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Abstract

Background: As one of the most popular and valuable commercial marine fishes in China and East Asian countries, the
Chinese black porgy (Acanthopagrus schlegelii), also known as the blackhead seabream, has some attractive characteristics
such as fast growth rate, good meat quality, resistance to diseases, and excellent adaptability to various environments.
Furthermore, the black porgy is a good model for investigating sex changes in fish due to its protandrous hermaphroditism.
Here, we obtained a high-quality genome assembly of this interesting teleost species and performed a genomic survey on
potential genes associated with the sex-change phenomenon. Findings: We generated 175.4 gigabases (Gb) of clean
sequence reads using a whole-genome shotgun sequencing strategy. The final genome assembly is approximately 688.1
megabases (Mb), accounting for 93% of the estimated genome size (739.6 Mb). The achieved scaffold N50 is 7.6 Mb, reaching
a relatively high level among sequenced fish species. We identified 19 465 protein-coding genes, which had an average
transcript length of 17.3 kb. By performing a comparative genomic analysis, we found 3 types of genes potentially
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associated with sex change, which are useful for studying the genetic basis of the protandrous hermaphroditism.
Conclusions: We provide a draft genome assembly of the Chinese black porgy and discuss the potential genetic
mechanisms of sex change. These data are also an important resource for studying the biology and for facilitating breeding
of this economically important fish.

Keywords: Chinese black porgy; Acanthopagrus schlegelii; whole genome sequencing; genome assembly; sex change–related
genes

Data Description
Background information

As one of the most popular and valuable commercial marine
fishes in China and East Asian countries, the Chinese black
porgy (Acanthopagrus schlegelii), also known as the blackhead
seabream, has some interesting characteristics such as fast
growth rate, good meat quality, resistance to diseases, and good
adaptability to various environments. It is often farmed for food
in the South China Sea and the coastal waters around Japan
and Korea [1,2]. In addition, it is an eurythermal and euryhaline
fish, living in a wide range of water temperatures and salinities.
Recently, some basic studies on the genetic improvement of its
growth and its disease resistance have been performed in order
to increase efficiency of farming [3].

The Chinese black porgy is also a good model for investigat-
ing the genetic mechanisms of sex change due to its interesting
life cycle. It is a functional male during the first 2 years and sub-
sequently a female during the next couple of years. Recently, a
good hybrid of the Japanese seabream (Pagrosomus major; ♀) and
the Chinese black porgy (♂) has become available [4,5], with bet-
ter growth performance and higher tolerance against low tem-
perature than its parents.

However, the genetic mechanisms for these interesting bio-
logical characteristics are still unclear. Here, we sequenced and
assembled the whole genome of the Chinese black porgy, before
performing a genomic survey on potential genes associatedwith
the sex-change phenomenon.

Sample and sequencing

The wild black porgy (National Center for Biotechnology Infor-
mation [NCBI] Taxonomy ID: 72 011; Fishbase ID: 6531) individu-
als (Fig. 1) were collected from Laizhou Bay in Yantai, Shandong
Province, China. Genomic DNA was extracted from the muscle
of a female fish using Qiagen GenomicTip100 (Qiagen, Hilden,
USA). We used the whole-genome shotgun sequencing strategy
and constructed the subsequent 3 short-insert libraries (250-
bp, 500-bp, and 800-bp) and 4 long-insert libraries (2-kb, 5-kb,
10-kb, and 20-kb) in accordance with the standard protocol from
Illumina (San Diego, USA). These constructed libraries were se-

Figure 1: Image of a Chinese black porgy captured from Laizhou Bay in Yantai,

Shandong Province, China.

quenced on the Illumina HiSeq 2000 system [6] (the read length
is 125 bp). Finally, we generated 272.9-Gb raw reads from all 7
libraries.

Before assembly of the sequencing reads, SOAPfilter v2.2
software [7] with default parameters (-y -p -g 1 -o clean -M 2 -f 0)
was used to remove low-quality raw reads (including reads with
10 or more nonsequenced/low-quality bases), polymerase chain
reaction duplicates, and adaptor sequences. Subsequently, we
obtained approximately 175.4 Gb of clean reads for further
genome size prediction and assembling. A k-mer analysis
with the formula G = k num/k depth [8] was performed to es-
timate the genome size of Chinese black porgy. In our current
study, the achieved total number of k-mers and k depth was 2.81
× 1010 and 38, respectively. Therefore, the genome size of Chi-
nese black porgy is estimated to be 739.6 Mb. Based on this re-
sult, the retained reads were calculated to cover approximately
238-fold of the whole genome.

Assembly and evaluation

To obtain a genome assembly, we used SOAPdenovo2 v2.04.4
(SOAPdenovo2, RRID:SCR 014986) [9] with optimized parame-
ters (pre-graph -K 27 -p 16 -d 1; contig –M 3; scaff -F -b 1.5 -
p 16) to deal with these clean reads. In brief, the reads from
short-insert libraries were applied for the contig assembly, be-
fore alignment of all the filtered reads onto the contigs for link-
ing these contigs to generate scaffolds. GapCloser v1.12 (Gap-
Closer, RRID:SCR 015026) [7] with default parameters was subse-
quently used to fill some intra-scaffold gaps in the local assem-
bly, in which the reads were equipped with one end uniquely
mapped to a contig and the other end located within a gap.
Meanwhile, SSPACE (version 2.0) [10] with default parameters
was used to obtain super scaffolds with the reads from the long-
insert libraries (2-kb, 5-kb, 10-kb, and 20-kb). The final genome
assemblywas approximately 688.1Mb,which accounts for 93.0%
of the estimated genome size (739.6 Mb; Table 1).

The achieved scaffold N50 is 7.64 Mb, reaching a relatively
high length among sequenced fish species. In comparison, other

Table 1: Summary of the genome assembly and annotation

Genome assembly parameter

contig N50 size, kb 17.2
contig number, > 100 bp 115 091
Scaffold N50 size, Mb 7.6
Scaffold number, > 100 bp 31 359
Total length, Mb 688.1
Genome coverage, × 257.6
Longest scaffold, bp 22 574 836

Genome annotation parameter
Protein-coding gene number 19 465
Mean transcript length, kb 17.3
Mean exons per gene 11.1
Mean exon length, bp 170.2
Mean intron length, bp 1519.2

https://scicrunch.org/resolver/RRID:SCR_014986
https://scicrunch.org/resolver/RRID:SCR_015026
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Table 2: Detailed classification of repeat sequences in the assembled genome

Repbase TEs TE proteins De novo Combined TEs

Type Length, Mb In genome, % Length, Mb In genome, % Length, Mb In genome, % Length, Mb In genome, %

DNA 20.930 3.041 2.200 0.320 58.340 8.479 68.130 9.902
LINE 10.240 1.488 6.950 1.010 26.760 3.889 33.020 4.789
SINE 1.120 0.163 2.340 0.000 3.780 0.550 4.550 0.661
LTR 7.200 1.046 35.410 0.340 25.980 3.062 31.270 4.544
Other 0.020 0.003 0.000 0.000 0.000 0.000 0.020 0.003
Unknown 0.000 0.000 0.000 0.000 25.370 3.687 25.370 3.687
Total 35.300 5.130 11.480 1.669 124.540 18.099 136.240 19.780

scaffolds have levels of 1.55 Mb for the zebrafish [11], 1.1 Mb
for platy fish [12], 867 kb for half-smooth tongue sole [13],
1 Mb for common carp [14], 6.4 Mb for grass carp [15], 2.97 Mb
for Atlantic salmon [16], 1.8 Mb for a seahorse [17], and 1.15 Mb
for a Chinese barbel fish [18]. The Core Eukaryotic Genes Map-
ping Approach (CEGMA, RRID:SCR 015055), version 2.5 [19], with
a set of 248 conserved core eukaryotic genes (CEGs) was used
to assess the completeness of the final assembly. The esti-
mates suggest that 90.7% CEGs are complete and 92.3% are par-
tial. Meanwhile, Benchmarking Universal Single-Copy Orthologs
(BUSCO, RRID:SCR 015008), version 3, [20] was applied to eval-
uate the quality of the generated genome assembly. We chose
the representative actinopterygian gene set with 4584 single-
copy genes as the reference. The BUSCO values were calcu-
lated as follows: C: 89.1% [S: 86.2%, D: 2.9%], F: 2.5%, M: 8.4%,
n: 4584, in which percentages of the total gene number (n) for
the complete (C), single (S), duplicated (D), fragmented (F), and
missed (M) are clarified. The results from CEGMA and BUSCO
suggest that the assembled genome covers the majority of the
gene space.

Annotation

We used RepeatProteinMask (version 4.0.6) [21] in RepeatMasker
(RepeatMasker, RRID:SCR 012954) to identify the repetitive se-
quences, before using RepeatModeller (version 1.05) [22] and
LTR FINDER.x86 64-1.0.6 to construct a de novo repeat library. Ad-
ditionally, repetitive elements were predicted using Tandem Re-
peat Finder (version 4.04). Finally, we observed that the identi-
fied repeat sequences cover 19.78% of the assembled genome
(Table 2).

Prediction of protein-coding genes was performed based
on the integration of ab initio prediction, homologue predic-
tion, and transcriptome-based prediction. The ab initio predic-
tion was carried out with Augustus (Augustus: Gene Prediction,
RRID:SCR 008417), version 2.5 [23], and GENSCAN (GENSCAN,
RRID:SCR 012902), version 1.0, [24], on the repeat-masked as-
sembly. For the homology-based gene prediction, homologous
proteins of several reported fishes (zebrafish, Japanese puffer,
stickleback, and medaka) were downloaded from Ensembl re-
lease 75 and aligned to the assembled genomeusing tBlastn (ver-
sion 2.2.19) with e-value ≤ 1e–5. Subsequently, all the achieved
alignments were analyzed using Genewise (version 2.2.0) soft-
ware [25] to search for precise gene structures. We further
filtered out these short (less than 150 bp), prematurely termi-
nated or frame-shifted genes. For the transcriptome-based pre-
diction, we obtained transcriptome data from a mixture of liver,

muscle, skin, gill, and brain of a female fish at cDNA level.
Those with low-quality bases, adapter sequences, and dupli-
cated sequences were removed, and we acquired approximately
8 Gb of high-quality clean reads. Subsequently, TopHat2.1.1 [26]
and Cufflinks (Cufflinks, RRID:SCR 014597), version 2.2.1 [27],
were applied to predict gene structures using these retained
reads. Eventually, the 3 gene sets generated from the predic-
tion approaches were integrated into a comprehensive and
nonredundant gene set using GLEAN [28]. As summarized in
Table 1, the final gene set contains 19 465 genes, with an aver-
age transcript length of 17.3 kb. In addition, we ran BUSCO v3 [20]
on the predicted coding sequences (CDS), and the final BUSCO
scorewas up to 85.5% (C:85.5% [S:82.3%, D:3.2%], F:2.8%,M:11.7%,
n:4584).

Simultaneously, all the protein sequences from the GLEAN
analysis were mapped onto several public databases, including
Pfam [29], PRINTS [30], ProDom [31], and SMART [32], to detect
the known motifs and domains within our genome assembly.
The data demonstrated that 99.3% of the predicted genes from
the assembled genome contain at least 1 related functional as-
signment from other public databases, including Swiss-Prot [33],
Interpro [34], TrEMBL [35], and KEGG [36].

Phylogenetic analysis

In order to examine the phylogenetic position of the Chinese
black porgy, we downloaded protein sequences of 7 reported
fishes, including spotted gar (Lepisosteus oculatus), stickleback
(Gasterosteus aculeatus), Japanses fugu (Takifugu rubripes),medaka
(Oryzias latipes), zebrafish (Danio rerio), platyfish (Xiphophorus
maculatus), and Nile tilapia (Oreochromis niloticus) from Ensembl
(release 83) [37]. These sequences were used to construct gene
families by OrthoMCL (OrthoMCL DB: Ortholog Groups of Protein
Sequences, RRID:SCR 007839) [38] and eventually generated 17
431 gene families by the all-to-all Basic Local Alignment Search
Tool for Proteins strategy with an e-value of 1e–5. In additional,
65 gene families were only presented in the black porgy genome.

Subsequently, 3239 single-copy orthologous genes from
these gene families were selected. These single-copy geneswere
further aligned using MUSCLE (MUSCLE, RRID:SCR 011812), ver-
sion 3.8.31, with default parameters [39], before the protein
alignments were changed to corresponding CDS using an in-
house perl script. All nucleotide sequences of each species were
integrated into a supergene, which was used to build a phyloge-
netic tree with PhyML (PhyML, RRID:SCR 014629) [40]. Our final
data orientated the phylogenetic position of the black porgy in
teleost (Fig. 2).

https://scicrunch.org/resolver/RRID:SCR_015055
https://scicrunch.org/resolver/RRID:SCR_015008
https://scicrunch.org/resolver/RRID:SCR_012954
https://scicrunch.org/resolver/RRID:SCR_008417
https://scicrunch.org/resolver/RRID:SCR_012902
https://scicrunch.org/resolver/RRID:SCR_014597
https://scicrunch.org/resolver/RRID:SCR_007839
https://scicrunch.org/resolver/RRID:SCR_011812
https://scicrunch.org/resolver/RRID:SCR_014629
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Figure 2: Phylogeny of ray-finned fishes. Spotted gar was used as the outgroup. The bootstrap support value for the topology is 100. The pictures in the phylogenetic

tree were downloaded from Fishbase.

Analysis of 3 types of genes for sex change

Sex change (secondary sex determination) is a universal phe-
nomenon in fish but it usually does not occur in amphibians
and mammals. The black porgy is a good model for the study
on the molecular mechanisms of sex change. For providing a
genomic survey on these genes in the assembled genome, pro-
tein sequences of 3 main types of genes potentially associated
with sex change, including sex determination and differentia-
tion genes, pluripotency factors, and apoptosis factors [41–43],
were downloaded from the NCBI database and used for homol-
ogy searches against the black porgy genome with tBlastn (ver-
sion 2.2.19) [44]. We chose alignments with coverage >70% and
identity >70% for further prediction of gene structures using Ge-
newise (version 2.2.0) [25]. Finally, we obtained homologous se-
quences of 26 genes in the genome assembly of Chinese black
porgy (for more details, see Table 3). All these predicted protein
sequences were used to build a phylogenetic tree using PhyML
[40], and we eventually observed that they were clustered with
each corresponding homologue from other vertebrates.

Previous studies have revealed that multiple genes, includ-
ing dmrt1, cyp19a1a, wnt4, sox9, sf1, foxl2, figla, amhr2, and dax1,
are associated with sex change in the black porgy [41,45–47].
These sex determination and differentiation genes were also
identified in our assembled scaffolds (in the first batch in
Table 3). In the current study, the important male-related dmrt1
and the steroidogenesis-suppressing factor dax1 were mapped
on scaffolds 56 and 14 of the black porgy genome, respectively.

It was reported that dmrt1 may play a key role in the sex
change of the black porgy, while themale-phasemaintenance of
male developmentwas regulated by the brain–pituitary–gonadal
axis via the GnRH-GtH-Dmrt1 pathway [41]. In the economi-
cally important half-smooth tongue sole (Cynoglossus semilaevis),
dmrt1 has been proven to be a necessary male sex-determining
gene [48,49]. Moreover, previous findings suggest that a dupli-
cate of dmrt1 is the male sex determinant in medaka and dmrt1
mutation causes amale–female sex reversal [50,51]. We also val-
idated the existence of foxl2 and cyp19a1a, 2 putative female-
related genes, in the black porgy genome. Previous findings
revealed that cyp19a1a plays dual roles in gonadal development,

while both cyp19a1a and foxl2 are related to the sex change of
the black porgy [47]. However, foxl2 has proved to participate in
sex differentiation, although it is not essential for the sex deter-
mination and sex change in the tongue sole [52].

With only one copy in the black porgy, figla is a germ-cell–
specific transcription factor related to ovary development and
differentiation [53]. However, 2 isotypes (figla tv1 and figla tv2)
were reported in the tongue sole. It is noted that figla tv1 pos-
sesses a conserved function in folliculogenesis as found in other
vertebrates, while figla tv2may play a role in the spermatogene-
sis of pseudo-males by regulating the synthesis andmetabolism
of steroid hormones [53]. Also identified with 1 gene in the black
porgy, sf1was reported to act as an essential transcriptional fac-
tor for steroidogenesis and for development of the reproductive
axis (Table 3) [54].

Interestingly, 5 copies of sox9were also identified in the black
porgy genome. Nevertheless, previous findings reported that
only 2 paralogs of sox9 (sox9a and sox9b) are present in zebrafish
[55] and catfish [56]. Paralog sox9a is usually associated with tes-
ticular development, while this may be linked with sex reversal
in the tong sole [52]. In comparison, sox9b possesses a new func-
tion in the ovary [55]. In addition, we noticed that female-related
genes (wnt4, vasa, and jnk1) had multiple copies in our current
study, which may be retained since the whole-genome duplica-
tion in the ancestor of the teleost (Table 3). These genes have
been proven to play important roles in ovarian growth and nat-
ural sex changes in fishes [57–60]. It was reported that 2 wnt4
genes (wnt4a and wnt4b) are present in most teleost fish, while
other vertebrates and invertebrates possess only a single wnt4
gene. Furthermore, 2 copies of wnt4a, wnt4a1, and wnt4a2 exist
in some teleost species resulting from the additional duplication
of the wnt4 gene [61]. It has been shown that wnt4a was mainly
expressed in the gonad, gill, and brain of teleost fish (such as
zebrafish [62] and rainbow trout [63]), and it was confirmed to
be associated with sex reversal in the tongue sole [61]. The vasa
gene, also called ddx4, was reported to play an important role in
gametogenesis and germ cell development [64]. Previous find-
ings showed that vasa was a single copy gene in the majority
of chordates such as zebrafish [65,66]. However, 3 vasa genes
were also reported in Nile tilapia (Oreochromis niloticus) [67]. Jnk1
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Table 3: Three types of genes potentially related to sex change in the black porgy genome

Sex determination and differentiation genes

Gene Copy number Scaffold Copy number in other teleosts

fst 2 10, 17 1 (zebrafish, medaka)
sox9 5 11, 13, 16, 19, 27 2 (zebrafish, catfish)
vasa 10 11, 14, 16, 20, 27, 34, 37, 47, 53, 68 1 (zebrafish), 3 (Nile tilapia)
ctnnb1 4 2, 16, 64, 115 1 (zebrafish)
piwil1 1 15 1 (zebrafish, medaka)
piwil2 1 15 1 (zebrafish, medaka)
sf1 1 108 1 (zebrafish, medaka)
rspo1 2 2, 74 1 (zebrafish, medaka)
foxl2 2 1, 22 1 (zebrafish, medaka)
cyp19a1a 2 8, 28 1 (zebrafish, medaka)
gsdf 1 3 1 (medaka)
figla 1 32 1 (zebrafish, medaka)
dmrt1 1 56 1 (zebrafish, medaka, tongue sole)
wnt4 15 1, 2, 5, 6, 7, 8, 9, 18, 19, 20, 32, 34, 62, 67, 122 2 (zebrafish), 3 (rainbow trout)
dax1 4 2, 3, 14, 43 1 (medaka, tongue sole)
cyp11a1 2 8, 33 1 (zebrafish)
hsd3b1 2 7, 36 1 (zebrafish, medaka)
amhr2 2 9, 185 1 (medaka)
jnk1 9 1, 3, 4, 5, 16, 17, 38, 79, 117 1 (zebrafish)
Pluripotency factors
klf4 5 1, 3, 17, 96, 142 1 (zebrafish, medaka)
nr5a2 3 8, 19, 28 1 (zebrafish, medaka)
lin28a 2 2, 3 1 (zebrafish)
pou2 1 3 1 (zebrafish)
Apoptosis factors
traf2 2 3, 15 1 (zebrafish, medaka)
casp2 1 2 1 (zebrafish)
tnfr1 1 2 1 (zebrafish, medaka, tilapia)

Note: The last column states the gene copy number in other teleosts based on the phylogenetic trees (uploaded to GigaDB [69]) in this study.

is closely associated with ovarian differentiation and develop-
ment in fish. A previous finding [58] reported that jnk1 highly
transcribed in the ovary of the female ricefield eel (Monopterus
albus), another teleost with natural sex-change from female to
male, and reduced to a substantial level at the subsequent stage
of intersex. Hence, the data demonstrated that jnk1 may play a
key role in sexual reversal. Surprisingly, 2 jnk1 genes (jnk1a and
jnk1b) were reported in the polyploid hybrids of red crucian carp
(Carassius auratus red var.) and common carp (Cyprinus carpio L.)
[68].

Interestingly, our data demonstrate that the distribution of
these 3 types of genes in the black porgy genome is sim-
ilar to that in ricefield eel (our unpublished results; data
from the Monopterus Whole Genome Shotgun Project have
been deposited at DDBJ/EMBL/GenBank under accession num-
ber AONE00000000). For example, 2 male-related genes (piwil1
and piwil2) are clustered together, while lin28a and rspo1 are ad-
jacent to each other. We also observed that most of these genes
are congregated on scaffolds 1, 2, 3, 11, and 15 (Table 3).

Conclusions

In summary, we sequenced and assembled the whole genome
of Chinese black porgy. This is the first genomic report of Spari-
dae fish. Furthermore, we provided a genomic survey on the
26 genes potentially associated with sex change. The achieved
genome data will be helpful for further biological and evolution-
ary studies. Furthermore, it will be valuable for implementation

of molecular breeding, with substantial support from our ge-
nomic data, to obtain genetic improvement of this economically
important teleost fish.
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