : 0 0.25 0.5 0.75 1
T̂min

n,0 0 500 250 0.035 0.541 1 1 1
T̂min

n 0 500 250 0.036 0.428 1 1 1
T̂cusum

n 0 500 250 0.048 0.997 1 1 1
T̂min

n,0 0 1000 500 0.042 0.791 1 1 1
T̂min

n 0 1000 500 0.049 0.682 1 1 1
T̂cusum

n 0 1000 500 0.052 1 1 1 1
T̂min

n,0 0.1 500 250 0.035 0.523 1 1 1
T̂min

n 0.1 500 250 0.036 0.398 1 1 1
T̂cusum

n 0.1 500 250 0.043 0.995 1 1 1
T̂min

n,0 0.1 1000 500 0.042 0.78 1 1 1
T̂min

n 0.1 1000 500 0.051 0.642 1 1 1
T̂cusum

n 0.1 1000 500 0.056 1 1 1 1
T̂min

n,0 0.2 500 250 0.035 0.493 1 1 1
T̂min

n 0.2 500 250 0.038 0.361 1 1 1
T̂cusum

n 0.2 500 250 0.041 0.994 1 1 1
T̂min

n,0 0.2 1000 500 0.04 0.757 1 1 1
T̂min

n 0.2 1000 500 0.048 0.589 1 1 1
T̂cusum

n 0.2 1000 500 0.066 1 1 1 1
T̂min

n,0 0.3 500 250 0.035 0.465 1 1 1
T̂min

n 0.3 500 250 0.042 0.332 1 1 1
T̂cusum

n 0.3 500 250 0.036 0.992 1 1 1
T̂min

n,0 0.3 1000 500 0.034 0.718 1 1 1
T̂min

n 0.3 1000 500 0.047 0.551 1 1 1
T̂cusum

n 0.3 1000 500 0.064 1 1 1 1
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Figure 1. Plots of the Poisson INGARCH(1,1) time series (Case 3) with θ0 = (2, 0.3, 0.3), τ = 500 and
δ = 0 for the left panel and δ = 0.5 for the right panel.

Meanwhile, Tables 9–12 show that the outliers undermine the performance of the MLE-based
monitoring processes in terms of both size and power; namely, size distortions are notable and the
power decreases to a certain extent. This result particularly indicates that T̂cusum

n is improved when the
MDPDE with α > 0 is used, which demonstrates the efficacy of the MDPDE in the monitoring process.
By contrast, the size of T̂min

n significantly increases when α > 0, indicating that T̂min
n is unstable;

see Figure 2. Although not reported here, we also examined the performance of the same monitoring
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processes for NB INGARCH(1,1) models. The result for this case showed a similar pattern to the
Poisson INGARCH(1,1) case. All our findings strongly affirm that T̂cusum

n is the most favorable among
the monitoring methods considered in this study.

Table 2. Empirical sizes and powers in Case 2 for the Poisson INGARCH(1,1) model when no outliers
exist with θ0 = (2, 0.6, 0.2).

α n τ δ : 0 −1/5 −1/3 −3/7 −1/2
T̂min

n,0 0 500 250 0.05 0.983 1 1 1
T̂min

n 0 500 250 0.06 0.86 0.999 1 1
T̂cusum

n 0 500 250 0.049 0.893 0.999 1 1
T̂min

n,0 0 1000 500 0.052 1 1 1 1
T̂min

n 0 1000 500 0.053 0.98 1 1 1
T̂cusum

n 0 1000 500 0.059 0.997 1 1 1
T̂min

n,0 0.1 500 250 0.047 0.984 1 1 1
T̂min

n 0.1 500 250 0.058 0.871 1 1 1
T̂cusum

n 0.1 500 250 0.046 0.9 1 1 1
T̂min

n,0 0.1 1000 500 0.048 1 1 1 1
T̂min

n 0.1 1000 500 0.041 0.977 1 1 1
T̂cusum

n 0.1 1000 500 0.051 0.996 1 1 1
T̂min

n,0 0.2 500 250 0.045 0.986 1 1 1
T̂min

n 0.2 500 250 0.05 0.852 0.999 1 1
T̂cusum

n 0.2 500 250 0.043 0.904 1 1 1
T̂min

n,0 0.2 1000 500 0.052 1 1 1 1
T̂min

n 0.2 1000 500 0.04 0.973 1 1 1
T̂cusum

n 0.2 1000 500 0.054 0.997 1 1 1
T̂min

n,0 0.3 500 250 0.04 0.985 1 1 1
T̂min

n 0.3 500 250 0.043 0.845 0.999 1 1
T̂cusum

n 0.3 500 250 0.048 0.912 1 1 1
T̂min

n,0 0.3 1000 500 0.05 1 1 1 1
T̂min

n 0.3 1000 500 0.052 0.978 1 1 1
T̂cusum

n 0.3 1000 500 0.053 0.996 1 1 1
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Figure 2. Plots of the sizes and powers in Table 10 (Part 3, Case 2) for n = 1000. The left panel is for
T̂min

n and the right panel is for T̂cusum
n .
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Table 3. Empirical sizes and powers in Case 3 for the Poisson INGARCH(1,1) model when no outliers
exist with θ0 = (2, 0.3, 0.3).

α n τ δ : 0 0.25 0.5 0.75 1
T̂min

n,0 0 500 250 0.046 0.309 0.999 1 1
T̂min

n 0 500 250 0.043 0.216 0.993 1 1
T̂cusum

n 0 500 250 0.047 0.685 1 1 1
T̂min

n,0 0 1000 500 0.039 0.473 1 1 1
T̂min

n 0 1000 500 0.041 0.337 1 1 1
T̂cusum

n 0 1000 500 0.057 0.969 1 1 1
T̂min

n,0 0.1 500 250 0.044 0.292 0.999 1 1
T̂min

n 0.1 500 250 0.046 0.208 0.992 1 1
T̂cusum

n 0.1 500 250 0.054 0.696 1 1 1
T̂min

n,0 0.1 1000 500 0.046 0.458 1 1 1
T̂min

n 0.1 1000 500 0.047 0.314 1 1 1
T̂cusum

n 0.1 1000 500 0.062 0.965 1 1 1
T̂min

n,0 0.2 500 250 0.046 0.266 0.998 1 1
T̂min

n 0.2 500 250 0.05 0.192 0.99 1 1
T̂cusum

n 0.2 500 250 0.048 0.696 1 1 1
T̂min

n,0 0.2 1000 500 0.044 0.44 1 1 1
T̂min

n 0.2 1000 500 0.042 0.287 1 1 1
T̂cusum

n 0.2 1000 500 0.067 0.962 1 1 1
T̂min

n,0 0.3 500 250 0.041 0.244 0.998 1 1
T̂min

n 0.3 500 250 0.051 0.179 0.986 1 1
T̂cusum

n 0.3 500 250 0.051 0.669 1 1 1
T̂min

n,0 0.3 1000 500 0.04 0.412 1 1 1
T̂min

n 0.3 1000 500 0.045 0.267 1 1 1
T̂cusum

n 0.3 1000 500 0.055 0.956 1 1 1

Table 4. Empirical sizes and powers in Case 4 for the Poisson INGARCH(1,1) model when no outliers
exist with θ0 = (1, 0.4, 0.4).

α n τ δ : 0 −1/5 −1/3 −3/7 −1/2
T̂min

n,0 0 500 250 0.044 0.687 0.991 1 1
T̂min

n 0 500 250 0.049 0.345 0.75 0.941 0.986
T̂cusum

n 0 500 250 0.058 0.364 0.828 0.957 0.991
T̂min

n,0 0 1000 500 0.038 0.946 1 1 1
T̂min

n 0 1000 500 0.039 0.626 0.969 1 1
T̂cusum

n 0 1000 500 0.058 0.796 0.998 1 1
T̂min

n,0 0.1 500 250 0.044 0.688 0.99 1 1
T̂min

n 0.1 500 250 0.054 0.349 0.752 0.938 0.985
T̂cusum

n 0.1 500 250 0.06 0.376 0.841 0.964 0.993
T̂min

n,0 0.1 1000 500 0.042 0.945 1 1 1
T̂min

n 0.1 1000 500 0.042 0.616 0.966 0.999 1
T̂cusum

n 0.1 1000 500 0.053 0.782 0.997 1 1
T̂min

n,0 0.2 500 250 0.047 0.686 0.989 0.999 1
T̂min

n 0.2 500 250 0.056 0.357 0.757 0.939 0.986
T̂cusum

n 0.2 500 250 0.056 0.378 0.832 0.965 0.991
T̂min

n,0 0.2 1000 500 0.042 0.94 1 1 1
T̂min

n 0.2 1000 500 0.039 0.597 0.965 0.999 1
T̂cusum

n 0.2 1000 500 0.059 0.793 0.997 1 1
T̂min

n,0 0.3 500 250 0.049 0.677 0.985 0.999 1
T̂min

n 0.3 500 250 0.048 0.321 0.721 0.917 0.977
T̂cusum

n 0.3 500 250 0.054 0.381 0.831 0.963 0.991
T̂min

n,0 0.3 1000 500 0.043 0.931 1 1 1
T̂min

n 0.3 1000 500 0.047 0.606 0.962 0.999 1
T̂cusum

n 0.3 1000 500 0.064 0.792 0.997 1 1
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Table 5. Empirical sizes and powers in Case 1 for the Poisson INGARCH(1,1) model when no outliers
exist with θ0 = (2, 0.1, 0.2).

α n τ δ : 0 0.25 0.5 0.75 1
T̂min

n,0 0 500 125 0.035 0.759 1 1 1
T̂min

n 0 500 125 0.036 0.636 1 1 1
T̂cusum

n 0 500 125 0.048 0.983 1 1 1
T̂min

n,0 0 1000 250 0.042 0.936 1 1 1
T̂min

n 0 1000 250 0.049 0.874 1 1 1
T̂cusum

n 0 1000 250 0.052 1 1 1 1
T̂min

n,0 0.1 500 125 0.035 0.739 1 1 1
T̂min

n 0.1 500 125 0.036 0.606 1 1 1
T̂cusum

n 0.1 500 125 0.043 0.981 1 1 1
T̂min

n,0 0.1 1000 250 0.042 0.938 1 1 1
T̂min

n 0.1 1000 250 0.051 0.861 1 1 1
T̂cusum

n 0.1 1000 250 0.056 1 1 1 1
T̂min

n,0 0.2 500 125 0.035 0.716 1 1 1
T̂min

n 0.2 500 125 0.038 0.57 1 1 1
T̂cusum

n 0.2 500 125 0.041 0.981 1 1 1
T̂min

n,0 0.2 1000 250 0.04 0.936 1 1 1
T̂min

n 0.2 1000 250 0.048 0.842 1 1 1
T̂cusum

n 0.2 1000 250 0.066 1 1 1 1
T̂min

n,0 0.3 500 125 0.035 0.693 1 1 1
T̂min

n 0.3 500 125 0.042 0.542 1 1 1
T̂cusum

n 0.3 500 125 0.036 0.976 1 1 1
T̂min

n,0 0.3 1000 250 0.034 0.93 1 1 1
T̂min

n 0.3 1000 250 0.047 0.828 1 1 1
T̂cusum

n 0.3 1000 250 0.064 1 1 1 1

Table 6. Empirical sizes and powers Case 2 for the Poisson INGARCH(1,1) model when no outliers
exist with θ0 = (2, 0.6, 0.2).

α n τ δ : 0 −1/5 −1/3 −3/7 −1/2
T̂min

n,0 0 500 125 0.05 0.999 1 1 1
T̂min

n 0 500 125 0.06 0.969 1 1 1
T̂cusum

n 0 500 125 0.049 0.844 1 1 1
T̂min

n,0 0 1000 250 0.052 1 1 1 1
T̂min

n 0 1000 250 0.053 1 1 1 1
T̂cusum

n 0 1000 250 0.059 0.988 1 1 1
T̂min

n,0 0.1 500 125 0.047 1 1 1 1
T̂min

n 0.1 500 125 0.058 0.971 1 1 1
T̂cusum

n 0.1 500 125 0.046 0.85 1 1 1
T̂min

n,0 0.1 1000 250 0.048 1 1 1 1
T̂min

n 0.1 1000 250 0.041 1 1 1 1
T̂cusum

n 0.1 1000 250 0.051 0.988 1 1 1
T̂min

n,0 0.2 500 125 0.045 1 1 1 1
T̂min

n 0.2 500 125 0.05 0.967 1 1 1
T̂cusum

n 0.2 500 125 0.043 0.845 1 1 1
T̂min

n,0 0.2 1000 250 0.052 1 1 1 1
T̂min

n 0.2 1000 250 0.04 1 1 1 1
T̂cusum

n 0.2 1000 250 0.054 0.991 1 1 1
T̂min

n,0 0.3 500 125 0.04 1 1 1 1
T̂min

n 0.3 500 125 0.043 0.962 1 1 1
T̂cusum

n 0.3 500 125 0.048 0.863 1 1 1
T̂min

n,0 0.3 1000 250 0.05 1 1 1 1
T̂min

n 0.3 1000 250 0.052 1 1 1 1
T̂cusum

n 0.3 1000 250 0.053 0.986 1 1 1
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Table 7. Empirical sizes and powers Case 3 for the Poisson INGARCH(1,1) model when no outliers
exist with θ0 = (2, 0.3, 0.3).

α n τ δ : 0 0.25 0.5 0.75 1
T̂min

n,0 0 500 125 0.046 0.488 1 1 1
T̂min

n 0 500 125 0.043 0.33 0.999 1 1
T̂cusum

n 0 500 125 0.047 0.614 1 1 1
T̂min

n,0 0 1000 250 0.039 0.716 1 1 1
T̂min

n 0 1000 250 0.041 0.554 1 1 1
T̂cusum

n 0 1000 250 0.057 0.916 1 1 1
T̂min

n,0 0.1 500 125 0.044 0.455 1 1 1
T̂min

n 0.1 500 125 0.046 0.314 0.999 1 1
T̂cusum

n 0.1 500 125 0.054 0.614 1 1 1
T̂min

n,0 0.1 1000 250 0.046 0.706 1 1 1
T̂min

n 0.1 1000 250 0.047 0.531 1 1 1
T̂cusum

n 0.1 1000 250 0.062 0.914 1 1 1
T̂min

n,0 0.2 500 125 0.046 0.434 1 1 1
T̂min

n 0.2 500 125 0.05 0.295 0.999 1 1
T̂cusum

n 0.2 500 125 0.048 0.601 0.999 1 1
T̂min

n,0 0.2 1000 250 0.044 0.701 1 1 1
T̂min

n 0.2 1000 250 0.042 0.505 1 1 1
T̂cusum

n 0.2 1000 250 0.067 0.901 1 1 1
T̂min

n,0 0.3 500 125 0.041 0.416 1 1 1
T̂min

n 0.3 500 125 0.051 0.283 0.999 1 1
T̂cusum

n 0.3 500 125 0.051 0.573 0.999 1 1
T̂min

n,0 0.3 1000 250 0.04 0.684 1 1 1
T̂min

n 0.3 1000 250 0.045 0.485 1 1 1
T̂cusum

n 0.3 1000 250 0.055 0.869 1 1 1

Table 8. Empirical sizes and powers in Case 4 for the Poisson INGARCH(1,1) model when no outliers
exist with θ0 = (1, 0.4, 0.4).

α n τ δ : 0 −1/5 −1/3 −3/7 −1/2
T̂min

n,0 0 500 125 0.044 0.958 1 1 1
T̂min

n 0 500 125 0.049 0.559 0.937 0.995 0.999
T̂cusum

n 0 500 125 0.058 0.242 0.636 0.869 0.943
T̂min

n,0 0 1000 250 0.038 0.998 1 1 1
T̂min

n 0 1000 250 0.039 0.887 1 1 1
T̂cusum

n 0 1000 250 0.058 0.543 0.961 0.998 1
T̂min

n,0 0.1 500 125 0.044 0.955 1 1 1
T̂min

n 0.1 500 125 0.054 0.565 0.937 0.994 0.999
T̂cusum

n 0.1 500 125 0.06 0.283 0.667 0.881 0.953
T̂min

n,0 0.1 1000 250 0.042 0.999 1 1 1
T̂min

n 0.1 1000 250 0.042 0.883 1 1 1
T̂cusum

n 0.1 1000 250 0.053 0.542 0.96 0.998 1
T̂min

n,0 0.2 500 125 0.047 0.95 1 1 1
T̂min

n 0.2 500 125 0.056 0.574 0.941 0.992 0.999
T̂cusum

n 0.2 500 125 0.056 0.291 0.669 0.88 0.951
T̂min

n,0 0.2 1000 250 0.042 0.999 1 1 1
T̂min

n 0.2 1000 250 0.039 0.873 0.997 1 1
T̂cusum

n 0.2 1000 250 0.059 0.56 0.965 0.999 1
T̂min

n,0 0.3 500 125 0.049 0.945 1 1 1
T̂min

n 0.3 500 125 0.048 0.535 0.931 0.987 0.997
T̂cusum

n 0.3 500 125 0.054 0.294 0.662 0.873 0.95
T̂min

n,0 0.3 1000 250 0.043 0.999 1 1 1
T̂min

n 0.3 1000 250 0.047 0.885 0.996 1 1
T̂cusum

n 0.3 1000 250 0.064 0.569 0.967 0.998 1
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Table 9. Empirical sizes and powers in Case 1 for the Poisson INGARCH(1,1) model when
θ0 = (2, 0.1, 0.2), p = 0.1 and λ = 10.

α n τ δ : 0 0.25 0.5 0.75 1
T̂min

n 0 500 250 0.065 0.058 0.145 0.8 0.958
T̂cusum

n 0 500 250 0.048 0.047 0.066 0.512 0.997
T̂min

n 0 1000 500 0.061 0.058 0.367 0.958 0.991
T̂cusum

n 0 1000 500 0.053 0.053 0.095 0.978 1
T̂min

n 0.1 500 250 0.042 0.039 0.23 0.891 0.962
T̂cusum

n 0.1 500 250 0.035 0.037 0.122 0.897 1
T̂min

n 0.1 1000 500 0.056 0.046 0.653 0.979 0.995
T̂cusum

n 0.1 1000 500 0.053 0.054 0.963 1 1
T̂min

n 0.2 500 250 0.036 0.032 0.162 0.842 0.951
T̂cusum

n 0.2 500 250 0.035 0.036 0.111 0.804 1
T̂min

n 0.2 1000 500 0.026 0.025 0.454 0.976 0.993
T̂cusum

n 0.2 1000 500 0.023 0.023 0.514 1 1
T̂min

n 0.3 500 250 0.032 0.034 0.201 0.855 0.95
T̂cusum

n 0.3 500 250 0.032 0.032 0.114 0.771 0.979
T̂min

n 0.3 1000 500 0.024 0.02 0.485 0.973 0.991
T̂cusum

n 0.3 1000 500 0.021 0.021 0.284 0.999 1

Table 10. Empirical sizes and powers in Case 2 for the Poisson INGARCH(1,1) model when
θ0 = (2, 0.6, 0.2), p = 0.1 and λ = 30.

α n τ δ : 0 0.25 0.5 0.75 1
T̂min

n 0 500 250 0.08 0.975 1 1 1
T̂cusum

n 0 500 250 0.065 0.11 0.194 0.329 0.456
T̂min

n 0 1000 500 0.055 1 1 1 1
T̂cusum

n 0 1000 500 0.05 0.203 0.594 0.795 0.902
T̂min

n 0.1 500 250 0.057 0.935 0.999 1 1
T̂cusum

n 0.1 500 250 0.062 0.169 0.666 0.927 0.993
T̂min

n 0.1 1000 500 0.091 0.999 1 1 1
T̂cusum

n 0.1 1000 500 0.052 0.615 1 1 1
T̂min

n 0.2 500 250 0.054 0.875 0.998 0.999 1
T̂cusum

n 0.2 500 250 0.043 0.069 0.309 0.663 0.784
T̂min

n 0.2 1000 500 0.135 0.993 1 1 1
T̂cusum

n 0.2 1000 500 0.046 0.569 0.999 1 1
T̂min

n 0.3 500 250 0.063 0.896 0.998 0.999 1
T̂cusum

n 0.3 500 250 0.046 0.086 0.455 0.763 0.853
T̂min

n 0.3 1000 500 0.159 0.992 1 1 1
T̂cusum

n 0.3 1000 500 0.047 0.675 0.999 1 1
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Table 11. Empirical sizes and powers in Case 3 for the Poisson INGARCH(1,1) model when
θ0 = (2, 0.3, 0.3), p = 0.1 and λ = 30.

α n τ δ : 0 0.25 0.5 0.75 1
T̂min

n 0 500 250 0.074 0.118 0.069 0.127 0.885
T̂cusum

n 0 500 250 0.062 0.064 0.06 0.068 0.777
T̂min

n 0 1000 500 0.062 0.213 0.058 0.257 0.935
T̂cusum

n 0 1000 500 0.049 0.05 0.049 0.057 0.992
T̂min

n 0.1 500 250 0.036 0.033 0.041 0.516 0.914
T̂cusum

n 0.1 500 250 0.037 0.037 0.04 0.268 0.961
T̂min

n 0.1 1000 500 0.029 0.026 0.03 0.824 0.963
T̂cusum

n 0.1 1000 500 0.023 0.023 0.025 0.859 1
T̂min

n 0.2 500 250 0.038 0.034 0.038 0.487 0.865
T̂cusum

n 0.2 500 250 0.04 0.042 0.046 0.321 0.612
T̂min

n 0.2 1000 500 0.019 0.017 0.018 0.725 0.922
T̂cusum

n 0.2 1000 500 0.015 0.015 0.015 0.244 0.616
T̂min

n 0.3 500 250 0.035 0.032 0.036 0.351 0.661
T̂cusum

n 0.3 500 250 0.039 0.039 0.042 0.13 0.211
T̂min

n 0.3 1000 500 0.02 0.016 0.017 0.684 0.893
T̂cusum

n 0.3 1000 500 0.012 0.012 0.012 0.085 0.161

Table 12. Empirical sizes and powers in Case 4 for the Poisson INGARCH(1,1) model when
θ0 = (1, 0.4, 0.4), p = 0.1 and λ = 30.

α n τ δ : 0 0.25 0.5 0.75 1
T̂min

n 0 500 250 0.05 0.796 0.958 0.989 0.996
T̂cusum

n 0 500 250 0.048 0.078 0.118 0.173 0.219
T̂min

n 0 1000 500 0.032 1 1 1 1
T̂cusum

n 0 1000 500 0.043 0.613 0.874 0.931 0.957
T̂min

n 0.1 500 250 0.085 0.712 0.97 0.997 1
T̂cusum

n 0.1 500 250 0.04 0.065 0.243 0.466 0.647
T̂min

n 0.1 1000 500 0.242 0.978 0.999 1 1
T̂cusum

n 0.1 1000 500 0.069 0.916 0.999 1 1
T̂min

n 0.2 500 250 0.078 0.677 0.96 0.995 0.999
T̂cusum

n 0.2 500 250 0.032 0.069 0.284 0.535 0.735
T̂min

n 0.2 1000 500 0.229 0.965 0.999 1 1
T̂cusum

n 0.2 1000 500 0.047 0.836 0.999 1 1
T̂min

n 0.3 500 250 0.06 0.642 0.947 0.993 0.999
T̂cusum

n 0.3 500 250 0.027 0.08 0.332 0.621 0.807
T̂min

n 0.3 1000 500 0.201 0.962 0.999 1 1
T̂cusum

n 0.3 1000 500 0.027 0.749 0.999 1 1

5. Real Data Analysis

In this section, we apply T̂cusum
n to a real dataset, using the extreme events of the daily log-returns

of GS stock from 2 July 2007 to 28 February 2020. Davis and Liu [11] and Kim and Lee [37] used the
GS stock datasets with different periods, but their works were focused on parameter estimation and
the retrospective change point test. For the task of online monitoring, we first calculated the hitting
times, τ1, τ2, . . . , for which the log-returns of GS stock fall outside the 0.05 and 0.95 quantiles of the
data, and generated the time series of counts Yt = τt − τt−1 ≥ 0, t = 1, . . . , 319. Figure 3 plots Yt and
exhibits the presence of a number of outliers.
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Figure 3. Plot of the return times of extreme events for Goldman Sachs Group stock.

Fitting the Poisson INGARCH(1,1) model to the whole observations, we have the MLE of
(ω̂, â, b̂) = (1.969, 0.152, 0.664) and the MDPDE of (ω̂, â, b̂) = (1.213, 0.144, 0.472) when α = 0.1 is
used. The significant difference between the two estimates is seemingly due to the presence of outliers.
Using Yt, t = 1, . . . , 150 as a training sample and viewing Yt, t ≥ 151 as sequentially observed testing
data, we implement the monitoring process T̂cusum

n with α = 0, 0.1 to detect a parameter change.
Subsequently, an anomaly is detected when t = 180 for α = 0 (blue vertical line) and t = 197 for
α = 0.1 (red vertical line), which indicates that the monitoring process based on the MLE is more
sensitive to relatively smaller outliers lying around t = 180, while that based on MDPDE is more
robust to those outliers and detects a more significant change around t = 197, ignoring smaller
ones. Obviously, we can see from Figure 3 that Yt has a pattern with more fluctuations after t = 180.
Our finding affirms the adequacy of the MDPDE-based monitoring process in the presence of outliers.

6. Concluding Remarks

In this work, we studied the robust on-line monitoring process based on MDPDE for detecting
a parameter change in INGARCH models. For this task, we adopted the CUSUM process based on
the score functions, which were originally constructed for obtaining the MDPDE. Our simulation
study and real data analysis confirmed the validity of the proposed method. Here, we focused on the
monitoring process within the framework of Gombay and Serban [30] and Huh, Kim and Lee [31].
However, one can also consider a different monitoring scheme, for example as in Na, Lee and Lee [44],
and conduct a comparison study, which is left as our future project.
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Abbreviations

The following abbreviations are used in this manuscript:

CUSUM cumulative sum
INGARCH integer-valued generalized autoregressive conditionally heteroscedastic
INAR integer-valued autoregressive
MDPDE minimum density power divergence etimator
MLE maximum likelihood estimator
SPC statistical process control

Appendix A

Proof of Theorem 1. We first verify that T̂max
n converges to T in distribution; the cases of T̂min

n,0 , T̂max
n,0 ,

and T̂min
n can be similarly handled and the proofs for these are omitted. As θ̂α,m converges to θ0 and

E

(
sup
θ∈Θ

∥∥∥∥∂2lα,t(θ)

∂θ∂θT −
∂2lα,t(θ0)

∂θ∂θT

∥∥∥∥
)

< ∞,

we have that for any sequence θ∗n converging to θ0 a.s.,

1
n

n

∑
t=1

∂2lα,t(θ∗n)

∂θ∂θT → −Jα (A1)

in probability. Then, using the mean value theorem and ergodicity, owing to (A1), we have

max
1≤k≤n

max
1≤j≤k

∣∣∣∣∣
∣∣∣∣∣ 1√

n

j

∑
t=1

∂lα,t(θ̂α,m)

∂θ
− 1√

n

k

∑
t=1

∂lα,t(θ̂α,m)

∂θ

−
{

1√
n

j

∑
t=1

∂lα,t(θ0)

∂θ
− 1√

n

k

∑
t=1

∂lα,t(θ0)

∂θ

} ∣∣∣∣∣
∣∣∣∣∣

≤
√

m||θ̂α,m − θ0||
√

n
m

max
1≤j,k≤n

∣∣∣∣∣
∣∣∣∣∣( j

n

)1
j

j

∑
t=1

∂2lα,t(θ∗n)

∂θ∂θT −
( k

n

)1
k

k

∑
t=1

∂2lα,t(θ∗∗n )

∂θ∂θT

∣∣∣∣∣
∣∣∣∣∣

= oP(1), (A2)

where θ̂∗n and θ̂∗∗n are intermediate points between θ0 and θ̂α,m. Hence, since K̂α,m is a consistent
estimator of Kα (Lemma A5 of Kim and Lee [36]) and

sup
θ∈Θ

max
1≤k≤n

∣∣∣∣∣
∣∣∣∣∣ 1√

n

k

∑
t=1

∂l̃α,t(θ)

∂θ
− 1√

n

k

∑
t=1

∂lα,t(θ)

∂θ

∣∣∣∣∣
∣∣∣∣∣ = oP(1) (A3)

(Lemma 6 of Kim and Lee, 2019), we get T̂max
n − Tmax

n = oP(1) and T̂max
n converges to T in distribution

owing to (9).
Next, we deal with T̂cusum

n . The case of T̂cusum
n,0 can be similarly handled. Similarly to (A2), we can

see that

max
1≤k≤n

∣∣∣∣∣
∣∣∣∣∣ 1√

n

k

∑
t=1

∂lα,t(θ̂α,m)

∂θ
− 1√

n

( k
n

) n

∑
t=1

∂lα,t(θ̂α,m)

∂θ

− 1√
n

k

∑
t=1

∂lα,t(θ0)

∂θ
− 1√

n

( k
n

) n

∑
t=1

∂lα,t(θ0)

∂θ

∣∣∣∣∣
∣∣∣∣∣ = oP(1). (A4)
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Then, using the arguments as in (A3) and (A4), we can see that

max
1≤k≤n

1√
n

∣∣∣∣∣∣∣∣Ŵk −
( k

n

)
Ŵk −Wk +

( k
n

)
Wk

∣∣∣∣∣∣∣∣ = oP(1),

which implies T̂cusum
n − Tcusum

n = oP(1) and T̂cusum
n

d→ T
′

holds owing to (9). This completes
the proof.
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