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Abstract: The evolution of breast tumors greatly depends on the interaction network among different
cell types, including immune cells and cancer cells in the tumor. This study takes advantage of newly
collected rich spatio-temporal mouse data to develop a data-driven mathematical model of breast
tumors that considers cells’ location and key interactions in the tumor. The results show that cancer
cells have a minor presence in the area with the most overall immune cells, and the number of
activated immune cells in the tumor is depleted over time when there is no influx of immune cells.
Interestingly, in the case of the influx of immune cells, the highest concentrations of both T cells and
cancer cells are in the boundary of the tumor, as we use the Robin boundary condition to model
the influx of immune cells. In other words, the influx of immune cells causes a dominant outward
advection for cancer cells. We also investigate the effect of cells’ diffusion and immune cells’ influx
rates in the dynamics of cells in the tumor micro-environment. Sensitivity analyses indicate that
cancer cells and adipocytes’ diffusion rates are the most sensitive parameters, followed by influx and
diffusion rates of cytotoxic T cells, implying that targeting them is a possible treatment strategy for
breast cancer.

Keywords: breast cancer; MMTV-PyMT mouse model; tumor microenvironment; partial differential
equation; sensitivity analysis; immune cell influx; finite element method

1. Introduction

Breast cancer is the most common type of cancer in women and a major public health
problem [1]. It accounts for 25% of the new female cancer cases around the world [2], and it
was the cause of 43,600 deaths in the United States alone in 2021 [3]. Breast cancer has three
major subtypes: human epidermal growth factor 2 positive (HER2+) (70% of patients),
HER2- (15–20%), and triple-negative (tumors lacking all three standard molecular markers;
15%) [4]. Based on the stage of the disease, different treatment options are practiced,
such as chemotherapy, radiation therapy, surgical removal, or a combination of these [4,5].
However, these treatments can be straining and do not always work. A comprehensive
understanding of the biology of cancer as a complex system of interactions is essential for
obtaining effective treatments.
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The tumor micro-environment has been the focus of many studies, including therapeu-
tic targeting [6,7] and spatial heterogeneity [8–10], as many scientists believe that the key to
curing cancer lies within tumor micro-environment interactions [11,12]. However, to find
effective therapies, many factors should be considered, and in-vivo examinations of the
tumor micro-environment and its response to treatments can be expensive and straining
for both patients and investigators. Therefore, mice models of breast cancer are prevalent
for testing different hypotheses and treatment combinations.

To establish mouse models, many different approaches have been used, including
transgenic [13–16], gene targeting [17–19], and RNA interference [20–22]. Transgenic mouse
models (in which oncogenes can be expressed while other factors, such as tumor-suppressor
genes, are muted), are used to study breast cancer and improve our understanding of cancer
initiation and progression [23–26]. For example, using these mouse models, it has been
shown that macrophages regulate the cancer progression and formation of a high-density
vessel network [27], and the high mobility group box-1 (HMGB-1) proteins play roles
in promoting angiogenesis and tumor migration [28]. One of the most commonly used
mouse models in cancer research is the mammary-specific polyomavirus middle T antigen
overexpression mouse model (MMTV-PyMT) [29–31]. Specifically for breast cancer, this
mouse model has been utilized successfully and qualifies as a transgenic approach [32,33].

At the same time, mathematical modeling of cancer development and tumor micro-
environment offers insights and can be used in discovering new treatments [34–47]. As the
complex spatial cell-to-cell interactions in the tumor micro-environment has attracted many
experimental studies, a more thorough mathematical model can help scientists gain a better
insight into the mechanisms of cancer growth. Many mathematical models using partial
differential equations (PDE), which allow the integration of spatial information into the
governing differential equations, have been developed to study health problems, such as
atherosclerosis, Alzheimer’s disease, and COVID-19 spread [48–52]. Since the pioneering
work of Iwata et al. [53] that introduced a PDE dynamical model for the metastatic evolution
of an untreated tumor, researchers have developed several PDE models for cancer [54–57].
For example, for breast cancer, a PDE model with a 1D domain was proposed in which a
predetermined population of tumor cells interacts with a fixed population of macrophages
in a tissue-culture experiment [58]. In another study, a 2D spatial hybrid model was
suggested, where an ordinary differential equation (ODE) described the dynamics of each
immune cell, and a PDE described the evolution of the average substances released by
the tumor cells [59]. Lai et al. also developed a system with eight variables, including
cell populations of macrophages and T cells, to model the combination therapy for breast
cancer [60].

Biological tissues have specific mechanical properties which can affect the growth
and deformation caused by cell proliferation and movement in addition to the important
cellular and molecular interactions. Since the pioneering works of Y.C. Fung on modern
biomechanics [61–64], many specific tissue constitutive models have been proposed [65–68].
As mechanical properties of tumors can differ depending on the hosting tissue, different
mechanical models have been developed for different cancer types. In particular, breast
tumors have been treated as porous media and fluid-like tissue. For example, Frieboes et al.
modeled breast tumor tissues as porous media and implemented a model that incorporates
the interplay between the local drug, oxygen, and nutrient concentrations [69]. On the
other hand, Friedman and Hu argued that due to a high content of the extracellular fluid
in mammary glands, breast tumors can be modeled by the Stokes equation [70], and their
method has been successfully applied to many studies [71–74].

This paper proposes a system of PDEs consisting of 15 variables coupled with the
Stokes equation governing the tumor micro-environment. The coupling is performed
through the velocity involved in the convection terms of the PDE system. This study
improves our previous model developed via a system of ODEs [75]. We incorporate the
parameter estimations for the ODE system in this paper and extract the PDE-specific
parameters from the literature. Spatially dependent initial conditions for each cell type are
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obtained from an MMTV-PyMT mouse model by using multiplexed immunohistochemistry
and investigating certain combinations of biomarkers such as Epcam, CC3, CD45, CD3,
CD4, CD8, CD11c, F4/80, CSF1R, and MHC-II in the experimental domain. The simulations
are done via the finite element method (FEM). We first investigate a naive case similar to
our experimental data for which we do not consider any immune cell influx. Later, we
include an influx of specific immune cells. We study tumor growth, cell and molecules
dynamics, the spatial significance of immune cell distributions, and the effect of immune
cell influx on cancer and domain growth. Finally, we perform an adjoint-based sensitivity
analysis to find the sensitivity of total cancer cells to all the parameters of our model. We
comment on the similarity of our results with the ODE study and investigate the biological
importance of the PDE-specific parameter sensitivities.

2. Materials and Methods

The interaction network consists of helper T cells, cytotoxic T cells, regulatory T cells,
dendritic cells, macrophages, adipocytes, cancer cells, and necrotic cells and molecules,
including HMGB1, interleukin-6, interleukin-10, and interleukin-12, see Figure 1.

The effect of nutrients and metabolites on tumor growth has been studied exten-
sively. They can effect cancer cell growth directly or through the immune cells such as T
cells [76–78]. However, to avoid too much complexity, we neglect the effect of nutrients
and metabolites in this study.

IL12
𝑇𝑇ℎ,𝑇𝑇𝑐𝑐,𝐷𝐷,𝑀𝑀

IL-6
A, 𝑀𝑀,𝐷𝐷

Tumor cells 
(C)

Necrotic 
cells (N)

HMGB1
𝐷𝐷,𝑀𝑀,𝑁𝑁,𝑇𝑇𝑇𝑇,𝐶𝐶

Macrophages  
(M)

Cytotoxic 
cells (Tc)

Helper 
T-cells (Th)

Regulatory 
T-cells (Tr)

Dendritic
cells (D)

activation/proliferation
Inhibition

Adipocytes
(A)

secreted by

IL10
𝑇𝑇ℎ,𝑇𝑇𝑐𝑐,𝑇𝑇𝑇𝑇,𝐷𝐷,𝑀𝑀,𝐶𝐶

Figure 1. Interaction network. Interaction between key cells and molecules.

2.1. PDE System

While ODE models give valuable information about cell and molecule dynamics, they
cannot capture the spatial effect of cell-cell and cell-molecule interactions. For a more
realistic model of the cancer evolution, we considered a Reaction-Diffusion-Advection
(RDA) PDE system, in which the reaction terms come from the ODE system mentioned
above [75]. The advection was directed by a velocity field acquired from the mechanical
properties of the tumorous tissue and triggered by the cells’ growth in the cancer micro-
environment. We assumed that naive T cells and naive macrophages get activated outside
the tumor micro-environment [79]. Therefore, the region’s deformation and growth depend
on the model’s other cell types: helper, cytotoxic and regulatory T cells, naive and activated
dendritic cells, activated macrophages, cancer cells, necrotic cells, and adipocytes.

We used a common approach of modeling cells’ and molecules’ movements and
diffusion rates in the tumor [48,80–84]. Given the significant difference between the size of
cells and molecules, in these studies, it was assumed that the domain volumetric change
is only affected by the movement of cells inside of the tumor microenvironment and not
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the molecules. We, therefore, only considered advective terms in the PDEs for cells in the
tumor and not the molecules or cells outside of the tumor. These assumptions lead to the
following system of PDEs:

d[Xi]

dt
+ bi∇ · (v[Xi]) = Di∆[Xi] + fi, (1)

where [Xi] for i = 1, · · · , 15 corresponds to the 15 variables form the ODE system given
in [75]. Table 1 indicates the list of the variables of the ODE model and their corresponding
names in the PDE model. The operators ∇· and ∆ are the divergence and Laplacian, re-
spectively. The vector v represents the advection velocity, and Di is the diffusion coefficient
for the cell or molecule [Xi]. The function fi represents the right-hand side (biochemical
reactions) of the i-th ODE equation, and

bi =

{
0 if i = {1, 7} ∪ {12, . . . , 15},
1 otherwise.

(2)

Table 1. PDE and ODE variables. This table shows the relationship between the variables from (1)
and the system of ODEs in [75].

Variable in PDE Variable in ODE Name

X1 TN Naive T cells

X2 Th Helper T cells

X3 TC Cytotoxic cells

X4 Tr Regulatory T cells

X5 DN Naive dendritic cells

X6 D Activated dendritic cells

X7 MN Naive macrophages

X8 M Activated macrophages

X9 C Cancer cells

X10 N Necrotic cells

X11 A Cancer associated Adipocytes

X12 H HMGB1

X13 IL12 IL-12

X14 IL10 IL-10

X15 IL6 IL-6

To exclude the effect of molecules and outsider cells on volumetric changes, indices
i = 1, 7 correspond to the naive T cells and naive macrophages, and {12, . . . , 15} correspond
to the molecules. Similarly,

Di =

{
0 if i = {1, 7},
di > 0 otherwise.

(3)

Because we did not model the diffusion outside the tumor micro-environment, the equa-
tions for naive T cells and naive macrophages remained as ODEs. Furthermore, we assumed
that all cells in the model have approximately the same volume and surface area, and hence
the same diffusion coefficient [50,81,83].
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di = 3.6× 10−8 cm2

h
for i = {2, 3, 4, 5, 6, 8, 9, 10, 11}, (4)

di = 3.3× 10−3 cm2

h
for i = {12}, (5)

di = 5.2× 10−5 cm2

h
for i = {13, 14, 15}. (6)

These small constant diffusion rates for cells help with smoothness while avoiding
too much complexity in the sensitivity analysis. This is a common simplification [48,80–83]
that leads to advection-dominated PDEs for cells.

Boundary Conditions

Immune cell infiltration in cancer studies has important prognostic implications [85–89].
In order to control and analyze the rate and intensity of infiltration of these cells, we used
Robin boundary conditions through the tumor’s outer boundary, which has been used to
model the influx rate of cells in tumors [90,91]. Namely,

∂[Xi]

∂n
+ αi([Xi]− [Xi

∗]) = 0, on ∂Ω(t) (7)

where ∂Ω(t) is the boundary of the tumor at time t, the vector n is the outward unit normal
vector to the boundary, and αi is the influx rate and is only nonzero for immune cells; we
considered zero flux boundary conditions for the rest of the cells and molecules. The quan-
tity [Xi

∗] pertains to the maximum levels of immune cells in lymph nodes and blood.

2.2. Mechanical Model

Many mathematical models of tumors assume that the tissue is a porous medium [92–94].
Then, due to the high permeability of macrophages and other cells [95,96], one can treat
them as a low-speed flow through the porous tissue with the advection velocity v [90].
On the other hand, some studies consider the tumor as fluid without a solid structure
interaction [72,80,97]. Especially in the case of breast cancer, they argue this approach
is reasonable since the tumor is mainly confined in the mammary gland, which has a
high content of the extracellular fluid. For this study, we considered the breast tumor
as a fluid, and we followed the method introduced in [70]. We also assumed that the
changes in the volume and surface area of the cells in the cancer micro-environment
were negligible and the domain was an incompressible, continuous fluid, with no voids
inside. Hence, the sum of the densities of all cells remained constant [48,80]. If we take
I = {2, 3, 4, 5, 6, 8, 9, 10, 11} (with indices 1 and 7 missing on purpose) to be the set of indices
corresponding to the cells present in the tumor micro-environment, then

∑
i∈I

[Xi] = constant. (8)

Since the breast tissue is mainly decomposed into water, lipid, and protein with
corresponding mass densities of 1, 0.924, and 1.35 g/cm3 [98], for simplicity, we assume
that the constant in (8) is on average 1. Hence, summing both sides of (1) over i ∈ I and
applying (8) implies:

∇ · v =

∑
i∈I

fi

∑
i∈I

[Xi]
. (9)

For modeling the fluid-like behavior of the breast tumor, we use the Stokes equation:

∇Q = 0 in Ω(t), t > 0, (10)
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where Ω(t) is the tumor region at the time t and

Q = ν(∇v + (∇v)T)− (p +
2
3

νdiv(v))I, (11)

with ν and p being viscosity and the hydrostatic pressure. We assume that cell-cell adhesion
force on the boundary of a tumor keeps the domain connected [99,100]. Taking γ to be this
force, κ to be the point-wise mean curvature of the boundary, and n to be the unit outward
normal vector for the boundary Γ(t), we have the following boundary condition:

Qn = −γκn on Γ(t), t > 0. (12)

Additionally, we assumed the kinematic boundary condition:

v · n = Vn on Γ(t), t > 0, (13)

where Vn is the velocity of the free boundary Γ(t) in the direction of n. Finally, since the
problem has a 6 dimensional kernel in 3D (and a 3 dimensional one in 2D) of the form
v0 = a + b× x, with a and b being arbitrary vectors and x being the deformation vector,
we consider the constraints∫

Ω(t)
v dx = 0,

∫
Ω(t)

v× x dx = 0, (14)

to exclude rigid body movements such as translation and rotation. The system consisting
of Equations (9), (10) and (12)–(14) has a unique solution [101].

There are no precise reports of the values ν and γ in the literature. Rianna and
Radmacher [102], for thyroid cancer ν ≈ 350,000 mg

(mm)·(s) , and Sancho et al. report an

approximate value of 200 (mg)·(mm)
s2 for general cell-cell adhesion force (γ) in-vitro [103].

For this study, we scaled the problem so we can take ν = 1, and this scaling would result in
γ̂ ∼ O(10−4). Since we worked with mouse data, we tended to go with the lower bound.
We, therefore, took the scaled γ̂ to be exactly 10−4. However, we acknowledge this ad-hoc
estimation as a limitation of our study.

2.3. Data of the Model
2.3.1. Mouse Model and Experiments

Tumors from naïve mouse mammary tumor virus-polyoma middle tumor-antigen
(MMTV-PyMT) mice were harvested at 3–5 mm in diameter (early), and 12–15 mm in
diameter (late) size and were prepared as formalin-fixed, paraffin-embedded (FFPE) sam-
ples. The 4–5 µm tumor sections were stained using multiplex immunohistochemistry
(mIHC)—a process of serial immunostaining, imaging, and stripping—to assess a range of
markers with specific staining patterns being cross-validated by using cyclic immunoflu-
orescence (cycIF). Each mIHC image was analyzed by segmenting individual cells and
calculating marker positivity for each segmented cell. For this study, we developed a
comprehensive mouse-specific readout panel including proteins such as Epcam, CC3,
CD45, CD3, CD4, CD8, CD11c, F4/80, CSF1R, and MHC-II to interrogate a broad range of
tumor and tumor microenvironment states and functions. Table 2 lists cell classification
based on biomarker combination. Notice that since we consider all subtypes of activated
macrophages as one variable, we have considered two combination biomarkers for it.
For regulatory T cells, we assume T cells that are neither cytotoxic nor helper are regulatory.
Moreover, the combination Epcam(−) CD45(−) may include fibroblasts, endothelial cells
and pericytes, and adipocytes. However, here, we assume it only refers to adipocytes.

The tumors were derived from immunocompetent MMTV-PyMT mice with spon-
taneously growing tumors that mirrored the morphology and aspects of progression of
human breast cancer [30]. For the details of the experiments, please see Appendix B. Table 2
explains the biomarker combinations.
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Table 2. Biomarker combinations. (+) means high expression and (−) means lack of expression of a
protein at a certain location.

Cell Type Biomarker Combination

Helper T cells (Th) Epcam(−) CD45(+) CD3(+) CD4(+) CD8(−)

Cytotoxic T cells (TC) Epcam(−) CD45(+) CD3(+) CD4(−) CD8(+)

Naive dendritic cells (DN) Epcam(−) CD45(+) F4/80(−) CD11C(+)

Dendritic cells (D) Epcam(−) CD45(+) F4/80(−) CD11C(+) MHC-II(+)

Activated macrophages (M) Epcam(−) CD45(+) F4/80(+) CD11C(−) CSF1R(+) or
Epcam(−) CD45(+) F4/80(+) CD11C(−) CSF1R(−) MHC-II(+)

Cancer cells (C) Epcam(+) CD45(−)

Necrotic cells (N) CC3(+)

2.3.2. Preparation of Initial Conditions

To avoid the instability caused by an irregular boundary, we used an elliptical domain
containing all the model’s cell types. Figure 2 shows the mathematical region superimposed
on the experimental domain. Single cell-type locations were determined by the bio-marker
combinations given in Table 2.

We used a triangular mesh on the mentioned elliptical domain. We assigned a discon-
tinuous Galerkin function space of degree zero to this mesh. Then, for each cell type, we
defined piece-wise functions as follows:

Xi(x) =
m

∑
j=1

ωi(Tj)χj(x), for i ∈ I, (15)

where ωi(Tj) is the number of the cell type [Xi] in the triangle Tj. The function χj(x) for a
domain point x is a characteristic function defined by:

χj(x) =

{
1 if x ∈ Tj,
0 Otherwise.

We project the function defined in (15) onto a function space with linear Lagrangian
elements to get a continuous representation for the initial state of each cell type. However,
this projection might result in non-smoothness. Figure 3 shows a one-dimensional case of
this issue.

To prevent the propagation of such anomalies in our simulation, we flatten the negative
values and then introduce a primary diffusion step to smooth things out. After this step,
we non-dimensionalize each field by dividing it by its maximum value across the domain.
This concludes the initial condition preparation. See Appendix C and Figure A2 for a
visualization of these steps and the final products, which we use as the initial conditions
for solving the system (1).

The parameters involved in the reaction term of Equation (1) are evaluated based on
an estimation method proposed in a previous study [75]. In that study, we had time-course
data for three PyMT mice, and we performed a least-squares optimization to obtain the
reaction parameters. Here, we consider constant initial conditions for HMGB1, IL-12, IL-10,
and IL-6; these constants are taken to be the initial values of mouse 1 from the ODE model
presented in [75]. Finally, as mentioned before, Equations (1)–(3) for naive T cells and
naive macrophages are actually ODEs. Therefore, we take their initial conditions to be a
constant of 1.
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Figure 2. Nine figures showing the position of the chosen elliptical domain compared to each cell
type. Blue dots represent a single cell of the corresponding cell type, and gray dots are the rest.

Figure 3. Solid red: A discontinuous function. Dashed blue: The projection onto a finite element space
with linear Lagrangian bases.

3. Results
3.1. No Influx

We used a finite element method to simulate our results (see the Appendix D). We
started by investigating a case with no influx source for the immune cells. In other words,
we tooko αi = 0 in (7). Using the initial conditions from the fourth column of Figure A2,
constant initial conditions for cytokines (taken from [75]) and naive T cells and naive
macrophages (taken to be 1), we solved the discrete mechanical and biological problem
discussed in Appendix D. Figure 4 shows the change in the length and width of the
bounding box containing the domain. For this case, we carried out our simulations for
600 h (25 days). It is worth pointing out that the extractions of early and late tumors
mentioned in Section 2.3.1 were about three weeks apart. The almost circular form of the
domain is due to the effect of the boundary condition (12), and the deformation generally
happens in the direction of the mean curvature. Even though for this problem, we have
conveniently picked an elliptic reference region; cancer scientists commonly observe a
blob-shaped final results [104–106]. The small deviations from a fully circular region in
Figure 4 and the rest of this paper is the result of the competition between deformation by
the reaction term (9) and the boundary term (12) throughout the region.
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Figure 4. Comparison between the dimensions of the tumor at t = 0 h versus t = 600 h. The graphs
show the time evolution of the bounding box dimensions.

Figure 5A describes the spatial and evolutionary behavior of cytokines, and Figure 5B
shows the evolution of two naive cell types excluded from the tumor micro-environment.
Figure 5C shows the spatial distribution of each cell type in the tumor micro-environment
next to their maximum, average, and minimum over the whole domain with respect to time.

Figure 5. Results with no flux of immune cells. (A) Column 1: Spatial distribution of cytokines.
Column 2: Maximum, average, and minimum concentration (ng/mL) of each cytokine over the whole
domain with respect to time. (B) Evolution of naive T cells and naive macrophages. (C) Column 1:
Spatial distribution of cell types. Column 2: Maximum, average, and minimum number of each cell
type over the whole domain with respect to time.

This result shows that most of the cell types deplete in time except cancer, necrotic
and naive dendritic cells (Figure 5). The qualitative behavior of most of the results is
comparable with the ODE case, especially mouse 1; see Figure A1 in Appendix A. The most
significant difference is the behavior of naive macrophages. The naive macrophages
have a strictly decreasing dynamic in the ODE paper, unlike here. The reason might be
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connected to the slower depletion of cytokines IL10, IL12, and helper T cells, which are
the main contributors to the inhibition of naive macrophages. Additionally, HMGB1 has a
sharp increase, followed by a decrease in our ODE results. However, the decrease is not
monotonic, and in mouse 2, it stops for a short while. Additionally, the timescale of this
simulation is much smaller than the ODE paper. To summarize, naive macrophages and
HMGB1 are the only fundamentally different results from the behaviors observed in our
ODE paper. For the rest of the variables, the changes in the total populations/densities are
similar to their dynamics observed in the ODE model. Biologically, the observed decreasing
behavior of the immune cells is attributed to cancer cells’ ability to evade identification and
invasion by host immune responses in later stages of cancer [107–109].

An ODE model fails to capture the significance of the spatial distribution of cells and
cytokines. To see how that affects cells and molecules, we studied their level-curve plots.
Figure 6 show the contours for cells (left) and molecules (right) separating the regions with
values above and under the average of their corresponding field at t = 600. Colored areas
have the highest number of intersections within the plot. Comparing Figures 5C and 6, we
can see that the cancer cells have a minor presence in the area with the most overall immune
cells (region A1). There is also an intersection between regulatory and cytotoxic T cells with
macrophages in the A2 region, which might be the reason for the slightly decreased cancer
population in the corresponding location. The intersection between molecules (region A3)
happens too close to the shaded region to leave a discernible spatial footprint.

Figure 6. (Left): Level-curves indicating the mean value of each cell type at t = 600. (Right): Level-
curves indicating the mean value of each molecule at t = 600. Areas A1 and A2 correspond to the
regions with the most and second-most immune cell intersections, respectively. Area A3 corresponds
to the region with the highest cytokine intersections.

We compared the simulation results with the experiments. The late foldout of the
mouse model used in this study is given in Figure 7. The late foldout is extracted un-
der a naive regime as well, i.e., no treatment has been applied to the mouse model (see
Section 2.3.1). Therefore, immune recruitment and infiltration are negligible. Even though
it is impossible to show exactly where our simulation domain is located due to the lack of a
common reference frame, we can see a good agreement in the overall qualitative behavior
of the cell populations. We can see a significant increase in the number of cancer cells
compared to Figure 2, while most of the other cell types are depleted. Adipocytes are
settled at lower levels, just like the mathematical model’s results. The major differences
between the mathematical model’s results and the late foldout are the naive dendritic and
necrotic cells. Because of the simplicity and lack of data, the mathematical model does
not include metabolites and nutrients, which play a crucial role in necrosis. Here, the only
source of necrosis is the death of cancer cells, so they inevitably follow the same trend as
cancer cells. Additionally, since HMGB1 acts as a major inhibitor of naive dendritic cells,
the mouse model may have a higher level of this molecule.
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Figure 7. Nine figures showing each cell type in the mouse model. Blue dots represent a single cell of
the corresponding cell type, and gray dots represent the rest.

3.2. Immune Cell Influx

In this section, we consider the influx rates αi = 1 and non-dimensional influx
sources [X∗i ] = 1 for the helper, cytotoxic and regulatory T cells, naive dendritic cells,
and macrophages. We assume no-flux boundary conditions for other cells and molecules.
Since activated dendritic cells are differentiated from the naive ones, and this activation
happens mostly inside of the tumor micro-environment [110], we assume a no-flux bound-
ary condition for the activated dendritic cells. Figure 8 shows the domain after t = 600 h.
Compared to Figure 4, the domain is smaller.

Figure 9 shows the spatial and evolutionary behavior of cytokines and cells. Naive
T cells and macrophages do not change much since they are not spatially dependent.
However, due to the Robin type boundary condition, we see either a stationary maximum
value (Th, TC, Tr and M) or a stationary minimum value (DN) close to the boundary.
The former is because the field values are depleting across the domain and the influx tends
to bring it up, and the latter is precisely the opposite. The distribution of dendritic cells
follows the same trend as the naive dendritic cells. However, it decreases quickly, just like
the no-influx case. Due to the near boundary focus of the cells, the molecules are more
intense closer to the boundary. As for cancer cells, it seems that their distribution inside
of the region and away from the boundary is similar to what Figure 5 shows but at much
lower values. On the other hand, there is a higher intensity close to the boundary. Note
that this high-intensity region covers a very tiny area, and in total, there are fewer cancer
cells present in the region due to the immune cell influx. This is more evident when we
compare the integral of cancer cells over the domain for the two cases (Figure 10).

Figure 8. Dimensions of the tumor subject to immune cells influx at t = 600 h. The curves show the
time evolution of the bounding box dimensions.
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Figure 9. Results with flux of immune cells. (A) Column 1: Spatial distribution of cytokines. Column 2:
Maximum, average, and minimum concentration (ng/mL) of each cytokine over the whole domain
with respect to time. (B) Evolution of naive T cells and naive macrophages. (C) Column 1: Spatial
distribution of cell types. Column 2: Maximum, average, and minimum number of each cell type over
the whole domain with respect to time.

Figure 10. Evolution of the integral of cancer over the domain with and without immune cell influx.

In the model, TC is considered the primary inhibitor of the cancer cells, and IL6 and
A are the main contributors to their production. Since TC is more intense close to the
boundary and IL6 and A have the same behavior as in the previous case, one might expect
to see fewer cancer cells at the boundary. We hypothesize that, even though reactions are
decisive in the model, this phenomenon is more because of the cells’ advection direction in
the presence of immune cell influx. In other words, cancer cells tend to leave the region.
This can be a dangerous trait, given that usually mitotic regions are close to the boundary of
the tumor [106,111]. This might explain why some types of breast cancers still metastasize
despite therapy and significant immune recruitment.

Similar to the no-influx case, the necrotic cells follow the same pattern as cancer cells.
Finally, adipocytes show precisely the same behavior as before. Even though they influence
other cells and molecules, their behavior is independent of the other variables. Thus, we
observe the same behavior.
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3.3. Sensitivity Analysis

To investigate the impact of parameters on the cancer population, we performed a
sensitivity analysis on all the model parameters for the case with immune cell influx. We
applied an adjoint sensitivity analysis for the functional

G =
∫

Ω
C dx at t = 600. (16)

We used this method because the model contains a large set of parameters, and the
computational cost of adjoint-based sensitivity analysis is almost independent of the
number of input parameters. Hence, we can compute sensitivities with respect to numerous
parameters or even entire functions. For more information on the mathematical detail of
the method, please see [112]. To carry out the sensitivity analysis using adjoint methods, we
took advantage of the dolfin-adjoint package [113]. The benefit of this package is that it
can be mounted on FEniCS and can record each step of the simulation. Once the adjoint-
based sensitivity starts, it automatically steps backward and calculates the sensitivities.
Figure 11 shows the top five sensitivity values of (16) to four category of parameters:
diffusion rates, influx rates, influx sources, and the rest of the reaction parameters. For a
full report of the sensitivity analysis, parameter notations, and definitions, see Appendix E
and Table A1.

Figure 11. The sensitivity of
∫

Ω Cdx at t = 600 to four categories of parameters: diffusion rates, influx
rates, influx sources, and the reaction parameters.

Interestingly, the top four most sensitive reaction parameters were captured in the
same order in the ODE sensitivity analysis [75]. However, despite acknowledging δCTC as a
sensitive parameter, it was not this high up in the ODE study. This is interesting because
TC-related PDE parameters also show significant sensitivities, which are negative. This is
due to the model’s higher levels of TC after imposing an influx for this cell type.

Moreover, the diffusion rate of cancer cells is one of the most sensitive parameters.
In other words, the more motile the cancer cells get, the larger their population becomes.
This is because cancer cells will interact more with cells and molecules that promote their
proliferation. The diffusion rate of adipocytes is the following most sensitive parameter in
this model. Adipocytes directly activate cancer cells, and increasing their motility means
more cancer/adipocyte handshakes.

The macrophage-related parameter, αM, has a relatively high positive sensitivity value.
This means that a greater influx of macrophages leads to more cancer cells. This is due
to the fact that macrophages produce IL6 and IL10, which, respectively, cause cancer cell
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proliferation and inhibition of cytotoxic T cells. Traditionally, macrophages are the immune
system soldiers in charge of clearing target cells. However, many studies have investigated
the tumor-promoting capabilities of macrophages [114–117].

Figure 12A shows the result of 10% perturbation of the top 20 most sensitive parame-
ters given in Table A1. We can see a significantly lower number of cancer cells at the lower
5%. Moreover, Figure 12B shows a drastic change in the size of the tumor when the most
sensitive parameters are varied.

A B

Figure 12. (A) The variation of the total number of cancer cells as a result of 10% perturbation of the
most sensitive parameters. (B) The leftmost circle corresponds to the lower bound, the middle circle
corresponds to the thick solid red curve and the right circle corresponds to the upper bound of the
graph in (A).

Since the diffusion of cancer cells and adipocytes are the most sensitive parameters,
the results indicate targeting cancer cells motility might be a treatment strategy, as sug-
gested in some other studies [118,119]. Parameters number 3 and 4 from Table A1 are
not informative, because they engulf production and death caused by reasons other than
the ones we have included in the model. Parameters number 5, 6, and 9 emphasize the
importance of cytotoxic T cells in cancer inhibition. Targeting CD8+ for immunotherapy
has been discussed extensively in the literature [120–122]. As for parameters 7 and 8, we
refer to the ODE paper for a detailed discussion about the importance of adipocytes and
IL6 in cancer therapy [75].

4. Discussion

In this study, we investigated the spatial interaction network of key cells and molecules
in the breast cancer tumors of a PyMT mouse model by developing a bio-mechanical system
of PDEs. We adopted the critical reactions among cells and molecules from an ODE model
of mice breast tumors [75], and the initial conditions were extracted from an MMTV-PyMT
mouse model.

Since there was no treatment applied in the experimental mouse model, the recruit-
ment of the immune cells was negligible. We, therefore, first investigated a case with
no immune cell influx. We noticed that the domain grows and deforms into a larger
blob-shaped region, a shape which is commonly observed in experiments [104–106].

The spatial distribution of the model state variables, which are in good agreement
with the late foldout experimental results, shows that the regions with the higher number
of immune cells have much fewer cancer and necrotic cells. The only differences between
the late foldout cells distributions in the mathematical model and experimental results
are the number of necrotic cells and naive dendritic cells. We hypothesize that the former
is due to the lack of nutrients and metabolites in the mathematical model, which affects
necrosis [123,124]. The latter is possibly due to the level of HMGB1 (a major activator of
naive DCs) in the mouse model compared to the mathematical model.

Moreover, we modeled an influx for immune cells through Robin boundary conditions.
The results indicate a lower growth rate of the domain with influx compared to the no-
influx case, and there was a significant overall decrease in the number of cancer cells in
the domain. As a result of these influxes, most cells and cytokines were focused near the
boundary of the tumor. Interestingly, despite the significant presence of the immune cells
near the boundary, cancer cells have a higher concentration there. We hypothesize that the
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interactions resulting from the immune cells’ influxes create an outward divergence for the
velocity field. This drives many of the cancer cells to the boundary of the domain. Since
mitotic regions are usually close to the tumor boundary [106,111], this might explain why
tumor cells can still escape after immunotherapy.

We calculated the sensitivity of total cancer cells to all the model parameters. The most
sensitive reaction parameters are in agreement with the ODE study. Importantly, we ob-
serve a significant sensitivity to the diffusion coefficient of cancer cells and adipocytes.
The interaction between cancer cells and adipocytes promotes cancer proliferation, and in-
creasing these values elevates their interaction, leading to more cancer cells.

The 10% perturbation of the top 20 most sensitive parameters shows a small can-
cer growth at the lower bound, primarily due to the diffusion rates of cancer cells and
adipocytes. Therefore, controlling the motility of these cells can lead to better prognoses,
and there are already studies targeting cancer cells’ motility [118,119]. The results also
indicate that the influx rate and source of cytotoxic T cells have a high impact on the total
cancer cells. In other words, increased influx of these cells leads to fewer cancer cells, which
is consistent with clinical and experimental observations [120–122]. Another important
observation is the positive sensitivity values for the influx rate and source of macrophages.
This is because macrophages produce IL6 and IL10, promoting cancer proliferation and
inhibiting cytotoxic T cell proliferation. This result is also in line with biological and
biomedical findings on the tumor-promoting properties of macrophages [114–116].

The findings of this study have to be seen in light of some limitations. One of the
main challenges of mathematical modeling of cancer is the lack of data for more reliable
parameter estimation and validation. Although we used the reaction parameters from the
earlier ODE study, we did not have access to time-course data for this model to obtain the
PDE-specific parameters. Therefore, we had to refer to studies that had estimated these
parameters based on certain assumptions. Moreover, the cell-cell adhesion force value for
the mechanical problem was a crude estimate. Currently, there is no direct report of such
values in the literature to the best of the authors’ knowledge. In addition, nutrients and
metabolites can significantly affect the tumor shape, size and number of cells. In avascular
tumor models, the type of nutrients and the competition for their consumption between
normal cells and cancer cells will lead to different growth pattern tendencies: circular
or papillary-like [125]. On the other hand, depletion of nutrients and metabolites in the
tumor microenvironment can cause the immune cells to lose their functionality, which can
lead to cancer cells’ growth and immune invasion behavior [126]. However, to reduce the
complexity of the model, we did not consider metabolites such as oxygen and nutrients.

Nevertheless, the model unveils some spatial features of breast tumor growth and
identifies the most sensitive parameters, including diffusion rates of cancer cells and
adipocytes to control the tumor growth. With access to more initial spatial data, this
model can make predictions about the effect of early immune cells’ infiltration patterns on
cancer progression. Additionally, future research can build upon this model to overcome
its limitations, such as by including more biological processes or integrating different
treatment options.
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Appendix A

In [75], we proposed an ODE model based on the interaction network in Figure 1.
This model and its parameters were extracted from three time-course data acquired from
three PyMT mouse models [127]. Figure A1 shows the results of the ODE model for all
three mice.

Figure A1. Cells and molecule dynamics from the ODE model [75].

https://github.com/ShahriyariLab/A-Bio-Mechanical-PDE-model-of-breast-tumor-progression-in-MMTV-PyMT-mice
https://github.com/ShahriyariLab/A-Bio-Mechanical-PDE-model-of-breast-tumor-progression-in-MMTV-PyMT-mice
https://events.cancer.gov/cbiit/dtwin2020
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Appendix B

For the sample collection, tumor size was between 3–5 mm (early) and 12–15 mm in
the longest dimension (late) at the time of excision. Tumors were immediately fixed in 10%
formalin for 48 h, then perfused with paraffin. Specimen were sectioned using a standard
microtome to collect 4–5 µm tissue sections. Dry FFPE tissues were baked in a 65 ◦C oven
for 30 min, followed by deparaffinization with xylene and rehydration in serially graded
alcohol to water. Sections were then stained by multiplex immunohistochemistry.

The slides were subjected to staining with F4/80 and CSF1R antibodies (no antigen re-
trieval) and hematoxylin staining (S3301, Dako, Santa Clara, CA, USA). Then, we subjected
them to the first heat-mediated antigen retrieval in 1× pH 5.5–6 citrate buffer for 90 s in a
low-power microwave and 16 min in a steamer. This step was followed by iterative cycles of
(i) staining, (ii) whole slide scanning, and (iii) and antibody stripping. Slides were incubated
with primary antibodies (as defined in Tatarova et al., manuscript under review) for 1 h at
RT or overnight at 4 degrees Celsius in a humid chamber. Signal was visualized with either
anti-rabbit or anti-rat Histofine Simple Stain MAX PO horseradish peroxidase-conjugated
polymer followed by peroxidase detection with 3-amino-9-ethylcarbazole (AEC). While
agitating, all washing steps were performed three times for 5–10 min in 1× PBS. Images
were acquired using the Aperio ImageScope AT (Leica Biosystems) at 20×magnification.
Within one cycle, AEC and HRP inactivation removal was accomplished by incubating the
slides in 0.6% fresh H2O2 in methanol for 15 min within one cycle; AEC removal and strip-
ping of antibodies was accomplished by ethanol gradient incubation and heat-mediated
antigen retrieval between cycles. After washing, samples were subjected to the subsequent
staining round.

The iteratively digitized images were co-registered using Matlab (The MathWorks,
Inc., Natick, MA, USA, version 2019b). The imperfectly registered images were additionally
processed using Fiji’s Linear Stack Alignment with SIFT plugin. Hematoxylin-stained
images served for single-cell nuclear segmentation to generate a binary mask using the
watershed in Fiji. Target protein signal was extracted using the NIH plugin RGB_to_CMYK
to separate the AEC signal into the yellow channel for improved sensitivity of IHC evalua-
tion. Grayscale images of all proteins and the binary mask were imported to CellProfiler
(version 3.1.8, Broad Institute, Cambridge, MA, USA) to quantify single-cell signal mean
intensity per mask. The mean signal intensity per segmented cell was imported to FCS
Express 6 and 7 Image Cytometry Software (DeNovo Software). Single-cell data from a
single random intratumoral region (per stage) were extracted from FCS Express in the
data grid for downstream modeling. The quality of the single-cell data was ensured by
excluding folded or lost tissue.

Appendix C

Figure A2 shows the initial condition preparation steps.



J. Pers. Med. 2022, 12, 807 18 of 26

Figure A2. Column 1: Discontinuous fields. Column 2: Projection onto a function space with linear La-
grangian elements. Column 3: Smoothened fields via diffusion. Column 4: Non-dimensionalized fields.
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Appendix D

Appendix D.1. Weak Formulation and Discretization

Suppose ξ and q are proper arbitrary vector and scalar test functions, respectively;
then multiplying both sides of Equations (9) and (11) by these functions and using (12)
along with integration by parts gives

F(v, p, ξ, q) =
∫

Ω(t)
Q : ∇ξ dx +

∫
Γ(t)

γκn · ξ ds +
∫

Ω(t)

∇ · v− ∑
i∈I

fi

∑
i∈I

[Xi]

q dx = 0. (A1)

To exclude rigid body movements, we consider the following constraints with La-
grange multipliers λi and test functions ωi for i = 1, 2, 3 corresponding to the bases zi of
the space of rigid body movements:

G(v, λi, ξ, ωi) =
∫

Ω(t)

[
3

∑
i=1

λi(ξ · zi)

]
dx +

∫
Ω(t)

[
3

∑
i=1

ωi(v · zi)

]
dx = 0, (A2)

where zi ∈ {(1, 0), (0, 1), (−y, x)}. Therefore, we find v, p and λi that satisfy

F(v, p, ξ, q)− G(v, λi, ξ, ωi) = 0, ∀ ξ, q, ωi. (A3)

We then make sure that v satisfies (13) when we move the mesh. Before discussing the
weak form of the system of equations in (1), we rewrite them in the Eulerian from:

D[Xi]

Dt
+ bi [Xi]∇ · v = Di∆[Xi] + fi. (A4)

The differential operator D
Dt = d

dt + v · ∇ is the material derivative. This setup will
make the numerical simulations much easier, since we can always solve (A4) in the current
domain configuration. For appropriate test functions ζi the weak form is given by

H([Xi], ζi,
D[Xi]

Dt
) =

15

∑
i=1

[∫
Ω(t+1)

(
D[Xi]

Dt
+ bi [Xi]∇ · v− fi

)
ζi dx

]

+
15

∑
i=1

[∫
Ω(t+1)

Di(∇[Xi] · ∇ζi) dx
]

+
15

∑
i=1

[∫
Γ(t+1)

αi([Xi]− [Xi
∗]) ζi ds

]
= 0. (A5)

For discretization of the mechanical problem, we use the mixed finite element space
W t

h defined by

W t
h = {(vt

h, pt
h, Λ)|ut

h ∈ V
t
h, pt

h ∈ S
t
h, Λ = (λ1, λ2, λ3, λ4) ∈ R4}. (A6)

We take the space V t
h to be a piece-wise quartic vector function space and S t

h a piece-
wise linear function space defined on Ωt

h (the triangulated discrete mesh representing Ω(t)).
If we denote the number of triangles in Ωt

h by N and the basis functions for V t
h and S t

h by
{wt

i}N
i=1 and {st

i}N
i=1, respectively, then

vt
h =

N

∑
i=1

ct
i w

t
i , pt

h =
N

∑
i=1

kt
is

t
i . (A7)
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We do not invent new notations for test functions and assume they are always chosen
appropriately according to each space. Now, we solve the discrete version of (A3) on Ωt

h
and its boundary Γt

h

F(vt
h, pt

h, ξ, q)− G(vt
h, λi, ξ, ωi) = 0, ∀ ξ, q, ωi (A8)

which gives us the solution v̄t
h. Assuming that our time step sizes are dt, then

v̄t
h ≈

ūt
h − ūt−1

h
dt

. (A9)

Moving nodes of Ω0
h by the displacement ūt−1

h produces Ωt
h, and moving Ω0

h via ūt
h

gives Ωt+1
h . Therefore, for going from Ωt

h to Ωt+1
h we can use the flow map x(x0

h, t + 1) =
x(x0

h, t) + Ūt
h where Ūt

h = ūt
h − ūt−1

h . We use a forward Euler to discretize the material
derivative.

D[Xi]

Dt
≈ Dh,dt[Xi] :=

[Xi](x(x0
h, t + 1), t + 1)− [Xi](x(x0

h, t), t)
dt

. (A10)

Here, we should point out that there is no need for interpolation in (A10) since the
mesh points move with the flow map.

Equation (A4) corresponding to cell dynamics has very small diffusion coefficients (see
(4)). Therefore, they can become advection or reaction-dominated, resulting in numerical
instabilities. We enriched the usual piece-wise linear function spaces with bubble elements
to remedy this. This method allows us to increase the stability without increasing the size of
the problem significantly [128–130]. Therefore, on the moved mesh Ωt+1

h we define bubble
enriched piece-wise linear function spaces Qt+1

h,B = Qt+1
h

⊕Qt+1
B , and use the following

mixed space

Mt+1
h = {([X1]

t+1
h , · · · , [X15]

t+1
h ) | [X1]

t+1
h ∈ Qt+1

h,B }, (A11)

and we solve
H([Xi]

t+1
h , ζi, Dh,dt[Xi]

t+1
h ) = 0

for cells and molecules concentrations in the current domain.

Appendix D.2. Simulation

The simulations in this study were carried out via FEniCS [131], and all the meshes
were generated via GMSH (http://gmsh.info/, accessed on 1 March 2022). Both of these
software packages are very powerful. With FEniCS, we can easily work with mixed,
enriched, and higher-order spaces without the need to write numerous lines of code.
GMSH can easily handle structured and non-structured domains with several sub-domains
and boundary surfaces. Additionally, it can be called from within FEniCS for more flexible
re-meshing and has many other useful features.

Appendix E

Table A1 contains a full sensitivity report of the PDE parameters in addition to the
reaction parameters used in the ODE study [75].

http://gmsh.info/
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Table A1. Full sensitivity report. This table contains the sensitivity value of
∫

Ω Cdx to all the
parameters used in the model. The rows are ordered in a decreasing fashion based on the absolute
value of their sensitivity values.

Order Notation Sensitivity Definition Order Notation Sensitivity Definition

1 DC 2242.835 Diffusion coefficient of C 44 δTh −2.87× 10−5 Death rate of Th

2 DA 56.46447 Diffusion coefficient of A 45 λMTh 2.10× 10−5 Activation rate of M by Th

3 δC −3.16066 Death rate of C 46 ADN −1.48× 10−5 Independent production rate of DN

4 λC 2.989047 Proliferation rate of C 47 δTN 1.41× 10−5 Death rate of TN

5 αTC −0.31011 Influx rate of TC 48 λTh H 1.03× 10−5 Activation rate of Th by H

6 DTC −0.2628 Diffusion coefficient of TC 49 λDC −6.42× 10−6 Activation rate of D by C

7 λCIL6 0.138431 Proliferation rate of C by IL6 50 λTh IL12 6.27× 10−6 Activation rate of Th by IL12

8 λCA 0.107539 Proliferation rate of C by A 51 AMN 3.50× 10−6 Independent production rate of MN

9 δCTC −0.06665 Inhibition rate of C by TC 52 λTC D −3.46× 10−6 Activation rate of TC by D

10 δA −0.03611 Death rate of A 53 δDN 3.26× 10−6 Death rate of DN

11 λA 0.03531 Proliferation rate of A 54 λIL10D 3.14× 10−6 Production rate of IL10 by D

12 αM 0.025664 Influx rate of M 55 δTh IL10 −1.71× 10−6 Inhibition rate of Th by IL10

13 δIL6 −0.01152 Decay rate of IL6 56 δThTr −1.46× 10−6 Inhibition rate of Th by Tr

14 λIL6 A 0.009239 Production rate of IL6 by A 57 λDH −1.37× 10−6 Activation rate of D by H

15 λIL6 M 0.007813 Production rate of IL6 by M 58 A0 9.75× 10−7 Carrying capacity of A

16 αTh 0.002154 Influx rate of Th 59 δMN −3.58× 10−7 Death rate of MN

17 δTC 0.001508 Death rate of TC 60 λIL12 M −3.55× 10−7 Production rate of IL12 by M

18 αTr 0.001441 Influx rate of Tr 61 δIL12 2.87× 10−7 Decay rate of IL12

19 DDN −0.00094 Diffusion coefficient of DN 62 λIL12Th −2.31× 10−7 Production rate of IL12 by Th

20 DN −0.00094 Diffusion coefficient of N 63 λIL12TC −2.18× 10−7 Production rate of IL12 by TC

21 C0 0.000541 Carrying capacity of C 64 DIL12 9.50× 106−8 Diffusion coefficient of IL12

22 DTr −0.00044 Diffusion coefficient of Tr 65 λThD 7.78× 10−8 Activation rate of Th by D

23 δIL10 −0.00039 Decay rate of IL10 66 λTr D 6.93× 10−8 Activation rate of Tr by D

24 λIL10C 0.000386 Production rate of IL10 by C 67 δD −3.70× 10−8 Death rate of D

25 λTC IL12 −0.00035 Activation rate of TC by IL12 68 δH −1.49× 10−8 Decay rate of H

26 DM −0.00034 Diffusion coefficient of M 69 λHM 8.05× 10−9 Production rate of H by M

27 λIL10Tr 0.000319 Production rate of IL10 by Tr 70 λHTC 5.35× 10−9 Production rate of H by TC

28 δM −0.00029 Death rate of M 71 λHC 5.00× 10−9 Production rate of H by C

29 λIL10 M 0.00024 Production rate of IL10 by M 72 δDC 3.46× 10−9 Activation rate of D by C

30 λIL10Th 0.00018 Production rate of IL10 by Th 73 λIL12D −2.50× 10−9 Production rate of IL12 by D

31 λIL10TC 0.000153 Production rate of IL10 by TC 74 λHN 4.23× 10−10 Production rate of H by N

32 DTh −0.00015 Diffusion coefficient of Th 75 λHD 1.96× 10−10 Production rate of H by D

33 DIL6 0.000126 Diffusion coefficient of IL6 76 δN 1.14× 10−11 Death rate of N

34 ATN −9.73× 10−5 Independent production rate of TN 77 DH 1.90× 10−13 Diffusion coefficient of H

35 αDN 9.34× 10−5 Influx rate of DN 78 αNC 8.36× 10−15 C to N conversion fraction

36 δTCTr 8.92× 10−5 Inhibition rate of TC by Tr 79 T∗C −3.56× 10−16 TC influx source

37 DD 8.69× 10−5 Diffusion coefficient of D 80 M∗ 3.44× 10−17 M influx source

38 δTC IL10 7.88× 10−5 Inhibition rate of TC by IL10 81 T∗h 2.87× 10−18 Th influx source

39 λIL6D 7.41× 10−5 Production rate of IL6 by D 82 T∗r 2.47× 10−18 Tr influx source

40 DIL10 −5.72× 10−5 Diffusion coefficient of IL10 83 D∗N −8.55× 10−20 DN influx source

41 λMIL10 5.35× 10−5 Activation rate of M by IL10

42 δTr −4.66× 10−5 Death rate of Tr

43 λMIL12 3.41× 10−5 Activation rate of M by IL12
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