
Database, 2022, 1–8
DOI: https://doi.org/10.1093/database/baac065
Original article

MEDFORD: A human- and machine-readable metadata
markup language
Polina Shpilker 1, John Freeman1, Hailey McKelvie1, Jill Ashey2, Jay-Miguel Fonticella1,
Hollie Putnam2, Jane Greenberg3, Lenore Cowen 1, Alva Couch1 and Noah M. Daniels 4,†

1Department of Computer Science, Tufts University, 177 College Ave, 02155, MA, USA
2Department of Biological Sciences, University of Rhode Island, 120 Flagg Rd, 02881, RI, USA
3Metadata Research Center, College of Computing & Informatics, Drexel University, 3675 Market Street, 19104, PA, USA
4Department of Computer Science and Statistics, University of Rhode Island, 9 Greenhouse Rd, 02881, RI, USA
†Corresponding author: Tel: +401-874-2701; Email: noah_daniels@uri.edu

Citation details: Shpilker, P., Freeman, J., McKelvie, H. et al. MEDFORD: A human- and machine-readable metadata markup language. Database (2022)
Vol. 2022: article ID baac065; DOI: https://doi.org/10.1093/database/baac065

Abstract
Reproducibility of research is essential for science. However, in the way modern computational biology research is done, it is easy to lose track
of small, but extremely critical, details. Key details, such as the specific version of a software used or iteration of a genome can easily be lost
in the shuffle or perhaps not noted at all. Much work is being done on the database and storage side of things, ensuring that there exists a
space-to-store experiment-specific details, but current mechanisms for recording details are cumbersome for scientists to use. We propose a
new metadata description language, named MEtaData Format for Open Reef Data (MEDFORD), in which scientists can record all details relevant
to their research. Being human-readable, easily editable and templatable, MEDFORD serves as a collection point for all notes that a researcher
could find relevant to their research, be it for internal use or for future replication. MEDFORD has been applied to coral research, documenting
research from RNA-seq analyses to photo collections.

Received 20 April 2022; Revised 16 June 2022; Accepted 9 August 2022
© The Author(s) 2022. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License
(https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the
original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

Introduction
Corals comprise thousands of different organisms, including
the animal host and single-celled dinoflagellate algae, bacteria,
viruses and fungi that coexist as a holobiont or metaorgan-
ism (1). Thus, corals are like cities rather than the individual
animals that inhabit or visit them, as corals provide facto-
ries, housing, restaurants, nurseries and more for an entire
ecosystem. Research on coral reefs is ever more pressing,
given their local and global contributions to marine biodiver-
sity, coastal protection and economics and their sensitivity to
climate change (2, 3). Research in this area requires the inte-
gration of interdisciplinary data across multiple environments
and a range of data types: ‘omic data such as gene expression
data generated using RNA-seq (RNA transcript sequencing),
image and time-lapse video, and physical and environmental
measurements including light and water temperature, to name
but a few. The coral research community has long been com-
mitted to sharing and open data formats, and both individual
researchers and large funding agencies have invested heav-
ily in making data available (4, 5, 6, 7) and FAIR (findable,
accessible, interoperable and reusable) (8).

Effective data sharing for coral research, as in all data-
intensive domains, requires metadata, which is essential for
data organization, discovery, access, use, reuse, interoper-
ability and overall management (9). The growing amount of

digital data over the last several decades has resulted in a
proliferation of metadata standards supporting these func-
tions (10, 11). However, the proposed mechanisms to create
metadata have been focused primarily on the ease of machine
parsing and have recommended schema that are cumbersome
and difficult for humans attempting to create, edit or read
the metadata. If creating metadata in the appropriate format is
difficult or requires expert curators, then fewer scientists will
be able to comply with metadata recommended standards,
leading to scientific data that are not discoverable and thus not
reusable. Meanwhile, an increasing amount of scientific data
in multiple countries (including in the USA and the European
Union) now falls under mandated data-sharing policies that
require the specification of adequate metadata for discovery.
Thus, there is a need for a format that streamlines the process
of providing what is mandated by law and policy.

For the purposes of maintaining and transferring data
itself, there already exists a format known as BagIt (12) that
can handle stable transfer of arbitrary files and their directory
structure. BagIt specifies the structure of a zip file that con-
tains an arbitrary directory structure, a payload manifest and
a remote manifest. This structure upholds the organization of
data folders, ensuring that related files can remain within the
same subfolder. The payload manifest ensures that all data are
transferred without error by storing the data’s hash prior to

https://orcid.org/0000-0002-6761-7326
https://orcid.org/0000-0001-6698-6413
https://orcid.org/0000-0002-9538-825X
mailto:noah_daniels@uri.edu
https://creativecommons.org/licenses/by-nc/4.0/

2 Database, Vol. 00, Article ID baac065

data transfer. The remote manifest also allows researchers to
specify remote files that are relevant to the data in the bag.
However, the BagIt structure has no inherent descriptor of
metadata, although it acts as a convenient means of theoret-
ically transferring metadata. Essentially, BagIt has file-based
metadata but does not proscribe a specific metadata format.

Our research team is building on top of BagIt by developing
and implementing the MEtaData Format for Open Reef Data
(MEDFORD). The MEDFORD markup language file format
is simultaneously human and machine writable and readable.
In this regard, we are inspired by the specification language
for the Protein Data Bank (PDB) (13, 14). PDB files are eas-
ily machine-parsable but, unlike JavaScript Object notation
(JSON) files or other commonly used database submission file
types, are also easily human-readable. This human readability
allows for human verification of their contents, although PDB
files are still too complex for manual writing. Unlike the PDB
format, MEDFORD is intended to be extensible. MEDFORD
is designed to work in conjunction with BagIt’s filesystem con-
vention, allowing easily accessible and interoperable bundles
of data and metadata to be created and stored. The MED-
FORD language is currently implemented as the medford
parser, which is itself written in Python.

MEDFORD is initially targeted at coral holobiont tran-
scriptomics data and coral image collections, with the sub-
sequent goal of supporting metadata for additional research
fields. The urgent need for international collaboration around
saving coral reefs plus the sheer complexity of the types and
modalities of data the coral scientific community generates
(from omics data, to image data with geospatial and temporal
components, to temperature and color measurements) make
corals a good domain choice. This paper provides the ratio-
nale for current work and introduces the MEDFORD (version
1.0) metadata scheme.

MEDFORD will enable interdisciplinary coral reef data to
be FAIR (8). We are currently building the back-end infras-
tructure to translate between MEDFORD and make it com-
patible with other existing databases and systems such as
Resource Description Framework (RDF), ultimately support-
ing the interoperability and reusability in FAIR as well; export
to RDF is planned for version 1.1 of the medford parser.

This paper reports on our first use case, which focuses on
the coral holobiont. Specifically, we focus on coral holobiont
transcriptomics data (e.g. RNA-seq, one of the most power-
ful and common types of omics experiments to explore the
genetic basis of factors that lead to coral resilience or vulnera-
bility to environmental stressors), where we build the needed
complexity to manage spatial–temporal holobiont expression
metadata into MEDFORD from the start. We chose this use
case due to the difficulty we experienced collecting and orga-
nizing metadata about existing coral transcriptomics datasets.
A coral researcher, untrained in programming and not a
database expert, will be able to directly produce and inter-
pret MEDFORD files more easily than working with RDF
authoring tools. We have developed the medford parser to
automatically translate MEDFORD files into existing file for-
mat standards for depositing in databases and repositories.
MEDFORD will enable transcriptomic data to be findable,
accessible and interoperable. While MEDFORD is capable of
becoming a general-purpose metadata format, we are imple-
menting the specific use case of coral data to both provide
a proof of concept and aid the coral research community

via a set of detailed metadata constructions specific to coral
research. An extended abstract describing MEDFORD has
previously appeared (15).

MEDFORD Design Principles
Languages proposed for metadata specification normally con-
sider ease of ‘either’ human generation and parsing or machine
generation and parsing. Human-legible formats, such as
unstructured text files, are easy to write but difficult to store
in databases or even provide publicly. Meanwhile, highly
structured formats such as RDF and JSON are exceptional
for import into databases but are nearly impossible for a
researcher to write on the fly. MEDFORD fills a previously
unmet need by intentionally balancing the ease of human and
machine generation and parsing simultaneously.

In addition to being designed as a both machine- and
human-readable and -writable format, we also decided that
MEDFORD describes the entirety of a project’s metadata
within a single file. This allows MEDFORD to be extremely
lightweight, and it can be simply incorporated into a BagIt bag
without any modification. This ensures that if a MEDFORD
file is created, it is straightforward to transfer it alongside its
related data.

MEDFORD’s design principles are informed by those
underlying highly successful metadata standards, such as the
Dublin Core (16), Ecological Metadata Language (17) and the
Data Document Initiative (18), while addressing additional
requirements enabling the ease of metadata creation and other
aspects. The design requirements for creating MEDFORD are
as follows:

1. A mechanism for use by scientists at the point of data
collection.

2. A human-readable and human-understandable format
for specifying metadata.

3. A simple and easily understandable syntax for specify-
ing metadata elements.

4. The ability to create and reuse templates for specifying
metadata for common data types.

5. Applicability beyond the coral use case, to other
research domains.

6. The ability to author metadata in a user’s preferred
text editor without a dependency on special-purpose
software.

7. The ability to detect and explain errors in metadata
specification via easily understandable error messages
targeted toward scientists.

8. Automatic translation into a number of useful machine-
readable formats after the initial specification, includ-
ing the RDF, Extensible Markup Language (XML) and
JSON as well as database formats. This could ease some
costs currently incurred; for instance, The National Sci-
ence Foundation’s Biological and Chemical Oceanog-
raphy Data Management Office (BCO-DMO) removes
the responsibility for translating to different formats
from the scientist to that of a specialized curator, at
substantive cost.

These requirements are justified by past experience of sci-
entists crafting metadata (11). Web-based metadata interfaces
can be cumbersome when one is entering metadata for a set

Database, Vol. 00, Article ID baac065 3

of similar data files or publications. The machine-readable
formats XML, RDF and JSON are difficult to understand
and edit for scientists who are not programmers. Further-
more, error messages for mistakes in XML, RDF and JSON
specifications are cryptic for those same people. Plain-text
specification of metadata such as the National Science Foun-
dation (NSF’s) BCO-DMO resource (19) is intensive in human
labor for those who must then translate it into a machine-
readable form in order for BCO-DMO to ingest such data
[currently, BCO-DMO requires metadata to be submitted
in rich text format (RTF), and it is then transcribed by a
human operator]. Thus, there is a need for an intermediate for-
mat that is both machine-readable and human-readable and
understandable by the scientists most qualified to specify the
metadata correctly.

MEDFORD aims to solve problems associated with speci-
fying interdisciplinary research metadata, as demonstrated by
our initial use case applied to coral reef ‘omics data. Coral
researchers study a wide variety of properties of corals (bioin-
formatics, growth, bleaching and phylogeny) for a variety
of purposes (ecology, basic biology and biomedicine). Con-
necting the work of this diverse group of researchers requires
developing sustainable scientific databases so that researchers
can discover each other’s datasets, integrate them into more
novel research and support further scientific discovery. These
databases need to support both accurate analysis of research
and data discovery and reuse. In general, however, the prin-
ciples above apply to any scientific metadata specification
problem, and the specific extensions identified here may be
supplemented for other scientific disciplines. Thus, MED-
FORD can be used as a tool for metadata creation in any
scientific discipline.

The requirements above are realized by MEDFORD by
adding design elements that satisfy the above principles:

1. A contextual grammar, devoid of parentheses and the
need to close clauses with specific end statements.

2. A simple way to denote kinds of metadata, starting with
an @ and containing at most three parts: the major tag,
minor tag and the metadata itself. A major tag (such as
@Contributor) indicates the type of metadata being
described, while a minor tag (such as ORCID in the con-
text of @Contributor-ORCID) indicates the name of
the metadata attribute being described.

3. A two-level hierarchy based on major and minor tags
organizes the metadata into categories and subcate-
gories which provide the relational structure without
compromising the simplicity of the metadata descrip-
tion.

4. A simple concept of user-extensible formatting, in which
metadata details not covered by the main keywords can
be added via notes.

Consider the following example of a @Contributor
clause, where @Contributor is the major tag and ORCID
and Role are the minor tags which associate those metadata
with that contributor.

@Contributor Hollie M. Putnam
@Contributor-ORCID 0000-0003-2322-3269
@Contributor-Role Corresponding Author

If we wanted to additionally include this contributor’s
email address, we simply add an additional line:

@Contributor Hollie M. Putnam
@Contributor-ORCID 0000-0003-2322-3269
@Contributor-Role Corresponding Author
@Contributor-Email hputnam@uri.edu

The MEDFORD Language Syntax
In this section we discuss the principles of the design of the
syntax of a MEDFORD file format for metadata. MEDFORD
is written in Unicode (UTF-8) although all reserved tokens
and characters fall within the ASCII range, while user-defined
tags may use extended UTF-8 characters. MEDFORD tags
are indicated with the @ character. Anything after an @ char-
acter, until the next space in the file, is read as a tag by
the medford parser. There are two other protected symbols
that have special meanings in the MEDFORD language: these
are # which is treated as a comment character: characters
after a # on the same line are ignored and not processed
by the medford parser. Finally, the $$ string (two dollar
signs in a row) is used to indicate the beginning and end of
a string that should be parsed by LATEX math mode: this
enables a MEDFORD language parser to either render or
pass through special characters from raw MEDFORD files,
in which non-ascii characters are strongly discouraged.

The following design principles are important in MED-
FORD file syntax:

• MEDFORD files use the ASCII character set whenever
possible. The characters @, # and $$ (as an enclosing pair
to denote LaTeX source) are reserved and protected.

• MEDFORD tags are referred to as @-tags and always start
with the @ character. Particular @-tags are given mean-
ings and formatting requirements and rules that are either
recommended or required.

• If a version of the MEDFORD language parser encoun-
ters an @-tag it does not recognize, the parser passes its
associated text through verbatim, treating it identically
to how @COMMENT is treated. Thus, scientists are free to
make up new tags that extend what is currently defined in
the language.

• MEDFORD is initially being developed for corals data,
and so @Date and @time and geospatial coordinate
data are common and important. These tags have recom-
mended standardized ASCII formats, and the medford
parser does type checking on these fields. These tags have
corresponding *-Unstructured equivalents for flexi-
bility, which are not type checked. For instance, @Date-
Unstructured might be used to denote part of a date,
where the precise date is unknown (for instance, ‘Fall
2021’).

To make MEDFORD files more easily human-readable,
considering our analogy to the protein databank, we adopted
a similar approach to the Fasta file format, where each header
line is distinguished by an ‘>’ symbol. We chose to use the ‘@’
character, as it is commonly used for tagging users or key-
words in systems like GitHub and Twitter and is not found
in everyday text except for emails. Therefore, a line headed
by an ‘@’ symbol can be assumed to be a MEDFORD tag in
all cases. Meanwhile, later ‘@’ characters have no effect on the

4 Database, Vol. 00, Article ID baac065

medford parser, as only ‘@’ characters at the very beginning
of a line matter.

This is best explained by example. Consider the example of
specifying a pipeline used for RNA-seq analysis of coral data
(note that the metadata associated with a tag can be arbitrarily
long and may span multiple lines):

@Software R
@Software-Version 4 (''Lost Library Book'')
@Software-Notes Packages used include
 dplyr, stringr, and genefilter.

@Software DESeq2
@Software-Version 1.28
@Software-Notes Used as a package in R.
@Software-Notes Installed through
BioCManager.

The Software tag specifies a piece of software involved
in the research. In this case, R is being described as a rele-
vant piece of software, with a Version tag used to specify
what version of R was used as this is critical information. An
important feature of this example is the arbitrary difference
between the way R packages are described. The author has
determined that DESeq2 is a critical package and so decided
to use a separate Software tag to describe it. Meanwhile,
dplyr and stringr were useful in the analysis but not critical,
so they were left as Notes on the R Software block. This
showcases one of the strengths of the MEDFORD file format;
researchers are free to determine whether something is impor-
tant enough to warrant having a dedicated Software tag or
if they can be listed as an arbitrary Note on a parent piece of
software.

MEDFORD Data Provenance
One of the major goals of MEDFORD is to enable the simple
association and description of related but possibly separate
data resources. The BagIt filesystem convention (12) provides
a convenient way to wrap multiple files into a consistent direc-
tory structure. However, BagIt’s own metadata capabilities are
limited to describing the files present or how to fetch them
from a network. By including a MEDFORD file into a bag, we
are able to therefore describe the metadata as well as reference
or include the data themselves. MEDFORD does not try to
supplant the W3C data provenance standard (RDF) but rather
provide a tangible, simple format that meets users’ need.
A MEDFORD metadata description could be automatically
converted into an RDF representation.

All MEDFORD files are defined in reference to a BagIt bag,
although the special use case of an empty bag is common and
acceptable. The BagIt bag binds a set of files to the MED-
FORD file according to the BagIt standard, where these files
describe a variety of resources, including source code, scien-
tific papers or raw data, each represented by a major tag in
the MEDFORD file. The versioning and origins of that file
are marked using a secondary major tag, where the tag can
represent that the bag is considered to be the primary and
authoritative source for the data or resource. Other secondary
major tags describe the file as either a copy of an existing
source or simply a pointer to a Uniform Resource Identifier
(URI) where the resource can be obtained.

@Data_Primary @Code_Primary @Paper_Primary
@Data_Copy @Code_Copy @Paper_Copy
@Data_Ref @Code_Ref @Paper_Ref

MEDFORD’s place in a BagIt directory structure is that
the MEDFORD (.mfd) file is placed at the top level of the
bagit directory structure. Any files carried along in the BagIt
archive exist as Copy or Original directives (whether Data,
Code or Paper). The BagIt manifest-sha512.txt man-
ifest refers to these files and their checksums. In contrast,
any files only referred to using Ref directives are not listed
in the BagIt manifest and are instead described in the BagIt’s
fetch.txt as remote resources.

@Data_Primary and @Data_Copy both refer to resour-
ces that have been packaged with the MEDFORD metadata
file and should be available from the bag in a self-contained
fashion, without having to visit external sources. From the
point of view of the bag itself, there is no difference between
these two tags; the difference is based on user context:
@Data_Primary means that the BagIt bag is considered to be
the primary and authoritative source for the data or resource
and @Data_Copy means that BagIt has placed a copy of the
data or resource into the bag but that it does not claim the
primary role. Finally, @Data_Ref refers to Digital Object
Identifiers (DOIs), URLs or other pointers to data or resources
that are ‘not’ placed in the bag, but rather represent external
databases or resources.

Here, we provide two potential use cases as examples.
Example use case: Researchers wish to create an index of all

publicly available RNA-seq raw data that have been released
on the Internet. They create a MEDFORD file to point to all
these data resources, but they will store none of these them-
selves; the MEDFORD file will just be an index, and all @Data
tags will be of the form @Data_Ref. This is an example
MEDFORD file which would be associated with an empty
bag.

Example use case: Researchers wish to store all the neces-
sary data and programs necessarily to replicate their RNA-
seq analysis. They are the owners/collectors of the raw
transcriptomic data, for which they do downstream anal-
ysis using a couple of small home-grown scripts to filter
bad reads, but then complete their downstream analysis
using several popular software packages, including STAR
and DESEQ2. They then used a novel dimension reduc-
tion package called SQUISHSEE from other researchers to
visualize their results. They elect to include their transcrip-
tomic data and homegrown scripts in the bag and use
@Data_Primary and @Code_Primary tags to reference
them. The @Code_Primary tag is not appropriate for STAR,
DESEQ2 and SQUISHSEE, since they do not own or main-
tain these resources; they need to decide whether to use
@Code_Copy and place a copy of these resources into the bag
or not, in which case they would use instead the @Code_Ref
tag. In this case, because STAR and DESEQ2 are well-
maintained and supported standard packages, they elect
@Code_Ref and do not include a copy of the code in the bag.
On the other hand, SQUISHSEE is only used by a handful
of researchers, and they worry about its longevity. Thus, they
also put a copy of the version of SQUISHSEE they are using
in the bag, with a @Code_Copy tag. Later, when DESEQ2’s
new update uses a library that is not completely standard, they

Database, Vol. 00, Article ID baac065 5

update the bag and decide to put a copy of the old version of
DESEQ2 into the bag, just in case.

A specification document for the MEDFORD language is
available at https://github.com/TuftsBCB/MEDFORD-Spec.

Reusability
Tag Extensibility
MEDFORD has a set of predefined major and minor tags
that it uses for conversion into various other formats, but if
a user cannot find a tag that they believe suits the metadata
that they are storing, they can simply define one of their own
without any additional overhead. All the user must do is use
it as if it were already defined, and the data and its struc-
ture will be read by the MEDFORD parser. Any novel tags
defined this way will be treated as *-Unstructured tags
and not validated, although they will persist across copies of
the MEDFORD file. This provides a dynamic aspect whereby
any model created or adjusted to include the new user-defined
tag could be output to any secondary formats without any
changes in MEDFORD structure.

MEDFORD Templates
Due to the simple plain-text structure of a MEDFORD file, it
is easy to create templates. A MEDFORD file can be partially
filled out, saved, copied and then re-used. For example, a lab
may template out a list of contributors and funding sources
and when an individual needs to create a MEDFORD file they
simply create a copy of this MEDFORD file and change con-
tributor roles as necessary before filling out the rest of the file.
MEDFORD files describing similar data may also be re-used
like this.

For example, consider a researcher who commonly works
on one species of coral, such as Pocillopora damicornis.
The researcher could use a MEDFORD template with the
commonly used tags filled in, shown below:

@Species Pocillopora damicornis
@Species-Loc Sabago Isthmus, Panama
@Species-ReefCollection 06/12/20
@Species-Cultured University of Miami Coral
 Resource Facility
@Species-CultureCollection 06/21/20

For further reuse, the researcher may also include MED-
FORD’s ‘invalid value’ token, which can be used to force users
of a template to fill it out with complete information. The
medford parser would require the user to fill in the specific
placeholders ([..]) prior to validation. This eliminates the
possibility that a researcher could accidentally leave a value
for an older version of the template, further error-proofing
MEDFORD templates. The same template, but using these
reserved template tokens, is shown below:

@Species Pocillopora damicornis
@Species-Loc Sabago Isthmus, Panama
@Species-ReefCollection [..]
@Species-Cultured University of Miami Coral
 Resource Facility
@Species-CultureCollection [..]

In future work, we plan to include a `#include directive
which allows the contents of one file to be imported into and
validated in the context of another MEDFORD file.

MEDFORD Macros
To further alleviate the workload placed on researchers to
document their work, MEDFORD includes the concept of
a macro. Similar to a variable defined in BASH, a macro
is a string name that is directly replaced with another,
longer string. In MEDFORD, a macro is defined by speci-
fying a backtick (`), @, a one-word name and the macro
body (which can contain multiple lines, ending at the next
reserved word, which could begin another macro definition
or could be a regular tag). For example, in lieu of typing
their institute five times to document each of their collab-
orators at the same institution, they can define a macro
as follows: `@myinstitute 100 Institute Drive,
State, Zip

Everywhere ̀ @myinstitute is used, it will automatically
be replaced by 100 Institute Drive, State, Zip.

Backend Extensibility
Many other formats are simple to add to the MEDFORD
parser. For example, one may wish to submit their data to a
database such as BCO-DMO (19), which requires an RTF file
structure with unique content requirements. For example, for
a data submission, BCO-DMO requires at least some form of
identification for which @Expedition the samples were col-
lected on. This identification may be either some combination
of ShipName or CruiseID, etc. In defining a backend trans-
lation to BCO-DMO for MEDFORD, the MEDFORD parser
can ensure that this is upheld. This ability to act as an inter-
mediary allows for a lab to write a single MEDFORD file to
describe their research and export it to a multitude of different
formats.

Similarly to BCO-DMO, other formats can be added to the
MEDFORD parser easily; tutorials will be available in the
github repository. It is worth noting that metadata associated
with user-defined tags will not be parsed but simply passed
along verbatim. For instance, the @Image-Coverage tag
in the coral image data example below does not specify any
units; if this tag were expected by some destination format,
units might be assumed by convention, but would otherwise
be left to the user (the user could also specify units in plain
text in the metadata, e.g. ‘6.2 degrees’).

Example Medford Files
MEDFORD File for RNA-Seq data

@Method Illumina HiSeaq2500
@Method-Type Sequencing
@Method-Company Dovetail Genomics, Santa
 Cruz, CA, USA
@Method-Sample Healthy
@Method-Note Chicago libraries, more
 sensitive to DNA size

@Code_Ref HiRise
@Code_Ref-Type Assembly of genome scaffolds

@Code_Ref BLAST

https://github.com/TuftsBCB/MEDFORD-Spec

6 Database, Vol. 00, Article ID baac065

@Code_Ref-Type Identify and remove
 scaffolds of non-coral origin
@Code_Ref-Note Searched against databases
 from Symbiodiniaceae, Bacteria, and
 viruses

MEDFORD File for coral image data

@Image 05-01-19_Image3
@Image-Date 2019-05-01T19:20:30.45
@Image-Site LTER 4
@Image-Habitat Outer 10m
@Image-Pole 3-4
@Image-Quadrant 4
@Image-Coral Acropora
@Image-Coverage 6.2

…

@Taxonomy Cnidaria
@Taxonomy-Type Phylum

@Taxonomy Anthozoa
@Taxonomy-Type Class
@Taxonomy-Parent Cnidaria

…

@Region LTER 1 polygon including LTER 0 on
 north shore
@Region-NorthernCoord -17.47
@Region-SouthernCoord -17.49

MEDFORD Implementation
MEDFORD Parser
The MEDFORD parser, known as medford, essentially has
two roles. First, it validates the syntax and structure of a pro-
vided MEDFORD file as described earlier. Additionally, the
parser validates the content of a provided MEDFORD file
such as ensuring date fields are in the correct datetime for-
mat. In the future, we plan to support further validation of
specific metadata, such as Open Researcher and Contribu-
tor ID (ORCID), geographic coordinates and grant numbers
from various funding agencies. The purpose of validation is to
ensure that the file is written in correct MEDFORD format,
including major and minor tags, and that each tag is being
applied to some data. For example, a user cannot describe an
ORCID without having some Contributor name with which
to associate it. We note that the current MEDFORD specifica-
tion is silent as to whether or not to preserve the ordering of
tags (for example @Contributor does not specify an author
order and relies on @Contributor-Role to indicate signif-
icance). However, the medford implementation will preserve
the order of tags in a future version.

The second role of the medford parser is to optionally
compile an input MEDFORD file into some destination for-
mat. The current medford parser specializes in translating a
MEDFORD file into a Bag; the medford parser can gather
all the files referenced in a given MEDFORD file and creates
a Bag following all BagIt specifications. This Bag can then be
used to transfer all of the metadata and data of a research

effort. The current plans include adding additional output
types in the future, such as RDF.

The medford parser is written in Python (3.8), relying
on the Pydantic parsing module to validate the MEDFORD
syntax and structure.

Due to the amount of control a compiler has to have over
the input, creating a parser normally causes the vocabulary
to become extremely defined and controlled. The medford
parser, however, was developed specifically to avoid restricting
the acceptable vocabulary. While the parser can only validate
major and minor tags it is aware of, it will not break on novel
inputs.

As an example, consider the following @Code_Ref block,
which references code from an external source that was refer-
enced in a study. The OS and Language minor tags are novel,
and MEDFORD will not perform any validation on them.

@Code_Ref MEDFORD Source Repo
@Code_Ref-Version 1.0
@Code_Ref-URI
 \url{https://github.com/TuftsBCB/medford}
@Code_Ref-Type GitHub
@Code_Ref-Language Python
@Code_Ref-OS Linux MacOS

Importantly, the medford parser is specifically developed
such that the syntactical parsing logic is entirely separate from
the vocabulary definition. Given a desire to begin validat-
ing the contents of a novel tag, a user can easily add their
own validation without having to interact with the parsing
logic. All vocabulary validation definitions are stored entirely
independently of the parsing logic and can be edited with min-
imal consequences. In this @Code_Ref example, a user could
implement the validation for the OS minor tag to ensure that
it is some combination of Windows, MacOS and Linux.

Given that the medford parser is open source, a research
group may add validation to their local copy of the MED-
FORD parser without needing to interact with other groups,
although we will be welcoming any and all pull requests to
add validation that users feel is missing.

Error Handling
MEDFORD errors come in three major forms:

• Syntax Errors: Errors in the MEDFORD formatting in
the provided file, such as multiple uses of the same macro
name.

• Validation Errors: Errors in the content or format of meta-
data provided for known major–minor tag combinations.
For instance, a @Date field that does not contain a valid
datetime string or a @Contributor-ORCID field whose
ORCID is not valid would both constitute validation
errors.

• Missing Data Errors: Required fields are missing, such as
@Date major tag without a corresponding @Date-Note
minor tag.

All three types of errors are errors that a standard user
is expected to encounter during use, especially during first-
time use or novel data type description. Special care has been
invested in ensuring that these errors will be as human-legible
as possible.

Database, Vol. 00, Article ID baac065 7

For all expected errors, medford provides an error text
to the user that contains the following information: the line
number where the error was encountered, the major–minor
tags involved at that line and an error text description.

Two examples of medford’s error messages and their
improvements are shown below.

First, a standard Pydantic error contains information that
is highly specific to the backend implementation of medford
parser and irrelevant for standard use.

Contributor -> 0 -> 1 -> __root__
 Corresponding Authors must have a
 provided validated email
 (type=value_error.incomplete_data_error)

This has been improved with the addition of the line num-
ber in which the error appeared in the MEDFORD file and the
removal of the implementation-specific array indices.

Line 1 : @Contributor has incomplete
 information: Corresponding Authors must
 have a provided validated email.

Secondly, some major and minor token combinations may
have multiple valid formats, and Pydantic’s standard error
handling will throw a unique error for each failed format vali-
dation. The medford parser automatically consolidates these
errors into a singular error for legibility.

Availability of medford and the Coral RNA-seq
collection
The medford parser is open source and available under the
MIT license at: https://github.com/TuftsBCB/medford as well
as via PyPi as the package medford, so it can be installed
by invoking pip install medford. A specification for the
MEDFORD language is available at https://github.com/Tufts-
BCB/MEDFORD-Spec.

Some example files are provided in the parser directory;
however, a separate repository is also in development for a
larger collection of example MEDFORD files. This repos-
itory is available on GitHub at: https://github.com/Tufts-
BCB/MEDFORD-examples. This repository is a collection of
primarily Coral RNA-Seq experiments. This repository also
contains partial MEDFORD files for use as templates.

Discussion and Future Work
This manuscript presents MEDFORD, a lightweight metadata
format initially targeted at coral reef research data, intended
to be easy for researchers without programming expertise
to create and maintain. Initially supporting the FAIR prin-
ciples (8) of interoperability and reuse, MEDFORD aims to
support all FAIR principles.

Currently, MEDFORD relies on editing ASCII or UTF-
8 text but will soon be able to extract text content from
Microsoft Word files.

One possible critique of MEDFORD is the variety of pos-
sible tags. For instance, it may be challenging for a user
to remember whether the needed tag is @Contributor-
Association, @Contributor-Institution or @Con-
tributor-Location. A rich template library can mitigate
this, by providing examples that a user can simply fill in.

A searchable template library portal (similar to LATEX’s
CTAN) would enable users to find applicable templates as the
template ecosystem grows. In the future, support for the Lan-
guage Server Protocol (20) will allow a user of any compatible
text editor to get intelligent suggestions and autocompletions
for common tags, even in an offline environment such as at
sea. This will also mitigate the likelihood of minor typograph-
ical errors in tags causing them to be unrecognized. To further
mitigate the likelihood of typographical errors, the medford
implementation will reject a minor token without an accom-
panying major token. Further user testing and feedback will
result in further enhancements to the MEDFORD language
and the medford parser implementation.

As a consequence of the MEDFORD parser’s compilation
use, MEDFORD files have a lifecycle. There are raw, unvali-
dated MEDFORD files, there are validated MEDFORD files
and finally there are MEDFORD files that have been compiled
(such as in the case of a BagIt compilation). The difference
between these is critical. A researcher needs to know whether
or not a MEDFORD file has been validated before they try to
submit it to a database.

A major future goal will be output of RDF and support for
linked open data. We hope to add the ability to translate a
MEDFORD file (and created bag, if applicable) into an RDF,
as well as the data-1 compliance this involves.

An unsolved problem is how to handle multiple authors
and conflicting claims of ownership. While there is nothing
preventing a MEDFORD file from being passed between col-
laborators, keeping track of changes is a challenge. How can
one researcher be certain that they are editing the most recent
version of a MEDFORD file? Perhaps even two researchers
are editing their own copies of the same MEDFORD file. Tech-
nically both are the most up-to-date in their own facet: one
researcher added the coral sample metadata while another
added the sequencing pipeline metadata. There exist some
solutions to this in external tools such as GitHub, but is it
viable to ask MEDFORD adopters to use these tools?

One solution we are in the process of considering for a
future version of MEDFORD is to implement the concept
of the include directive. Rather than restricting a MED-
FORD file to a single file, including directives will enable
users to work in separate, smaller files that will automati-
cally be combined by the MEDFORD parser. This allows each
MEDFORD file to be dedicated to a specific portion of the
research project, such as one file for coral sample metadata
and another for sequencing pipeline metadata. This partially
solves the multiple authorship problem, as each author can be
held responsible for ensuring that all collaborators have the
most up-to-date version of the metadata they are authoring.

The ‘R’ in MEDFORD currently represents ‘reef’ as our ini-
tial application domain has been coral reef data. However, it
stands to reason that the ‘R’ might represent ‘research’ in the
future.

Funding
National Science Foundation (NSF) (OAC-1939263, OAC-
1939795 and HDR-BIO NSF-OAC #1940233).

Competing interests
The authors declare no competing interest.

https://github.com/TuftsBCB/medford
https://github.com/TuftsBCB/MEDFORD-Spec
https://github.com/TuftsBCB/MEDFORD-Spec
https://github.com/TuftsBCB/MEDFORD-examples
https://github.com/TuftsBCB/MEDFORD-examples

8 Database, Vol. 00, Article ID baac065

Author contributions statement
P.S., J.F., L.C., A.C. and N.D. came up with the initial
design for MEDFORD; P.S., J.F., H.M., J-M.F, J.A. and H.P.
tested and implemented initial MEDFORD examples; P.S.,
A.C. and N.D. worked on the backend medford parser and
P.S., J.G., L.C, A.C. and N.D. helped write and review the
manuscript.

References
1. Bosch,T.C.G. and McFall-Ngai,M.J. (2011) Metaorganisms as

the new frontier. Zoology, 114, 185–190. 10.1016/j.zool.
2011.04.001.

2. Hughes,T.P., Barnes,M.L., Bellwood,D.R. et al. (2017) Coral reefs
in the anthropocene. Nature, 546, 82–90. 10.1038/nature22901.

3. Woodhead,A.J., Hicks,C.C. and Norström,A.V. et al. (2019) Coral
reef ecosystem services in the Anthropocene. Funct. Ecol., 33,
1023–1034. 10.1111/1365-2435.13331.

4. Donner,S.D., Rickbeil,G.J.M. and Heron,S.F. (2017) A new, high-
resolution global mass coral bleaching database. PLoS One, 12,
e0175490. 10.1371/journal.pone.0175490.

5. Liew,Y.J., Aranda,M. and Voolstra,C.R. (2016) Reefge-
nomics.Org - a repository for marine genomics data, Database,
2016, 12, baw152.

6. Madin,J.S., Hoogenboom,M.O., Connolly,S.R. et al. (2016) A
trait-based approach to advance coral reef science. Trends Ecol.
Evol., 31, 419–428. 10.1016/j.tree.2016.02.012.

7. Yu,L., Li,T. and Li,L. et al. (2020) SAGER: a database of Symbio-
diniaceae and Algal Genomic Resource. Database, 2020, baaa051.
10.1093/database/baaa051.

8. Wilkinson,M.D. and Dumontier,M. et al. (2016) The FAIR guid-
ing principles for scientific data management and stewardship. Sci.
Data, 3, 1–9. 10.1038/sdata.2016.18.

9. Ram,K. and Greenberg,J. (2020) The role of meta-
data in reproducible computational research, CoRR,
abs/2006.08589.

10. Ball,A., Greenberg,J., Jeffery,K. et al. (2016) RDA metadata stan-
dards directory working group.

11. Qin,J., Ball,A. and Greenberg,J. (2012) Functional and architec-
tural requirements for metadata: Supporting discovery and man-
agement of scientific data. In International Conference on Dublin
Core and Metadata Applications. Kuching, Sarawak, Malaysia,
pp. 62–71.

12. Kunze,J., Littman,J., Madden,E. et al. (2018) The bagit file pack-
aging format (v1. 0), Technical report.

13. Berman,H.M., Westbrook,J., Feng,Z. et al. (2000) The Protein
Data Bank. Nucleic Acids Res., 28, 235–242. 10.1093/nar/28.1.
235.

14. Young,J.Y., Westbrook,J.D. and Feng,Z. et al. (2018) World-
wide Protein Data Bank biocuration supporting open access
to high-quality 3D structural biology data. Database, 2018.
10.1093/database/bay002.

15. Shpilker,P., Freeman,J., McKelvie,H. et al. (2022) Metadata format
for open reef data (medford). In: E. Garoufallou, M.-A. Ovalle-
Perandones A. Vlachidis (ed) Metadata and Semantic Research.
Springer International Publishing, Cham, pp. 206–211.

16. Weibel,S.L. and Koch,T. (2000) The Dublin core metadata ini-
tiative. D-lib magazine, 6, 1082–9873. 10.1045/december2000-
weibel.

17. Fegraus,E.H., Andelman,S., Jones,M.B., et al (2005) Maximiz-
ing the value of ecological data with structured metadata: an
introduction to ecological metadata language (EML) and princi-
ples for metadata creation. Bull. Ecol. Soc. Am., 86, 158–168.
10.1890/0012-9623(2005)86[158:MTVOED]2.0.CO;2.

18. Vardigan,M. (2014) The DDI matures: 1997 to the present. IAS-
SIST Quarterly, 37, 45. 10.29173/iq501.

19. Chandler,C.L., Groman,R.C., Kinkade,D. et al. (2016) BCO-
DMO: Stewardship of marine research data from proposal to
preservation. Am. Geophys. Union, 2016, OD24B–2457.

20. Bünder,H. and Kuchen,H. (2019) Towards multi-editor support
for domain-specific languages utilizing the language server pro-
tocol. In International Conference on Model-Driven Engineering
and Software Development. Springer, Prague, Czech Republic,
pp. 225–245.

https://doi.org/10.1016/j.zool.2011.04.001
https://doi.org/10.1016/j.zool.2011.04.001
https://doi.org/10.1038/nature22901
https://doi.org/10.1111/1365-2435.13331
https://doi.org/10.1371/journal.pone.0175490
https://doi.org/10.1016/j.tree.2016.02.012
https://doi.org/10.1093/database/baaa051
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1093/database/bay002
https://doi.org/10.1045/december2000-weibel
https://doi.org/10.1045/december2000-weibel
https://doi.org/10.1890/0012-9623(2005)86[158:MTVOED]2.0.CO;2
https://doi.org/10.29173/iq501

	MEDFORD: A human- and machine-readable metadata markup language
	 Introduction
	 MEDFORD Design Principles
	 The MEDFORD Language Syntax
	 MEDFORD Data Provenance

	 Reusability
	 Tag Extensibility
	 MEDFORD Templates
	 MEDFORD Macros
	 Backend Extensibility

	 Example Medford Files
	 MEDFORD File for RNA-Seq data
	 MEDFORD File for coral image data

	 MEDFORD Implementation
	 MEDFORD Parser
	 Error Handling

	 Availability of medford and the Coral RNA-seq collection
	 Discussion and Future Work
	Funding
	Competing interests
	Author contributions statement
	References

