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ABSTRACT

Motivation: The assessment of protein structure prediction tech-

niques requires objective criteria to measure the similarity between a

computational model and the experimentally determined reference

structure. Conventional similarity measures based on a global super-

position of carbon � atoms are strongly influenced by domain motions

and do not assess the accuracy of local atomic details in the model.

Results: The Local Distance Difference Test (lDDT) is a superposition-

free score that evaluates local distance differences of all atoms in a

model, including validation of stereochemical plausibility. The refer-

ence can be a single structure, or an ensemble of equivalent struc-

tures. We demonstrate that lDDT is well suited to assess local model

quality, even in the presence of domain movements, while maintaining

good correlation with global measures. These properties make lDDT a

robust tool for the automated assessment of structure prediction

servers without manual intervention.

Availability and implementation: Source code, binaries for Linux and

MacOSX, and an interactive web server are available at http://swiss

model.expasy.org/lddt

Contact: torsten.schwede@unibas.ch

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

The knowledge of a protein’s 3D structure enables a wide spec-

trum of techniques in molecular biology, ranging from rational

design of mutagenesis experiments for the elucidation of a pro-

tein’s function to drug design. While the rapid development of

DNA sequencing techniques has been providing researchers with

a wealth of genomic data, experimental structure determination

techniques require substantially more effort, and consequently

the gap between the number of known protein sequences and

the number of known protein structures has been growing con-

tinuously. To fill this gap, various computational approaches

have been developed to predict a protein’s structure starting

from its amino-acid sequence (Guex et al., 2009; Moult, 2005;

Schwede et al., 2009). Despite remarkable progress in structure

prediction methods, computational models often fall short in

accuracy compared with experimental structures. The biannual

CASP experiment (Critical Assessment of techniques for protein

Structure Prediction) provides an independent blind retrospect-

ive assessment of the performance of different modeling methods

based on the same set of target proteins (Moult et al., 2011).

One of the main challenges for the CASP assessors is to define

appropriate numerical measures to quantify the accuracy with

which a prediction approximates the experimentally determined

structure. In the course of the CASP experiment, model com-

parison techniques have evolved to reflect the current state of the

art of prediction techniques: In the first installments of CASP,

root-mean-square deviation (RMSD) between a prediction and

the superposed reference structures was used in various forms

as the main evaluation criterion (Hubbard, 1999; Jones and

Kleywegt, 1999; Martin et al., 1997; Mosimann et al., 1995).

However, RMSD has several characteristics that limit its useful-

ness for structure prediction assessment: the score is dominated

by outliers in poorly predicted regions while at the same time it is

insensitive to missing parts of the model, and it strongly depends

on the superposition of the model with the reference structure.
To overcome some of the limitations of RMSD in the context

of CASP, the Global Distance Test (GDT) was introduced in

CASP4 (Zemla, 2003; Zemla et al., 2001). In contrast to RMSD,

the GDT is an agreement-based measure, quantifying the

number of corresponding atoms in the model that can be super-

posed within a set of predefined tolerance thresholds to the ref-

erence structure. For each threshold, different superpositions are

evaluated and the one giving the highest number is selected. The

final GDT score is then calculated as the average fraction of

atoms that can be superposed over a set of predefined thresholds

(0.5, 1, 2 and 4 Å for GDT-HA and 1, 2, 4 and 8 Å for GDT-TS,

respectively). One of the advantages of GDT is that strongly

deviating atoms do not considerably influence the score. At the

same time, missing segments in the predictions lead to lower

scores. Besides GDT, several other scores for model comparison

have been developed to overcome the limitations of RMSD

(Olechnovic et al., 2013; Siew et al., 2000; Sippl, 2008; Zhang

and Skolnick, 2004).
One of the main limitations of measures based on global

superposition becomes evident when applied to flexible proteins

composed of several domains, which can change their relative

orientation naturally with respect to each other (Fig. 1).

Typically in those cases, the global rigid-body superposition is

dominated by the largest domain, and as a consequence, the

smaller domains are not correctly matched, resulting in artifi-

cially unfavorable scores. In CASP, the effects of domain
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movement are reduced by splitting the target into the so-called

assessment units (AUs), that are evaluated separately. The def-

inition of AUs is carried out by visual inspection, and is therefore

time-consuming. Furthermore, the criteria used to define the AU

are often subjective (Clarke, et al., 2007; Kinch et al., 2011).

Grishin et al. have proposed an approach to numerically support

this decision by analyzing the variability among the predictions

for a specific target (Kinch et al., 2011).

Local superposition-free measures based on rotation-invariant

properties of a structure are an attractive alternative to overcome

several of the shortcomings outlined before. For example,

dRMSD—the distance-based equivalent of RMSD—is used in

chemoinformatics to assess differences in ligand poses in binding

sites (Bordogna et al., 2011). In CASP9, the local Distance

Difference Test (lDDT) score was introduced, assessing how

well local atomic interactions in the reference protein structure

are reproduced in the prediction (Mariani et al., 2011). More

recently, other non–superposition-based scores have been pro-

posed, e.g. CAD score based on residue–residue contact areas

(Olechnovic et al., 2013), measures using residue contact similar-

ity (Rodrigues et al., 2012) or the recall, precision, F-measure

(RPF)/DP score, which was initially developed to evaluate the

quality of nuclear magnetic resonance (NMR) structures (Huang

et al., 2012). Also, the SphereGrinder score (Kryshtafovych

et al., 2013) was used for the assessment of local accuracy of

refinement targets in CASP9 (MacCallum et al., 2011).
Initially, most of the scores used in structure prediction assess-

ment aimed at the evaluation of the protein backbone or fold,

thereby focusing on carbon � (C�) atom positions. However,

with increasing accuracy of prediction methods for template-

based models, the focus of the assessment has shifted to the

evaluation of the atomic details of a model. In CASP7, the

first scores based on local atomic interactions were introduced
in the form of HBscore, which quantifies the fraction of hydro-

gen bond interactions in the target protein correctly reproduced
in the model (Battey et al., 2007; Kopp et al., 2007). In CASP8,

several scores for assessing the local modeling quality were intro-
duced (main chain reality score, hydrogen bond correctness,

rotamer correctness and side-chain positioning) (Keedy et al.,
2009), as well as an evaluation of the stereochemical realism

and plausibility of models using the MolProbity score (Chen
et al., 2010).

In this article, we expand the initial concept of lDDT. Because
the lDDT score considers all atoms of a prediction including all

side-chain atoms, it is able to capture the accuracy of, e.g. the
local geometry in a binding site, or the correct packing of a

protein’s core. We discuss its properties with respect to its low
sensitivity to domain movements, and the significance that can

be assigned to the absolute score values. Furthermore, we intro-
duce the concept of using multiple reference structures simultan-

eously, and incorporate stereochemical quality checks in its
calculation. We finally illustrate how lDDT can be used to high-

light regions of low model quality, even in models of multi-
domain proteins where domain movements are present.

2 METHODS

2.1 The lDDT

lDDT measures how well the environment in a reference structure is

reproduced in a protein model. It is computed over all pairs of atoms

in the reference structure at a distance closer than a predefined threshold

Ro (called inclusion radius), and not belonging to the same residue. These

atom pairs define a set of local distances L. A distance is considered

preserved in the model M if it is, within a certain tolerance threshold,

the same as the corresponding distance in L. If one or both the atoms

defining a distance in the set are not present in M, the distance is con-

sidered non-preserved. For a given threshold, the fraction of preserved

distances is calculated. The final lDDT score is the average of four frac-

tions computed using the thresholds 0.5 Å, 1 Å, 2 Å and 4 Å, the same

ones used to compute the GDT-HA score (Battey et al., 2007). For par-

tially symmetric residues, where the naming of chemically equivalent

atoms can be ambiguous (glutamic acid, aspartic acid, valine, tyrosine,

leucine, phenylalaine and arginine), two lDDTs, one for each of the two

possible naming schemes, are computed using all non-ambiguous atoms

in M in the reference. The naming convention giving the higher score in

each case is used for the calculation of the final structure-wide lDDT

score.

The lDDT score can be computed using all atoms in the prediction (the

default choice), but also using only distances between C� atoms, or

between backbone atoms. Interactions between adjacent residues can be

excluded by specifying a minimum sequence separation parameter.

Unless explicitly specified, the calculation of the lDDT scores for all

experiments described in this article has been performed using default

parameters, i.e. Ro¼ 15 Å, using all atoms at zero sequence separation.

2.2 Multireference lDDT

The lDDT can be computed simultaneously against multiple reference

structures of the same protein at the same time. The set of reference

distances L includes all pairs of corresponding atoms, which, in all ref-

erence structures, lie at a distance closer than the reference threshold Ro.

For each atom pair, the minimum and the maximum distances observed

across all the reference structures are compared with the distance between

the corresponding atoms in the modelM being evaluated. The distance is

Fig. 1. Comparison of predicted protein structure model with its refer-

ence structure for CASP target T0542. The target structure (shown in

gray) consists of two domains. In (A), a predicted model (TS236, in color)

is shown in full length, with the first domain superposed to the target. For

graphical illustration, (B) shows the two domains in the prediction sepa-

rated according to CASP AUs and superposed individually to the target

structure. In both panels, the model is colored according to full-length

lDDT scores following a traffic-light-like red-yellow-green gradient, with

red corresponding to low values of the lDDT, green to high values and

yellow to average values. As superposition-free method, lDDT is insensi-

tive to relative domain orientation and correctly identifies segments in the

full-length model deviating from the reference structure
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considered preserved if it falls within the interval defined by the minimum

and the maximum reference distances or if it lies outside of the interval

by less than the predefined length threshold. The fraction of preserved

distances is computed like in the single reference case.

2.3 Stereochemical quality checks

To account for stereochemical quality and physical plausibility of the

model being evaluated, the calculation of the lDDT can take violations

of structure quality parameters into account. Here, stereochemical viola-

tions in the model are defined as bond lengths and angles with values that

diverge from the respective average reference value derived from high-

resolution experimental structures (Engh and Huber, 1991, 2006) by more

than a predefined number of standard deviations (12� by default; see

Supplementary Material). Interatomic distances between pairs of non-

bonded atoms in the model are considered clashing if the distance

between them is smaller than the sum of their corresponding atomic

van der Waals radii (Allen, 2002), within a predefined tolerance threshold

(by default 1.5 Å). Tolerance thresholds can be defined for each pair of

atomic elements independently.

In case where the side-chain atoms of a residue show stereochemical

violations or steric clashes, all distances that include any side-chain atom

of this residue are considered as not preserved for the lDDT calculation.

In case the back-bone atoms are involved in stereochemical violations or

steric clashes, all distances that include any atom of the residue are treated

as not preserved.

2.4 Determination of the optimal inclusion radius Ro

To determine the optimum value of the inclusion radius parameter Ro for

lDDT, an analysis of predictions of all multidomain targets evaluated

during the CASP9 experiment (Kinch et al., 2011; Mariani et al., 2011)

was carried out (see Supplementary Table S1 for a complete list). GDC-

all scores for predictions covering450% of the target protein sequence

were computed based on the AUs definitions by the CASP9 assessors

(Kinch et al., 2011). A weighted whole target GDC-all score was com-

puted for each target as the average GDC-all scores of its AUs weighted

by the AU size. GDC-all scores are an all-atom version of GDT with

thresholds from 0.5 to 10 in steps of 0.5 Å. GDC-all scores were com-

puted using LGA version 5/2009 (Zemla, 2003), using a 4Å cut-off for the

sequence-dependent superposition.

lDDT scores were calculated for the whole targets by including all

residues that are covered by any AU, and in an AU-based form using

the same weighting scheme already applied to GDC-all scores. The

inclusion radius parameter was varied in the range from 2 to 40 Å, and

the correlation R2 score between the distribution of weighted averaged

GDC-all scores and the distribution of lDDT scores was computed and

plotted against the value of the inclusion radius (Figs. 2 and 3).

2.5 Validation of baseline scores for different folds

To analyze the influence of the protein fold of the assessed structure on

the lDDT score, pseudorandom models were created for different archi-

tectures in the CATH Protein Structure Classification system (Cuff et al.,

2011) using the following procedure: representative domains longer than

50 residues were selected as evenly as possible among the topologies of the

CATH classification. For each domain, side-chain coordinates were

removed and then rebuilt using the SCWRL software package (with de-

fault parameters) (Krivov et al., 2009). Pseudorandom models represent-

ing threading errors were then generated by shifting all residues by one

alignment position in a backbone-only model, and rebuilding the side-

chains with SCWRL4, and computing the corresponding lDDT score.

The procedure was repeated iteratively until a threading error of 50 resi-

due positions was reached. This method is loosely based on the approach

described in Shi et al. (2009). In Figure 4, we show the results for CATH

Architecture entries 1.25 (Alpha Horseshoe) and 2.40 (Beta-barrel), each

represented by 60 example structures.

For estimating lDDT scores of random protein pairs, 200 protein

models with wrong fold were generated by selecting pairs of structures

with different CATH topologies, generating models by rebuilding side

chains on the backbone of the other protein, and computing lDDT

scores for these decoy models. The median of the resulting distribution

was 0.20, with a 0.04 mean absolute deviation.

2.6 Implementation and availability

lDDT has been implemented using the OpenStructure framework (Biasini

et al., 2010). Source code, standalone binaries for Linux and Mac OSX,

as well as an interactive web server are available at http://swissmodel.

expasy.org/lddt/. The web server has been implemented using the Python

Django and JavaScript jQuery frameworks; it supports all the major

browsers.

Fig. 3. Correlation between whole structure GDC-all and lDDT scores

and domain-based weight-averaged GDC-all scores. For CASP9 predic-

tions of multidomain targets, GDC-all scores (red dots) and lDDT scores

(blue dots) were computed against the whole unsplit target structures.

For the lDDT scores, the default value of 15 Å for the inclusion radius

was used

Fig. 2. Determination of the optimal inclusion radius parameter Ro.

Pearson correlation (R2) between whole target lDDT scores (solid line)

and domain-based weight-averaged lDDT score (dashed line) versus

domain-based weight-averaged GDC-all scores for different values of

the inclusion radius parameter Ro were computed over all CASP9 pre-

dictions for multidomain targets
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3 RESULTS AND DISCUSSION

We have developed the lDDT as a new superposition-free meas-

ure for the evaluation of protein structure models with respect to

a reference structure. In the following, we will discuss the choice

of the optimal inclusion radius parameter Ro to achieve low

sensitivity to domain movements, and analyze baseline scores

for lDDT for different fold architectures. We will discuss the

application of lDDT for assessing local correctness of models,

including stereochemical plausibility. Finally, we will present an

approach for assessing a model simultaneously against several

reference structures, e.g. a structural ensemble from NMR.

3.1 Optimal choice of the inclusion radius parameter R0

makes lDDT largely insensitive to domain movements

3.1.1 Determination of the optimal inclusion radius The nature
of the lDDT score is ultimately determined by the choice of the

inclusion radius parameter Ro. For low values of the inclusion

radius, only short-range distances are assessed, and the accuracy

of local interactions has a major impact on the final value of the

lDDT score. On the other hand, when the value of the inclusion

radius parameter is high, the evaluation of long-range atomic

interactions gains a bigger contribution in the final score, and

the final lDDT score turns into a representation of the global

model architecture quality.
For assessing the accuracy of protein models, the inclusion

radius should be high enough to give a realistic assessment of

the overall quality of the model, but at the same time, the lDDT

score should not lose its ability to evaluate the modeling quality

of local environments. Especially, scores should not be influ-

enced by changes of domain orientation between the model

and the target structures. The optimal value of the inclusion

radius parameter Ro has been determined on a dataset compris-

ing all CASP9 predictions for multidomain targets, and the

corresponding assignment of AUs as defined by the CASP9

assessors. Weighted GDC-all scores were calculated as weighted

averages of the AU-based scores (see Materials and Methods for

details). Hence, the weighted GDC-all scores can be considered

to be largely devoid of the influence of domain movements.

lDDT scores were then computed using both the full target struc-

tures and, in a weight-averaged AU-based form, for a range of

Ro, values from 1 to 40 Å. For each threshold, we calculated the

correlation with the weight-averaged GDC-all scores for the

same predictions. We used GDC-all (and not the more

common C�-based GDT) score to compare two all-atoms meas-

ures on the same set of data. The results are shown in Figure 2.

The conclusions presented in this article, however, also hold

when using GDT as reference measure.
For small values of the Ro parameter, the two types of lDDT

scores essentially reduce to a contact map overlap measure

(Vendruscolo et al., 1999) and the correlation with global

scores such as GDC-all is rather low. As the inclusion radius

increases, longer-range interactions are being evaluated and the

correlation shows a steep increase as the lDDT score starts to

reflect the global quality of the model. For large values of Ro,

where inter-domain relationships start playing a more significant

role and domain movements start to influence the whole-target

lDDT score, its correlation begins to decrease slowly. However,

the slow decrease in correlation for values of the inclusion radius

424 Å (Fig. 2) shows the stability of the whole-target lDDT score

with respect to the influence of domain movements. Even includ-

ing all inter-atomic distances in the calculation (Ro¼1), which

maximizes the effect of domain movement, does not significantly

lower the correlation with domain-based GDC-all scores

(R2
¼ 0.82). Based on this analysis, we selected a default value

of 15 Å for the inclusion radius Ro. This allows the lDDT score

to avoid the drawbacks that affect measures based only on very

local characteristics, e.g. contact map overlap.

3.1.2 Sensitivity analysis versus relative domain

movements Proteins consisting of multiple domains can exhibit
flexibility between their domains, which can often be experimen-

tally observed in the form of structures with different relative

orientations of otherwise rigid domains. In many cases, these

relative movements play a functional role. From a modeling

assessment perspective, however, the analysis of the relative

orientation of the domains must therefore be separated from

the assessment of the modeling accuracy of the individual

domains.
The insensitivity to relative domain movement makes the

lDDT score a good choice for the unsupervised evaluation of

predictions of multidomain structures, in contrast to scores

based on global superposition. To illustrate this behavior,

Figure 3 shows lDDT and GDC-all scores computed on full-

length structures as a function of the AU-based weight-averaged

GDC-all scores (x-axis). As expected, the correlation between the

two types of GDC-all scores is rather poor (R2
¼ 0.58), whereas

the correlation between the AU-based GDC-all scores and the

lDDT scores is good (R2
¼ 0.89). The hybrid nature of the lDDT

score allows it to be global enough to evaluate the modeling

quality of the protein domains, but local enough to be only mar-

ginally affected by their relative orientations in the compared

structures. When using the lDDT score to evaluate predictions,

Fig. 4. Baseline lDDT scores for models with simulated threading errors.

lDDT scores of pseudo-models with threading errors for two examples of

different CATH Architectures are shown: Alpha Horseshoe (left) and

Beta Barrel (right). The lDDT score is plotted as a function of the intro-

duced threading error (top). The histograms (bottom) show the distribu-

tion of these ‘baseline’ scores for threading error offset415 residues for

the two architectures. The structure inlays show an example structure of

the respective CATH Architecture. Peaks at large off-sets indicate repeti-

tive structural elements with locally correct arrangement

2725

lDDT: a local superposition-free score for comparing protein structures and models

local Distance Difference Test (
)
superposition 
Ro
-
assessment units (
)
both 
i
n order 
paper
higher than
s
vs.
anaylsis
-
while
very 


it is not necessary to split the target structure in separate

domains, whose identification can be a complex and time-

consuming procedure. The absolute lDDT score values show a

dependency on the structural architecture of the protein being

modeled (see Section 3.2 later in the text). For example, a small

group of predictions off-diagonal (GDC-all between 0.2 and

0.35, lDDT between 0.4 and 0.6) belonging to target T0629

show a high correlation within the group, but the slope is differ-

ent from other targets. The elongated trimeric structure of T0629

has relatively few intra-chain contacts and is mainly stabilized by

interactions between chains. Thus, local interactions within a

chain are mainly limited to trivial nearest neighbor contacts

that are easily satisfied in predictions, which explain the higher

lDDT scores. For reference, the correlation between the lDDT

and GDC-all scores for single-domain CASP9 targets is shown in

Supplementary Fig. S2).

3.2 Validation of lDDT score baselines for different

protein folds

Because lDDT scores express the percentage of inter-atomic dis-

tances present in the target structure that are also preserved in

the model, a value of ‘0’ corresponds to 0 conserved distances,

and ‘1’ to a perfect model. However, these extreme values are in

practice rarely observed, even in extremely high and low-quality

models. At the high-accuracy end, fluctuations in surface side

chain conformations will result in values 51. For very low

accuracy models, still some local inter-atomic distances will be

preserved if the model has at least a stereochemically plausible

structure and features some secondary structure elements. In the

context of protein model assessment, two types of baseline values

are of interest: the expected score when comparing two random

structures, and scores for models with correct folds but including

threading errors.
In principle, the first value could be estimated using Flory–

Huggins polymer solution theory (Flory, 1969; Huggins, 1958),

e.g. as done for the determination of RPF/DP values for NMR

structures (Huang et al., 2012). However, because protein struc-

tures are rich in rigid structural elements like �-helices and

�-sheets, where the relative local positions are restricted, they

show in general a higher number of preserved local distances

than random polymers. Based on these considerations, we

decided to empirically derive lDDT baseline scores by comparing

a reference structure with a set of well-defined decoy models.

A comparison of the Flory–Huggins and decoy-based analysis

can be found in the SupplementaryMaterials. The average lDDT

score when comparing random structures, i.e. protein models

with different architectures (see Materials and Methods), is

0.20 (�0.04). For estimating the effect of alignment shifts in

models with otherwise correct fold and stereochemistry, we cre-

ated pseudomodels starting from the original protein structure

and introducing threading errors of increasing magnitude for

different representative structure architectures from CATH

(Cuff et al., 2011). We then compared the pseudomodels with

the original structure, computing their lDDT scores against it.
Here, we show the results for CATH architecture entries 1.25

(Alpha Horseshoe) as example for proteins rich in �-helices, and
2.40 (Beta-barrel) as representative for a �-sheet protein (Fig. 4).

The plots at the top of each panel show the value of the lDDT

scores (on the y-axis) for 60 pseudomodels as a function of the
magnitude of the threading error (residue offset) on the x-axis.

For large threading errors, the lDDT scores converge to a ‘base-
line’ range of scores, which appear to be largely independent of

the threading error magnitude. We considered scores in this
range to be typical lDDT scores for a low-quality model with

the same architecture as the target structure. For models in the
Alpha Horseshoe architecture, the average baseline lDDT score

is �0.28, whereas for the Beta barrel class, the value of 0.22 is
lower, illustrating the influence of the architecture of the protein.

This indicates that the lower boundary of the lDDT score can
vary as a function of the architecture of the target protein, which

influences the comparison of absolute raw scores of models for
different folds, but not of models of the same architecture. This is

a common behavior of most structure comparison measures.
One interesting feature in Figure 4 is the presence of several

peaks at larger threading errors (e.g. around residue 34) in the

Alpha Horseshoe architecture example. These peaks correspond
to internal repeats in the structure, which give rise to locally

correct models when the threading shift coincides with the size
of the repeat.

3.3 Local model accuracy assessment

Modeling errors are typically not homogenously distributed over
the model, but are localized, e.g. in template-based models often

in segments that had to be remodeled de novo. Residue-based
lDDT scores quantify the model quality on the level of a residue’s

environment. The low sensitivity of lDDT to relative domain
movements also applies to per-residue scores. As shown in

Figure 1, local lDDT scores are not dominated by different
domain orientations between the target and the model structures,

but correctly reflect the accuracy of the local atomic environment
surrounding the residue under investigation in the model.

Figure 1 shows a superposition of the structure of target T0542
(in light gray) with prediction by group TS236 (colored according

to the full-length lDDT score). The models represent each of the
two individual domains with high accuracy, but their relative

domain orientation does not correspond to the target structure.
Superposition-based scores would assign a high score to one of

the domains but not to the other, or require scoring based on
isolated domain. As illustrated on the right panel (Fig. 1), resi-

dues with low lDDT score correspond to regions of large local
structural divergence between the two domain structures, irre-

spective of the domain movement between them. As expected,
low local scores can also be detected at the interface between the

two domains where the interactions cannot be modeled correctly
without knowing their relative orientation in the target.

3.4 Stereochemical realism assessment

Although validation of the stereochemical plausibility of protein
models is a routine procedure for experimental structure deter-

mination, e.g. in X-ray crystallography (Read et al., 2011), this is
not a common practice in theoretical modeling. Depending on

the applied method, models generated in silico may reveal rather
unrealistic stereochemical properties. Typically, numerical scores

applied in retrospective model assessment compute a measure for
the average atomic dislocation between the reference structure

and the model, without considering the stereochemical quality of
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the latter. Consequently, two models with similar average atomic

displacements may nevertheless differ significantly in their

stereochemical plausibility, and some models might include

atomic arrangements that are physically impossible.
To address this question, lDDT incorporates a stereochemical

plausibility check, which assesses two aspects of model quality:

the lengths of chemical bonds and the widths of angles in the

model structure. Bond and angle measurements are compared

with a set of standard parameters derived from high-resolution

crystal structures (Engh and Huber, 2006). A stereochemical vio-

lation is defined as a parameter deviating from the expected

values by more than a specified number of standard deviations

(default: 12�; see Supplementary Material). Inter-atomic dis-

tances between non-bonded atoms in the model are compared

with the sum of their Van der Waals radii (Allen, 2002), and a

violation (‘clash’) is assigned if two atoms are closer than the sum

of the Van der Waals radii, allowing a certain tolerance (default:

1.5 Å). When calculating the lDDT score, all distances involving

side-chain atoms of a residue involved in any type of stereochem-

ical violations in the model are considered as non-preserved.

In cases where backbone atoms are involved in stereochemical

violations, all distances involving this residue are considered non-

preserved. This approach leads to the lowering of the final lDDT

score of a model according to the extent of the structure’s

stereochemical problems (Fig. 5).

As an example, Figure 5 shows the CASP9 prediction TS276_1

for target T0570-D1. The backbone of the prediction can be

superposed accurately to the backbone of the target structure

(left panel), and the prediction has indeed a high GDT-HA

score (0.814). Displacement-based all-atom scores do not imme-

diately reveal the problems, with a GDC-all score of 0.705 and

an lDDT score without stereochemical checks of 0.682.

However, when the lDDT score includes stereochemical check,

the lDDT score drops to 0.571. Panel B shows a close-up of the

region around residue alanine 21, where several stereochemical

violations are evident.

3.5 Multireference structure comparison

The typical situation for protein structure prediction assessment

is to compare a model against a single reference structure. There

are, however, cases where several equivalent reference structures

are available, e.g. structural ensembles generated by NMR, crys-

tal structures with multiple copies of the protein in the asymmet-

ric unit (non-crystallographic symmetry) (e.g. target T603 in

CASP9), or independently determined X-ray structures for the

same protein at different experimental conditions. In these cases,

no structure can be considered more reliable than any other.

However, owing to the choice of different templates, models

often have a higher similarity to one or the other reference struc-

ture, and the choice of reference for the evaluation score can lead

to very different results for models of equal quality.
In case of the lDDT, the following approach allows to evalu-

ate a model simultaneously against an ensemble of reference

structures: for each pair of atoms, we define an acceptable dis-

tance range by taking the minimal and maximal distance

observed across all references where the atoms are present. If,

in any of the reference structures, the distance is longer than the

inclusion radius Ro, this distance is considered a long-range

interaction, and is ignored. For the assessment, the correspond-

ing distance in the model is considered preserved, when it falls

inside the acceptable range or outside of it by less than a prede-

fined threshold offset.
One obvious application of the multi-reference lDDT score is

the evaluation of models against NMR structure ensembles. For

example, in the case of CASP9 target T0559 (PDBID: 2L01), an

ensemble of 20 NMR structures has been experimentally deter-

mined. Selecting one single chain from the ensemble as reference

to evaluate prediction models would be an arbitrary decision,

artificially favoring some models that are closer to that specific

structure. To estimate the effect of selecting a single reference

structure, all structures in the ensemble were in turn used as a

‘model’ and evaluated against all the others. Using traditional

pairwise comparison with GDC-all scores (Fig. 6, striped bars),

fluctuations of almost 12 GDC points around an overall low

Fig. 6. Comparing a model against an ensemble of reference structures.

The experimental reference structure for CASP target T0559 (human

protein BC008182, PDBID:2L01) is an ensemble of NMR structures.

The graph shows the effect of selecting a single structure as reference

(GDC-all values as striped bars) in contrast to the multireference lDDT

implementation (dotted bars). For this example, each structure within the

ensemble was selected in turn as reference and compared with the other

members

Fig. 5. Assessing stereochemical plausibility. This example illustrates the

stereochemical quality checks on lDDT score for a model (TS276, left

side as ribbon representation) for target T0570-D1 with unrealistic stereo-

chemistry (close-up, right). Residues with too short (1) or too long (2)

chemical bonds, as well as those with close atomic interactions (3) or

impossible bond angles (4), result in lower scores during the lDDT

computation
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value of 0.77 are observed. To avoid this, variable regions of the
ensemble are often excluded from the assessment (Clarke et al.,
2007; Kinch et al., 2011; Mao et al., 2011).
Ideally, this situation should be avoided, and a prediction

should not be rewarded or penalized for being more similar to
one member of the ensemble than to another. The multireference
version of the lDDT score has been developed to overcome this

problem by sampling the conformational space covered by the
ensemble and compensating for its variability. Using the same
example, the multireference lDDT score, which uses one chain as

a ‘model’ and all the others together as multireferences, shows a
spread of 51% (Fig. 6, dotted bars), indicating its robustness
when scoring a model against an ensemble of equivalent reference

structures. Recently, methods using elastic network models have
been proposed to computationally explore the intrinsic flexibility
landscape for a single reference protein (Perez et al., 2012).

4 CONCLUSION

In this article, we describe the lDDT score, which combines
an agreement-based model quality measure with (optional)
stereochemical plausibility checks. We have demonstrated its low

sensitivity with respect to domain movements in case of multido-
main target proteins, which allows for automated assessment with-
out the need for manually splitting targets into AUs. We also have

shown that local atomic interactions are well captured and local
lDDT scores faithfully reflect the modeling quality of sub-regions
of the prediction. In addition, we present an approach to compare

models against multiple reference structures simultaneously with-
out arbitrarily selecting one reference structure for the target, or
removing parts that show variability. Additionally, as an agree-
ment-based score, lDDT is robust with respect to outliers.

One disadvantage of the lDDT score is that it does not fulfill
the mathematical criteria to be a metric. However, the same is
true for most scores commonly applied for structure comparison

such as GDT, or RSMD based on iterative superposition when
comparing models with different number of atoms. We consider
lDDT particularly suited for the evaluation of predictions for the

same target protein, e.g. in the context of the CASP and
CAMEO (www.cameo3d.org) experiments. For these kind of
applications, unlike, e.g. for clustering protein structures, we

do not see the lack of metric properties as a significant limitation.
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